
Gorm DB Deep Dive and Techniques to Update Default Values to DB

Pallavi Priya Patharlagadda*

Citation: Patharlagadda PP. Gorm DB Deep Dive and Techniques to Update Default Values to DB. J Artif Intell Mach Learn &
Data Sci 2023, 1(4), 989-994. DOI: doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/235

Received: 03 December, 2023; Accepted: 28 December, 2023; Published: 30 December, 2023

*Corresponding author: Pallavi Priya Patharlagadda, USA, E-mail: Pallavipriya527.p@gmail.com

Copyright: © 2023 Patharlagadda PP., This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

1

Research ArticleVol: 1 & Iss: 4

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/235

 A B S T R A C T
The application usually stores the data in a Database. So, The Data from object-oriented programming languages must be

converted into relational database formats and vice versa using an ORM. GORM is one of the most widely used open-source
ORM libraries for Go. Relational databases and the Go programming language are two distinct system types that can have their
data flows matched and synchronized. Go contains the struct data type, functions, and interfaces that enable object-oriented
programming even if it is not a fully object-oriented language. These capabilities also allow you to design models (struct types
that reflect certain database tables) using GORM. GORM enables you to perform operations like updating the table data etc. One
of the issues we faced in our project is GORM updates() function doesn’t update the default values like false, nil, zero, etc to DB
when the data to update is provided as a structure. This paper provides the techniques on how to update the default values when
using GORM.

1. Introduction
A robust Go library called GORM offers an Object-Relational

Mapping (ORM) foundation to make database interactions
simpler. Developers can use object-oriented programming
paradigms to work with relational databases by utilizing the
ORM approach. GORM removes the complexity associated
with SQL statements and database connections, making
database queries, data manipulation, and management easier.
By offering an easy interface for utilizing Go struct types and
functions to communicate with databases, GORM transforms
database administration in Go. Beyond just making database
operations simpler, GORM also supports several database
backends, encourages maintainable code, and removes several
labor-intensive manual procedures related to running raw SQL
queries. You’ll see increased productivity and longer-lasting
codebases when you incorporate GORM into your Go projects.
We shall delve deeper in the upcoming sections.

2. Problem Statement
The GORM library is widely used for Database operations

while using the Go language. But currently, the GORM Updates
function doesn’t update to default values like false, nil, zero, etc.
If we pass a structure that contains both default and non-default
values, then GORM updates() only update the non-default values.
The paper addresses this problem and provides techniques to
solve this problem.

3. What is ORM
ORM stands for Object-Relational Mapping. ORM is a

technique that lets you query and manipulate data from a database
using an object-oriented paradigm. Object(O) corresponds
to the programming language. Relational(R) corresponds to
the Relational Database Systems. Mapping(M) is the bridge
between the objects and the Database. Popular ORMs are the
Prisma ORM for JavaScript, TypeScript, Hibernate for Java, and
SQLAlchemy for Python.

Advantages of ORM:

•	 Development times are accelerated by using ORM.
•	 The ORM tools help in eliminating SQL injection

attacks largely thereby increasing the security.

https://doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/235
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/235

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Patharlagadda PP.,

2

•	 You may utilize the database of your choice in the language
of your choice since ORM is compatible with a wide range
of programming languages.

•	 You may utilize custom queries using ORM as it supports
them

Disadvantages of ORM:

•	 There is a learning curve to know about ORM tools.
•	 In the case of extremely complex queries, ORM performance

degrades.
•	 ORMs are usually slower than directly using a database.

4. Gorm
The most widely used ORM in the Go environment is called

GORM. A full-featured, developer-friendly, Code-first ORM
framework called GORM (Go-ORM) streamlines the creation,
retrieval, updating, and deletion of records by automating
database operations. The GORM library provides a standardized
interface to work with your data, independent of the underlying
database, and supports several databases, including PostgreSQL
and MySQL. Along with support for various database drivers
and common SQL databases including MySQL, SQLite,
PostgreSQL, and Microsoft SQL server, GORM offers drivers
and functionality like associations, auto migration, SQL creation,
logging, and hooks for database operations.

5. Advantages of Gorm
Below are some of the advantages of GORM.

Enhanced Database Operations:

By abstracting away the intricacies of SQL queries, GORM
facilitates the execution of frequently used database operations,
including INSERT, UPDATE, DELETE, and SELECT.

