
Generative Query Optimization in Data Warehousing: A Foundation Model-Based
Approach for Autonomous SQL Generation and Execution Optimization in Hybrid
Architectures

Rajesh Kumar Kanji*

Citation: Kanji RK. Generative Query Optimization in Data Warehousing: A Foundation Model-Based Approach for Autonomous
SQL Generation and Execution Optimization in Hybrid Architectures. J Artif Intell Mach Learn & Data Sci 2022 1(1), 2837-2842.
DOI: doi.org/10.51219/JAIMLD/rajesh-kumar-kanji/592

Received: 02 August, 2022; Accepted: 24 August, 2022; Published: 26 August, 2022

*Corresponding author: Rajesh Kumar Kanji, Independent Researcher, Plano, USA, Email: kanjirk@gmail.com

Copyright: © 2022 Kanji RK., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/rajesh-kumar-kanji/592

 A B S T R A C T
Modern data warehousing, particularly in complex hybrid architectures combining cloud and on-premise resources, faces

increasing challenges in rapidly producing and optimizing SQL queries. Traditional systems usually need substantial manual
labor and struggle to adapt dynamically. This study looks into the use of foundation models for generative query optimization.
The major goal is to develop systems capable of automatically generating SQL from natural language descriptions and optimizing
its execution while accounting for the complexities of hybrid contexts. The suggested methodology generates contextually
relevant SQL by combining deep semantic understanding with techniques such as reinforcement learning. Critically, it attempts
to dynamically change execution methodologies in response to real-time infrastructure and data conditions. Initial research
suggests that such integrated generative techniques have the potential to reduce user effort in query formulation and result in
more efficient execution plans across heterogeneous systems.

Keywords: Generative Query Optimization, Autonomous SQL Generation, Natural Language to SQL, Reinforcement Learning,
Adaptive Query Processing

1. Introduction
The last ten years have seen a significant shift toward

high-level programming languages in demanding system
development. This change addresses a clear need: increasing
developer productivity, which is often hampered by complex,
monolithic low-level codebases that are infamously difficult to
debug and maintain. This tendency is exemplified by platforms
such as Spark and DryadLINQ, as well as improvements in
operating system design (such as Singularity). Their strength
rests in powerful features like modules, interfaces, and strong
type systems, which let developers to write substantially less
code, construct reusable components, and drastically reduce

software faults. However, this welcome increase in production
has not come without a considerable trade-off. These abstractions
provide levels of indirection, requiring runtime systems to
manage frequent object creation and destruction, costly memory
copies for encapsulation, and type conversions. These overheads
result in a constant performance difference, leading many to
feel that high-level languages are unsuitable for developing
truly high-performance systems, such as core database engines.
The persuasive “abstraction without regret” vision explicitly
challenges this assumption, suggesting that developer efficiency
and raw system speed are compatible. Realizing this promise,
particularly for the complex world of ad hoc analytical query
processing within modern hybrid data warehouses - settings

https://orcid.org/0009-0004-7427-8774
https://doi.org/10.51219/JAIMLD/rajesh-kumar-kanji/592
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/rajesh-kumar-kanji/592

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kanji RK.,

2

that combine on-premise servers with different cloud resources
- is extremely tough. Traditional approaches for creating SQL
queries and optimizing their execution perform poorly here.
They struggle to adapt to the continual flux of workloads,
the drastically changing performance characteristics across
multiple storage and computing nodes, and the dynamic data
distributions that are inherent in these hybrid configurations.
This rigidity traps database administrators and developers in
a cycle of arduous, time-consuming manual adjustment. This
paper investigates a novel approach: using foundation models
to accomplish generative query optimization1. The central
concept is a technology that automatically converts a data
scientist’s plain English question into a well-structured SQL
query. Crucially, it does not end there; the system continuously
adapts the actual execution plan in response to real-time factors
observed across the hybrid infrastructure, such as current
network latency, resource load, or data location. We intend to
bridge a vital gap by delivering the intuitive simplicity and speed
of expression provided by high-level abstraction while satisfying
the demanding performance requirements of today’s large-scale,
hybrid data systems.

