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 A B S T R A C T 
Modern data warehousing, particularly in complex hybrid architectures combining cloud and on-premise resources, faces 

increasing challenges in rapidly producing and optimizing SQL queries. Traditional systems usually need substantial manual 
labor and struggle to adapt dynamically. This study looks into the use of foundation models for generative query optimization. 
The major goal is to develop systems capable of automatically generating SQL from natural language descriptions and optimizing 
its execution while accounting for the complexities of hybrid contexts. The suggested methodology generates contextually 
relevant SQL by combining deep semantic understanding with techniques such as reinforcement learning. Critically, it attempts 
to dynamically change execution methodologies in response to real-time infrastructure and data conditions. Initial research 
suggests that such integrated generative techniques have the potential to reduce user effort in query formulation and result in 
more efficient execution plans across heterogeneous systems.

Keywords: Generative Query Optimization, Autonomous SQL Generation, Natural Language to SQL, Reinforcement Learning, 
Adaptive Query Processing

1. Introduction
The last ten years have seen a significant shift toward 

high-level programming languages in demanding system 
development. This change addresses a clear need: increasing 
developer productivity, which is often hampered by complex, 
monolithic low-level codebases that are infamously difficult to 
debug and maintain. This tendency is exemplified by platforms 
such as Spark and DryadLINQ, as well as improvements in 
operating system design (such as Singularity). Their strength 
rests in powerful features like modules, interfaces, and strong 
type systems, which let developers to write substantially less 
code, construct reusable components, and drastically reduce 

software faults. However, this welcome increase in production 
has not come without a considerable trade-off. These abstractions 
provide levels of indirection, requiring runtime systems to 
manage frequent object creation and destruction, costly memory 
copies for encapsulation, and type conversions. These overheads 
result in a constant performance difference, leading many to 
feel that high-level languages are unsuitable for developing 
truly high-performance systems, such as core database engines. 
The persuasive “abstraction without regret” vision explicitly 
challenges this assumption, suggesting that developer efficiency 
and raw system speed are compatible. Realizing this promise, 
particularly for the complex world of ad hoc analytical query 
processing within modern hybrid data warehouses - settings 
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that combine on-premise servers with different cloud resources 
- is extremely tough. Traditional approaches for creating SQL 
queries and optimizing their execution perform poorly here. 
They struggle to adapt to the continual flux of workloads, 
the drastically changing performance characteristics across 
multiple storage and computing nodes, and the dynamic data 
distributions that are inherent in these hybrid configurations. 
This rigidity traps database administrators and developers in 
a cycle of arduous, time-consuming manual adjustment. This 
paper investigates a novel approach: using foundation models 
to accomplish generative query optimization1. The central 
concept is a technology that automatically converts a data 
scientist’s plain English question into a well-structured SQL 
query. Crucially, it does not end there; the system continuously 
adapts the actual execution plan in response to real-time factors 
observed across the hybrid infrastructure, such as current 
network latency, resource load, or data location. We intend to 
bridge a vital gap by delivering the intuitive simplicity and speed 
of expression provided by high-level abstraction while satisfying 
the demanding performance requirements of today’s large-scale, 
hybrid data systems.

Relational databases underpin mission-critical systems, 
such as real-time financial analytics and medical care platforms, 
which require precise and rapid data retrieval. However, this 
potential is hidden beneath SQL’s complexity, providing a basic 
accessibility barrier. This problem is exacerbated by hybrid data 
warehouses, which need queries to overcome unpredictable 
latency across cloud and on-premise boundaries, variable data 
locality, and heterogeneous compute tiers. Traditional natural 
language-to-SQL (NL2SQL) translation simplifies expression 
but fundamentally ignores execution reality. Even syntactically 
correct queries can create disastrously inefficient plans 
when implemented across dynamic infrastructures, negating 
productivity benefits due to slow replies or high compute costs. 
This gap continues because translation focuses only on language 
mapping rather than runtime adaptation. As a result, we face 
a crucial need for systems that not only read natural language 
intents but also intelligently manage their implementation in 
unpredictable hybrid contexts. The stakes are real milliseconds 
affect trade algorithms, and resource waste grows rapidly with 
data volume.

Large language models (LLMs) have made real progress 
in handling text-to-SQL basics. They’re now pretty reliable at 
understanding what users actually mean with their questions 
and identifying the right database tables and columns needed 
to answer them2,3. But here’s what’s missing: these systems 
only focus on getting the SQL syntax correct. They completely 
ignore how efficiently that query will run in real-world systems. 
This becomes especially problematic in today’s complex hybrid 
data environments  where queries might jump between cloud 
services and local servers. Without optimization awareness, you 
get slow responses, surprise cost spikes from unnecessary data 
movement, and wasted computing power. This efficiency gap 
hits production systems hard through three key issues: location 
blindness (pulling data across expensive networks when local 
copies exist), resource ignorance (underutilizing accelerators 
like GPUs while overloading CPUs), and workload rigidity 
(using static plans that crumble under shifting demand). Current 
LLM approaches treat SQL generation as a syntax exercise 
rather than engineering for real infrastructure constraints. They 

lack continuous conversation with live systems  unaware of 
server loads, cached results, or real-time network tolls between 
clusters. The critical question isn’t whether LLMs can generate 
SQL (they clearly can2.3, but why they don’t yet optimize SQL 
for the messy realities of hybrid data platforms where correctness 
alone isn’t enough.