Database-Agnostic:

You can switch databases without having to rewrite your
code since GORM supports a variety of database backends.
A variety of databases are supported, including PostgreSQL,
MySQL, and SQLite.

Model-Driven Development:

GORM promotes a model-driven methodology in which Go
struct types are used to create your database schema. This method
guarantees that the database schema and the data structure of
your application are consistent.

Automatic Migrations:

In place of manual schema migration scripts, GORM may
automatically generate or update database tables in response to
modifications in your Go struct types.

Query Building:

With GORM’s extensive collection of query-building
techniques, you may use a fluent API to create intricate queries.

6. Disadvantage of GORM
elow are some of the disadvantages of using GORM.

-	 For developers who are unfamiliar with GORM or ORMs in
general, there can be a steep learning curve and mastery of
the tool may require a substantial time commitment.

-	 A thorough understanding of association structs tags, which
are used to specify foreign keys and establish associations
between tables, is necessary for generating a DB schema
with GORM.

-	 Restricted authority over the database optimizer and
underlying SQL queries

-	 According to benchmark results, GORM may have
performance overhead, particularly for multiple-row Insert
and Update operations, when working with sophisticated
queries or big data sets.

Before utilizing GORM, it is advised to check the benchmarks
and consider any potential performance impact if your project
comprises such tasks.

This article will go into detail on how to use the GORM library
in Go to execute database operations. The steps for configuring
the development environment, establishing a connection to a
PostgreSQL database, executing fundamental Create and Update
tasks, and exploring the advanced functionalities of the ORM
library. This article will offer a thorough guide for utilizing the
GORM library to manage data efficiently.

7. Prerequisites
Make sure the following prerequisites are met before beginning
the installation procedure.

-	 Knowledge of the basics of the Go programming language.

-	 Good to have some experience with relational databases,
like PostgreSQL or MySQL.

-	 Understanding fundamental SQL syntax, tables, columns,
and queries (Create and Update operations) can aid you in
understanding the database-related ideas covered in this
tutorial.

-	 Install Go on your computer.

-	 An existing PostgreSQL database is configured, and access
to the database is authorized for a user.

8. Installing Gorm
The go-get command can be used to install GORM by

retrieving the required packages from the Go module repository.
Run the following command on an open terminal or command
prompt.

go get -u github.com/go-gorm/gorm

3

Patharlagadda PP., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:4

This command would fetch the most recent version of the
GORM and its dependencies, ensuring you have the most up-to-
date version of the library.

The PostgreSQL database driver needs to be installed. Only
then GORM library will be able to connect to the PostgreSQL
database and execute database operations without any issues. To
install the PostgreSQL driver, use the following command.

go get -u gorm.io/driver/postgres

By doing this, the PostgreSQL driver made especially for the
GORM library will be installed.

Additionally, database drivers for MySQL, SQLite, SQL
Server, TiDB, and Clickhouse are available through the GORM
library. To learn how to utilize these database drivers and build
your own, check the GORM library documentation.

We can connect to your PostgreSQL database and carry out
database operations

9. EStablishing a database connection with the gorm
library
1. Importing the GORM library and the PostgreSQL driver

package is the first step.

 package main
import (
 “gorm.io/driver/postgres”
 “gorm.io/gorm”
)

The PostgreSQL database connection information, including
the host, user, password, dbname, and port, must then be
provided. The Data Source Name (DSN), a connection string, is
created using these details. The DSN provides connection details
to the database.

func Dsn(host, user, password, dbname string, port int, sslmode
string) string {
	 dsn := fmt.Sprintf(
		 “host=%s user=%s password=%s
dbname=%s port=%d sslmode=%s”,
		 host, user, password, dbname, port, sslmode,
)
	 return dsn
}

Include the subsequent code in your main.

func main() {
 dsn := Dsn(host, user, password, dbname, port, sslmode)
 dialector := postgres.Open(dsn)
 db, err := gorm.Open(dialector, &gorm.Config{}
)
 if err != nil {
 panic(«Database connection Failed: « + err.Error())
 }
}

The above code performs below functionality.