Relational databases underpin mission-critical systems,
such as real-time financial analytics and medical care platforms,
which require precise and rapid data retrieval. However, this
potential is hidden beneath SQL’s complexity, providing a basic
accessibility barrier. This problem is exacerbated by hybrid data
warehouses, which need queries to overcome unpredictable
latency across cloud and on-premise boundaries, variable data
locality, and heterogeneous compute tiers. Traditional natural
language-to-SQL (NL2SQL) translation simplifies expression
but fundamentally ignores execution reality. Even syntactically
correct queries can create disastrously inefficient plans
when implemented across dynamic infrastructures, negating
productivity benefits due to slow replies or high compute costs.
This gap continues because translation focuses only on language
mapping rather than runtime adaptation. As a result, we face
a crucial need for systems that not only read natural language
intents but also intelligently manage their implementation in
unpredictable hybrid contexts. The stakes are real milliseconds
affect trade algorithms, and resource waste grows rapidly with
data volume.

Large language models (LLMs) have made real progress
in handling text-to-SQL basics. They’re now pretty reliable at
understanding what users actually mean with their questions
and identifying the right database tables and columns needed
to answer them2,3. But here’s what’s missing: these systems
only focus on getting the SQL syntax correct. They completely
ignore how efficiently that query will run in real-world systems.
This becomes especially problematic in today’s complex hybrid
data environments where queries might jump between cloud
services and local servers. Without optimization awareness, you
get slow responses, surprise cost spikes from unnecessary data
movement, and wasted computing power. This efficiency gap
hits production systems hard through three key issues: location
blindness (pulling data across expensive networks when local
copies exist), resource ignorance (underutilizing accelerators
like GPUs while overloading CPUs), and workload rigidity
(using static plans that crumble under shifting demand). Current
LLM approaches treat SQL generation as a syntax exercise
rather than engineering for real infrastructure constraints. They

lack continuous conversation with live systems unaware of
server loads, cached results, or real-time network tolls between
clusters. The critical question isn’t whether LLMs can generate
SQL (they clearly can2.3, but why they don’t yet optimize SQL
for the messy realities of hybrid data platforms where correctness
alone isn’t enough.

2. Related Work
Early advances in learning-based query optimization focused

on combining traditional cost-based optimizers with adaptive
mechanisms. The Neo optimizer4 represents a significant
advancement by introducing a neural architecture capable
of replacing multiple heuristic components of the Selinger-
style query optimizer. It used deep reinforcement learning and
learning-from-demonstration strategies to start from simpler
optimizers like PostgreSQL and gradually evolve an optimizer
that generalizes to previously unseen queries. Neo’s main
innovation is that it treats optimization as a learnable function
rather than a rule-based search, with tree convolutional networks
encoding execution plans and a neural value network predicting
query plan latency. Despite having to learn from pre-generated
plans and a limited scope to SELECT-PROJECT-JOIN-
AGGREGATE queries, Neo laid the groundwork for end-to-
end learned optimizers. This shift away from hand-crafted
cost modeling reflects a growing trend toward data-driven
optimization strategies that are well-suited to evolving hybrid-
cloud and decentralized architectures. Importantly, Neo reframed
the role of the optimizer as a continuously self-tuning system
capable of adapting to both instance-level workload dynamics
and physical execution feedback, challenging traditional static,
rule-based assumptions in query plan selection.