The gorm is used to make a connection to the PostgreSQL
database. The Open() function accepts two arguments.
PostgreSQL driver DSN details is the first argument for gorm.
Open(dsn), and the configuration, &gorm.Config{}, is the

second argument. An error (err) and a database instance (db) are
returned by this function.

Lastly, it determines whether an error (err!= nil) happened
during the database connection. The panic() function is executed
in the event of an error, concatenating the error message “Database
Connection Failed:” + err.Error(). As a result, the application
crashes and prints the error message that was supplied along
with the actual error, which shows that the database connection
attempt was unsuccessful.

10. Performing create a record with the Gorm library
The next step is to construct a Go struct that represents the

model for the associated database table after you have connected
to the database using the GORM package. The schema or design
for interacting with the data in the table will be provided by this
struct. Here is an example.

import (
 «time»
)
type Person struct {
 gorm.Model
 FirstName string `gorm:»uniqueIndex»`
 LastName string `gorm:»uniqueIndex»`
 Email string `gorm:»not null»`
 City string `gorm:»not null»`
 Role string `gorm:»not null»`
 Age int `gorm:»not null;size:3»`
 HasSubscription bool `gorm:»default:false»`
 CreatedAt time.Time `gorm:»autoCreateTime»`
 UpdatedAt time.Time `gorm:»autoUpdateTime»`
 DeletedAt gorm.DeletedAt
}

NOTE: The GORM library provides extra metadata or
instructions to the ORM framework through tags, which are
annotations applied to struct fields using backticks (``). These
tags are essential for configuring table associations, defining
column names, mapping struct fields to database columns,
declaring data types, and imposing restrictions. They offer
crucial details regarding the composition and properties of the
database table and its columns.

The time package is imported in the code example above
to keep track of the creation, updates, and deletions of Person
records. The fields in the Person struct are then defined to match
the columns in the database table. The functions of each field
and the related tag are as follows:

Gorm. Model:

This field contains an embed of the gorm.Model struct, which
offers standard fields for tracking the metadata of the model,
such as ID, CreatedAt, UpdatedAt, and DeletedAt.

FirstName and LastName:

These fields include the person’s first and last name. They
also feature the gorm: “uniqueIndex” tag, which indicates that
the first and last name combination is unique in the database and
that two-person entries cannot have the same first and last name.

Email, Country, Role:

These are fields that reflect the person’s country, email
address, and role. They are marked with the gorm:”not null”

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Patharlagadda PP.,

4

tag, indicating that they are mandatory fields that cannot have
an empty value.

Age:

The gorm: “not null;size:3” tag is present in this field, which
indicates the Person’s age. There is a three-digit limit on the size
of this integer field.

HasSubscription:

This field indicates if the person has a subscription or not.
gorm: “default: false” tag, indicates that false is the default value.

CreatedAt and UpdatedAt:

The timestamps for the creation and updating of the Person
record are indicated by the fields CreatedAt and UpdatedAt. They
belong to a certain type. When a new Person record is created
or edited, time and have the gorm: “autoCreateTime” and gorm:
“autoUpdateTime” tags, respectively, indicating that they should
be automatically populated with the current timestamp.

DeletedAt:

The type of this field is gorm.DeletedAt and are utilized in
GORM to manage soft-deletes. Instead of physically deleting
a record from the database, it enables GORM to handle logical
deletions and keep track of the deletion timestamp of a Person’s
record.

“Soft delete” refers to a technique in the GORM library
where records are tagged as deleted rather than being physically
destroyed from the database. When a record is deleted, the
GORM library sets the value of a DeletedAt field with the gorm.
DeletedAt type in your Go struct, signaling that the record is
deleted but is still stored in the database. Benefits include data
integrity control, fast recovery and restoration of erased records,
and preservation of a history of modifications. You can use the
GORM library to do a hard delete by physically removing the
entries from the database. when you choose not to use the soft
delete feature you can omit the DeletedAt field from your Go
struct.

11. Create a record with Gorm library
Adding records to the database is a basic database activity.

Using the Create() function from the GORM library, a new
instance of the matching struct-in this case, Person-must be
defined and saved to the database. By producing the required
SQL commands for insertion automatically, the GORM library
streamlines the procedure.