The evolution of text-to-SQL synthesis has deepened the
relationship between user intent and structured query generation.
To address the “order-matters” issue in SQL decoding, SQLNet5
advanced the modeling paradigm by replacing fragile sequence-
to-sequence formulations with a sketch-based architecture and
a sequence-to-set decoder. This architectural shift reduced
prior models’ reliance on reinforcement learning and enabled
robust parsing of unordered SQL components, such as WHERE
clauses, with better generalization to unseen schema instances.
SQLNet’s use of a dependency graph in the sketch introduced
explicit control flow, which improved decoding fidelity, while
its column attention mechanism better aligned question tokens
with target SQL slots. These design decisions led to statistically
significant improvements over reinforcement-based baselines on
the WikiSQL dataset. While SQLNet specialized in structured
generation from natural language, its controlled generation
paradigm influenced architectural abstractions relevant to
foundation model conditioning in structured data contexts.
It demonstrated that compositional and interpretable SQL
generation could be structured as a constrained learning problem,
which is directly applicable to generative optimization tasks in
data warehousing. In today’s hybrid-architecture environments,
SQLNet’s ability to learn and generalize transformations
without assuming a fixed clause order or schema strengthens
its contributions to modular query generation under schema
variability.

More recently, with the introduction of foundation models
such as GPT-4 and specialized domain-tuned variants such as
Google’s PaLM and Microsoft’s Phi-2, the distinction between

3

Kanji RK., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

natural language understanding and structured query synthesis
has dissolved further. These models show strong few-shot and
zero-shot capabilities for generating complex SQL across unseen
schemas using in-context learning, eliminating the need for task-
specific retraining. Recent research has used instruction-tuned
LLMs to autonomously translate high-level analytical intents
into optimized queries, which are frequently supplemented
with downstream cost-model simulation to estimate execution
cost. These approaches also use retrieval-augmented generation
(RAG) to dynamically inject schema documentation or
performance hints during inference, allowing for context-aware
SQL generation that is aligned with physical storage constraints
or data freshness. Combined with vectorized storage systems,
hybrid data lakehouses, and federated query routing engines,
generative models are now being used to optimize not only
syntax but also execution flow across distributed nodes. This
is directly consistent with the vision of foundation model-
based query generation and execution optimization in hybrid
architectures, where control, scalability, and adaptability
converge. The challenge now is to ensure that these models
are grounded, explainable, and integrated within existing data
governance and warehouse execution layers to achieve safe and
performant results in production-grade analytical environments.

The challenge of generating meaningful SQL queries
under real-world constraints such as expected execution
cost or result cardinality is gaining traction, particularly in
complex data systems where hand-crafted query templates or
random generation fall short. The LearnedSQLGen framework
distinguishes itself by providing a robust and scalable solution
based on reinforcement learning (RL). Rather than relying
on static templates or heuristic sampling, it approaches SQL
query generation as a sequential decision-making process, with
each token selection guided by query performance feedback.
This design is based on an exploration-exploitation strategy
that balances the discovery of new query patterns with the
optimization of user-defined constraints. LearnedSQLGen uses
a finite-state machine to ensure that generated queries are both
syntactically and semantically valid, avoiding the execution
errors common in generative methods. Its policy network learns
not only to create correct queries, but also to steer toward those
that meet specific output criteria such as limited cardinality
or processing cost. The system’s actor-critic architecture is
a standout feature, allowing for stable and sample-efficient
learning across a wide range of query structures and constraint
sets. Furthermore, by incorporating a meta-critic network,
the system generalizes well to previously unseen constraint
scenarios, allowing for adaptive SQL generation without
retraining from scratch. The approach fills a gap in traditional
query generation models, where outputs frequently fail to meet
real-world database tuning or optimization requirements. In
large-scale hybrid architectures where performance variability is
inherent, frameworks such as LearnedSQLGen provide a more
principled and automated approach to aligning query semantics
with execution goals, paving the way for fully autonomous data
warehousing systems6.

3. Taxonomy of Approaches: From Classical Optimizers
to Generative Models

Before Traditional query optimization methods have long
served as the foundation of relational database systems, using
rule-based and cost-based approaches to determine efficient
execution plans. These traditional paradigms examine query

structure, estimate costs using statistics, and generate execution
paths that minimize I/O and CPU usage. Rule-based systems
frequently use heuristics like predicate pushdown or join
reordering, whereas cost-based optimizers use exhaustive or
heuristic search to select the best plan from a set of alternatives.
Despite their fundamental role, traditional optimizers are limited
when dealing with dynamic workloads, incomplete statistics,
or highly complex query patterns. Furthermore, as modern
databases evolve to support distributed and semi-structured data,
traditional optimizers struggle to keep up. Nonetheless, their
deterministic nature and transparency are useful, especially in
highly regulated domains. Pioneering systems, such as System R
and PostgreSQL’s optimizer, demonstrate these paradigms and
have laid the groundwork for newer learning-based models7,8.
While these systems remain effective in controlled environments,
their adaptability and scalability to modern workloads are
becoming increasingly limited, necessitating the development
of more data-driven, context-aware optimization strategies.