Whether you specify field names in struct using capital or
lowercase letters when using the GORM library, the field names
will be automatically transformed to lowercase letters in the
database. An underscore (_) will be used in the database to
separate words in field names that contain more than one.

import “fmt”

func main() {

 newPerson := Person{
 FirstName: «Alice»,
 LastName: «Bob»,
 Email: «AliceBob@gmail.com»,
 Country: «Sweden»,
 Role: «Artist»,

 Age: 30,
 Hassubscription: true,
 }
 // ... Create a new Person record
 result := db.Create(&newPerson)
 if result.Error != nil {
 panic(«failed to create record newPerson: « + result.Error.
Error())
 }
 // ... Handle successful creation ...
 fmt.Printf(«New Person %s %s was created successfully!\\n”,
newPerson.FirstName, newPerson.LastName)
}

In the above example, a new Person struct instance with the
desired field values for the person, such as first_name, last_name,
email, country, role, age, and subscription. The above example
code performs the below functions.

-	 Establishes a new Person record in the database using the
db.Create(&newPerson) function. The GORM library
can update the newPerson struct with an auto-generated
primary key and other database-managed fields by using the
&newPerson pointer, which points to the newPerson struct.

-	 Look for any mistakes that might have happened throughout
the creation procedure. The program panics and shows the
error message “failed to create record newPerson: “ + result
if a problem occurs.Failed.Error() in addition to the real
error.

-	 Finally, if the creation of the Person record is successful,
fmt.Printf is used to print a confirmation message stating
that the new Person has been created. The newly added
Person’s initial and last name are included in the message.

On executing the above go file, the new person will be added
successfully to the Database. You can connect to the DB and
check for the entry manually.

12. Update a record with Gorm library
GORM provides multiple ways of updating a record based

on requirements.

13. Save
It saves all the fields specified in the structure. Save is

a combination function. If the saved value does not contain
a primary key, it will execute Create, otherwise, it will
execute Update (with all fields). Below is an example.

 var person Person
 result := db.First(&person, 1)
 if result.Error != nil {
 panic(«failed to retrieve person from DB: « + result.Error.
Error())
 }
 // Modify the attributes of the retrieved record
 person.FirstName = «Bob»
 person.LastName = «Smith»
 person.Email = «BobSmith@example.com»

 // Save the changes back to the database
 result = db.Save(&person)
 if result.Error != nil {
 panic(«failed to update person: « + result.Error.Error())
 }

5

Patharlagadda PP., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:4

The code above uses the first method of the db object to fetch
a particular Person record from the database. The code will panic
and display the error message if a retrieval process error occurs.

Next, it makes changes to the first_name, last_name, and email
of the record that was retrieved. The Save method is used to
save the modifications to the database. The code will panic and
display the error message if an error occurs during the updating
process.

NOTE:

1. Save with Model should not be used; it is an undefinable
behavior.

Advantages of Using Save:

Simpleness:

All fields are updated with a single method call.

Complete Update:

Assures that the current state of the struct is the same as the
record in the database.

Disadvantages of Using Save:

Performance:

It may not be essential to update every column, which could
cause operations to lag and be inefficient.

Danger of Overwriting Data:

Some fields that were previously filled in the database will be
overwritten if the struct has default zero values for such fields.

14. Update
The update method updates specific fields in the structure. Here
is an example.

result := db.Model(&Person{}).Where(“id = ?”,
1).Update(“role”, “Programmer”)

 if result.Error != nil {

 panic(“failed to update Person: “ + result.Error.Error())

 }

In the above example, we are fetching the record with id=1
and update the role. After a successful update, the role of the
Person should be updated to Programmer.

Advantages of Using Update:

Greater control over the data as it updates only the provided
fields, preventing inadvertent negative consequences on related
data.

Improved efficiency while changing individual fields because
the database isn’t overwritten needlessly.

Disadvantages of Using Update:

Additional intricacy because each relationship needs to be
handled explicitly while updating connected data.

Possibility of errors or inconsistent data if the developer
neglects to manually manage updates to related data.