In response to these constraints, machine learning
techniques, specifically neural and reinforcement learning (RL)
models, have been developed to improve query optimization by
learning from execution feedback. Neural optimizers use models
like deep Q-networks or graph neural networks to predict
optimal plans or cardinalities based on patterns from previous
workloads. Reinforcement learning frameworks, in particular,
treat query planning as a sequential decision-making problem,
with optimizers iteratively selecting operators or joining orders
based on reward signals such as latency or resource usage.
These systems improve as they receive more feedback, allowing
them to adapt in ways that traditional optimizers cannot. MSCN
(Multi-Set Convolutional Network) and other learned cardinality
estimators outperform traditional estimators in complex joins
and skewed distributions9. Similarly, ReJOIN and Neo show
that RL agents can learn effective join sequences with minimal
supervision10. Despite their promise, these methods have
limitations in terms of training time, interpretability, and cross-
schema generalization. Nonetheless, their ability to constantly
adapt and optimize under changing workloads represents a
significant shift in the evolution of query optimization, as
static rules are gradually supplemented or replaced by dynamic
learning agents.

A parallel advancement has emerged in the form of text-to-
SQL systems, which convert natural language into structured
queries, allowing non-experts to interact with databases without
understanding SQL syntax. These models generate SQL queries
that are syntactically and semantically valid by combining
natural language understanding and schema grounding. Early
systems used rule-based mappings, but the landscape has since
shifted toward deep learning approaches that use sequence-
to-sequence architectures, transformers, and schema-aware
encoders. Datasets like Spider11 have simplified benchmarking,
while models like SQLNet and IRNet have introduced new ways
to handle complex query structures. These systems fill the gap
between user intent and database semantics, offering simple
interfaces for enterprise analytics and citizen data science.
The challenge remains to ensure query correctness, manage
ambiguity, and align generated queries with user expectations
and security constraints. Furthermore, many systems still require
task-specific training and fine-tuning, limiting their immediate
use across domains. However, the direction is clear: Text-to-
SQL systems are a significant step toward democratizing data
access, with language models serving as interfaces for structured

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kanji RK.,

4

information retrieval and optimization focusing not only on
performance but also on accessibility and trustworthiness in the
generation pipeline.

Figure 1: Generative query optimization.

The introduction of foundation models such as large language
models (LLMs) has expanded the capabilities of automated query
generation and optimization, particularly in hybrid and federated
data environments. These models, which were trained on massive
amounts of structured, semi-structured, and unstructured data,
show the ability to generalize across schemas, domains, and
query languages. Unlike task-specific neural models, foundation
models like T5 and Codex can adapt query generation patterns
without extensive training. These models aid in the creation
of coherent queries in hybrid architectures that contain data
from both relational and non-relational sources by interpreting
metadata, documentation, and user prompts. In federated
systems, they aid in decomposing queries across distributed
nodes while preserving semantic integrity and optimizing
resource allocation. Regardless of computational requirements,
foundation models offer scalability, robustness, and adaptability
that traditional or even RL-based systems cannot match. Their
incorporation into optimization pipelines raises new questions
about explainability, compliance, and inference costs, but their
trajectory indicates a shift toward intelligent systems that learn
from structure and intent11,12. As these models evolve, their role
in the query optimization stack is expected to grow, potentially
transforming the optimizer into a generative reasoning agent.