15. Updates
	 Updates update multiple columns of struct. Here is an

example.

result := db.Model(&Person{}).Where(“id = ?”,
1).Updates(Person{

FirstName: “Alice”,
 LastName: “Bob”,
 Email: “AliceBob@example.com”,
	 Hassubscription: false
 })
 if result.Error != nil {
 panic(“failed to update Person: “ + result.Error.Error())
 }

 In the above example, we are updating the fields FirstName,
LastName, Email, and Has Subscription fields. After executing
the above code, you will be surprised to see that HasSubscription
would still hold the value of True while the other attributes like
FirstName, LastName, and Email get updated. The problem here
is that Updates() doesn’t update the field if we provide Fiels’s
default value.

In several projects, updates were preferred over update and
save as it updates only specific fields by providing the structure
thereby increasing the performance. But we miss the point that
Updates won’t update the default values when update data is
provided as a structure. So, how can we overcome the problem?

This can be solved in two ways.

- Have a separate update function for updating the default
values. If we have multiple values to update like the above
example, you can give the non-default values and those will be
updated. To Update to default values, have a separate update
function that would perform the update. Below is an example.

result := db.Model(&Person{}).Where(“id = ?”,
1).Update(“HasSubscription”, false)

 if result.Error != nil {
 panic(“failed to update Person: “ + result.Error.Error())

 }

This would update the HasSubscription to false

- The second way is to define everything in a map instead
of structure to updates. This would update even though default
values are provided. Below is an example.

result := db.Model(&Person{}).Where(“id = ?”,
1).Updates(map[string]interface{}{

 “FirstName”: “Alice”,

 “LastName”: “Bob”,

 “Email”: “AliceBob@example.com”,

	 “Hassubscription”: false

 })

 if result.Error != nil {

 panic(“failed to update Person: “ + result.Error.Error())

 }

To maximize the performance of your Go applications with
the GORM library, consider the below best practices:

Recognize the scope of Your Tasks:

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Patharlagadda PP.,

6

When you need to make sure the whole object graph
accurately representing the state of your application’s model,
use Save. If you are simply making changes to a portion of the
model and require accuracy, use Update.

Carefully Manage Associations: You will have to carefully
manage associated data updates while using Update. Take care
of this to prevent inconsistent data.

Performance Aspects: An update can help in improving
the performance when only a portion of the data must be
updated with huge datasets or high-load scenarios.

16. Conclusion
As discussed, GORM is a strong ORM package for Go that

makes database management easier and boosts efficiency.

GORM offers two effective techniques for updating database
entries: Save and Update. Gaining an understanding of their
distinctions and the proper context for each will greatly improve
the dependability and performance of your application. You can
guarantee that your database interactions are productive and
efficient by selecting the appropriate approach for the given
circumstance.

17. References

1.	 https://gorm.io/docs/

2.	 https://stackoverflow.com/questions/1279613/what-is-an-orm-
how-does-it-work-and-how-should-i-use-one

3.	 https://hyperskill.org/learn/step/20695?utm_source=medium_
hs&utm_medium=socia l&utm_campaign=hsms-193_
gorm&utm_content=article&utm_term=09.03.23

4.	 https://www.freecodecamp.org/news/what-is-an-orm-the-
meaning-of-object-relational-mapping-database-tools/

5.	 https://dev.to/techschoolguru/how-to-handle-db-errors-in-
golang-correctly-11ek

6.	 https://medium.com/readytowork-org/updating-nil-value-with-
gorm-mapping-using-reflect-212cec203822

7.	 https://medium.com/@speedforcerun/golang-how-to-solve-
gorm-not-updating-data-when-you-may-have-none-zero-field-
724ccb351e8b

8.	 https://stackoverflow.com/questions/64330504/update-method-
does-not-update-zero-value

9.	 https://medium.com/@kadergenc/what-is-orm-why-is-it-used-
what-are-its-pros-and-cons-3ed77c0e6ed2

10.	 https://www.red-gate.com/simple-talk/featured/how-to-use-any-
sql-database-in-go-with-gorm/

11.	 https://techwasti.com/simplifying-database-interactions-a-
comprehensive-guide-to-installing-and-setting-up-gorm-in-go

https://techwasti.com/simplifying-database-interactions-a-comprehensive-guide-to-installing-and-setting-up-gorm-in-go
https://techwasti.com/simplifying-database-interactions-a-comprehensive-guide-to-installing-and-setting-up-gorm-in-go

	_GoBack
	_GoBack
	_GoBack
	_GoBack