4. Evaluation Protocols in Generative Query
Optimization

Sfd Benchmarking is critical for understanding the progress
and reliability of generative query optimization systems. As
models become more capable of translating natural language
to structured SQL or optimizing queries based on learned
representations, the demand for standardized and meaningful
evaluations grows. Early evaluation protocols prioritized
syntactic correctness and execution success, frequently
determining whether the generated query ran without errors.
However, this narrow focus overlooks more important concerns
such as semantic equivalence, execution efficiency, and
contextual alignment with user intent. Benchmarking in modern
systems must take into account both functional and performance
dimensions, particularly in data warehouse environments
where queries must scale across distributed architectures.
Benchmarks in such situations must assess not only correctness
but also how efficiently generated queries perform under real-
world workloads. As AI-powered systems are integrated into
federated and hybrid data warehouses, evaluation becomes more
complicated, necessitating fine-grained analysis of latency,
throughput, and accuracy. Without strict benchmarks, it is
difficult to compare systems and identify areas for improvement.
As a result, defining robust evaluation protocols is critical to
developing reliable generative optimizers14,15.

Datasets continue to play an important role in evaluating
SQL generation and optimization tasks. Spider, WikiSQL, and
AdvisingSQL are examples of commonly used datasets that
allow for large-scale experimentation and model comparison.
These datasets vary in complexity, schema diversity, and question
formulation, posing a variety of challenges to generative models.
Spider, for example, supports cross-domain multi-table queries,
which makes it ideal for testing generalization capabilities14. In
contrast, WikiSQL is simpler and more structured, providing
a solid foundation for single-table performance. Furthermore,
some datasets, such as JOB-light and TPC-H, are designed to
evaluate cost-based query optimization rather than generation,

5

Kanji RK., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

with an emphasis on the performance of different query plans
under varying workloads. Synthetic benchmarks, such as
TPC-H, provide standardized ways to measure performance
in data warehouses, but they lack the linguistic complexity of
natural language data. As a result, combining datasets from the
optimization and language generation domains is becoming
more important. These hybrid evaluation strategies enable
researchers to assess how well a model combines user intent with
efficient data retrieval which is especially important in large-
scale, distributed systems where optimization is not optional but
required15.

To fairly evaluate generative query systems, a variety of
evaluation metrics are used, ranging from syntactic correctness
to execution fidelity. The most commonly used metric for natural
language to SQL tasks is exact match accuracy, which determines
whether the generated query string is identical to the gold query14.
While useful, this metric is frequently overly strict, failing to
account for logically equivalent rewrites. Execution accuracy,
which checks whether the output of the generated query matches
the reference output, is a more reliable alternative. Some systems
also employ component-level metrics, such as the accuracy
of specific columns, aggregation functions, or conditions. In
an optimization context, metrics such as cost estimation error,
runtime latency, and plan stability under workload variation are
more important15. End-to-end performance is critical for data
warehouse scenarios, including time-to-insight and resource
utilization. Models are also evaluated using human-in-the-loop
metrics, which allow domain experts to determine whether
queries meet user expectations or regulatory requirements.
However, the variety of evaluation criteria makes cross-model
comparison difficult, especially when different studies report
conflicting metrics16. Thus, aligning evaluation strategies with
real-world usage scenarios is critical for ensuring that generative
query optimizers are both technically sound and useful.

Despite the availability of benchmarks, numerous limitations
remain. Most current datasets are static and domain-specific,
with no consideration for changing schemas or context-aware
reasoning. In enterprise data warehouses, schemas frequently
change, workloads shift, and optimization priorities evolve,
rendering static benchmarks ineffective16. Furthermore, many
evaluation protocols ignore semantic nuances or assume
idealized database conditions that are rarely encountered in
practice. Execution metrics also differ between implementations,
complicating reproducibility. Furthermore, most models are
trained and tested on English-based datasets, leaving a gap
for multilingual and localized query generation14. To address
these issues, future benchmarks should include dynamic
schema variations, real-time user feedback, and multilingual
support. Including data from production data warehouses, while
anonymized and privacy-compliant, may provide richer, more
representative challenges15. There is also a need for community-
driven benchmarking platforms that standardize evaluation
environments and encourage reproducible outcomes. These
enhancements will not only strengthen the scientific foundation
of generative query optimization, but will also ensure its
viability in real-world data ecosystems where performance,
dependability, and alignment with user goals are critical.

5. Conclusion
This review investigated the evolving field of generative

query optimization in the context of modern data warehousing,
with a particular emphasis on foundation model-based
methods. From traditional rule- and cost-based optimizers to
the emergence of neural, reinforcement learning, and text-to-
SQL systems, the field has seen significant diversity in query
generation and optimization. Each approach introduces its
own set of trade-offs in terms of accuracy, adaptability, and
operational complexity, particularly when applied to hybrid
and federated architectures with distributed, heterogeneous, and
dynamic data. Although evaluation practices are becoming more
robust, they still face challenges in terms of standardization,
real-world alignment, and support for changing workloads
and schema. While the use of large-scale foundation models
opens up new avenues for generalization and scalability, their
practical limitations in terms of interpretability, reproducibility,
and resource requirements remain unexplored. Overall, this
review demonstrates that generative query optimization is still
a developing field influenced by a variety of competing factors,
including system design constraints, data architecture shifts, and
changing user expectations. Continued comparative evaluation,
interdisciplinary collaboration, and realistic benchmarking will
be required to refine the role of generative systems in enterprise
data environments and progress toward more reliable and
context-aware optimization solutions.

6. References

1.	 Shaikhha A, Klonatos Y, Koch C. Building efficient query engines
in a high-level language. ACM Transactions on Database
Systems (TODS), 2018; 43: 1-45.

2.	 Xu X, Liu C, Song, D. SQLNet: Generating structured queries
from natural language without reinforcement learning. arXiv
preprint arXiv:1711.04436, 2017.

3.	 Guo J, Gao L, Xiao X, et al. IRNet: A general approach for
mapping natural language to structured queries. arXiv preprint
arXiv:1905.08205, 2019.

4.	 Marcus R, Negi P, Mao H, et al. Neo: A learned query optimizer.
arXiv preprint arXiv:1904.03711, 2019.

5.	 Xu X, Liu C, Song D. Sqlnet: Generating structured queries from
natural language without reinforcement learning. arXiv preprint
arXiv:1711.04436, 2017.

6.	 Zhang L, Chai C, Zhou X, et al. Learnedsqlgen: Constraint-aware
sql generation using reinforcement learning. In Proceedings of
the 2022 International Conference on Management of Data,
2022; 945-958.

7.	 Selinger PG, Astrahan MM, Chamberlin DD, et al. Access
path selection in a relational database management system.
SIGMOD, 1979.

8.	 Chaudhuri S. An overview of query optimization in relational
systems. PODS, 1998.

9.	 Marcus R, Negi P, Mao H, et al. Neo: A Learned Query Optimizer.
VLDB, 2019.

10.	 Kipf A, Kipf T, Kemper A, et al. Learned Cardinalities: Estimating
Correlated Joins with Deep Learning. CIDR, 2019.

11.	 Yu T, Zhang R, Yang K, et al. Spider: A Large-Scale Human-
Labeled Dataset for Complex and Cross-Domain Text-to-SQL
Parsing. EMNLP, 2018.

12.	 Brown TB, Mann B, Ryder N, et al. Language models are
few-shot learners. NeurIPS, 2020.

13.	 Rajpurkar P, Zhang J, Lopyrev K, et al. SQuAD: 100,000+
Questions for Machine Comprehension of Text. EMNLP, 2016.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Kanji RK.,

6

14.	 Ortiz JR, Balazinska M, Gehrke J. Learning State Representations
for Query Optimization with Deep Reinforcement Learning.
Proc. ACM SIGMOD; 2021.

15.	 Gan W, Liu C, Li W, et al. How Well Do Learned Models Measure
Up to Traditional Optimizers? Proc. VLDB Endow, 2021; 14:
2144-2157.