2. Related Work
Early advances in learning-based query optimization focused 

on combining traditional cost-based optimizers with adaptive 
mechanisms. The Neo optimizer4 represents a significant 
advancement by introducing a neural architecture capable 
of replacing multiple heuristic components of the Selinger-
style query optimizer. It used deep reinforcement learning and 
learning-from-demonstration strategies to start from simpler 
optimizers like PostgreSQL and gradually evolve an optimizer 
that generalizes to previously unseen queries. Neo’s main 
innovation is that it treats optimization as a learnable function 
rather than a rule-based search, with tree convolutional networks 
encoding execution plans and a neural value network predicting 
query plan latency. Despite having to learn from pre-generated 
plans and a limited scope to SELECT-PROJECT-JOIN-
AGGREGATE queries, Neo laid the groundwork for end-to-
end learned optimizers. This shift away from hand-crafted 
cost modeling reflects a growing trend toward data-driven 
optimization strategies that are well-suited to evolving hybrid-
cloud and decentralized architectures. Importantly, Neo reframed 
the role of the optimizer as a continuously self-tuning system 
capable of adapting to both instance-level workload dynamics 
and physical execution feedback, challenging traditional static, 
rule-based assumptions in query plan selection.

The evolution of text-to-SQL synthesis has deepened the 
relationship between user intent and structured query generation. 
To address the “order-matters” issue in SQL decoding, SQLNet5 
advanced the modeling paradigm by replacing fragile sequence-
to-sequence formulations with a sketch-based architecture and 
a sequence-to-set decoder. This architectural shift reduced 
prior models’ reliance on reinforcement learning and enabled 
robust parsing of unordered SQL components, such as WHERE 
clauses, with better generalization to unseen schema instances. 
SQLNet’s use of a dependency graph in the sketch introduced 
explicit control flow, which improved decoding fidelity, while 
its column attention mechanism better aligned question tokens 
with target SQL slots. These design decisions led to statistically 
significant improvements over reinforcement-based baselines on 
the WikiSQL dataset. While SQLNet specialized in structured 
generation from natural language, its controlled generation 
paradigm influenced architectural abstractions relevant to 
foundation model conditioning in structured data contexts. 
It demonstrated that compositional and interpretable SQL 
generation could be structured as a constrained learning problem, 
which is directly applicable to generative optimization tasks in 
data warehousing. In today’s hybrid-architecture environments, 
SQLNet’s ability to learn and generalize transformations 
without assuming a fixed clause order or schema strengthens 
its contributions to modular query generation under schema 
variability.

More recently, with the introduction of foundation models 
such as GPT-4 and specialized domain-tuned variants such as 
Google’s PaLM and Microsoft’s Phi-2, the distinction between 
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natural language understanding and structured query synthesis 
has dissolved further. These models show strong few-shot and 
zero-shot capabilities for generating complex SQL across unseen 
schemas using in-context learning, eliminating the need for task-
specific retraining. Recent research has used instruction-tuned 
LLMs to autonomously translate high-level analytical intents 
into optimized queries, which are frequently supplemented 
with downstream cost-model simulation to estimate execution 
cost. These approaches also use retrieval-augmented generation 
(RAG) to dynamically inject schema documentation or 
performance hints during inference, allowing for context-aware 
SQL generation that is aligned with physical storage constraints 
or data freshness. Combined with vectorized storage systems, 
hybrid data lakehouses, and federated query routing engines, 
generative models are now being used to optimize not only 
syntax but also execution flow across distributed nodes. This 
is directly consistent with the vision of foundation model-
based query generation and execution optimization in hybrid 
architectures, where control, scalability, and adaptability 
converge. The challenge now is to ensure that these models 
are grounded, explainable, and integrated within existing data 
governance and warehouse execution layers to achieve safe and 
performant results in production-grade analytical environments.

The challenge of generating meaningful SQL queries 
under real-world constraints such as expected execution 
cost or result cardinality is gaining traction, particularly in 
complex data systems where hand-crafted query templates or 
random generation fall short. The LearnedSQLGen framework 
distinguishes itself by providing a robust and scalable solution 
based on reinforcement learning (RL). Rather than relying 
on static templates or heuristic sampling, it approaches SQL 
query generation as a sequential decision-making process, with 
each token selection guided by query performance feedback. 
This design is based on an exploration-exploitation strategy 
that balances the discovery of new query patterns with the 
optimization of user-defined constraints. LearnedSQLGen uses 
a finite-state machine to ensure that generated queries are both 
syntactically and semantically valid, avoiding the execution 
errors common in generative methods. Its policy network learns 
not only to create correct queries, but also to steer toward those 
that meet specific output criteria such as limited cardinality 
or processing cost. The system’s actor-critic architecture is 
a standout feature, allowing for stable and sample-efficient 
learning across a wide range of query structures and constraint 
sets. Furthermore, by incorporating a meta-critic network, 
the system generalizes well to previously unseen constraint 
scenarios, allowing for adaptive SQL generation without 
retraining from scratch. The approach fills a gap in traditional 
query generation models, where outputs frequently fail to meet 
real-world database tuning or optimization requirements. In 
large-scale hybrid architectures where performance variability is 
inherent, frameworks such as LearnedSQLGen provide a more 
principled and automated approach to aligning query semantics 
with execution goals, paving the way for fully autonomous data 
warehousing systems6.

3. Taxonomy of Approaches: From Classical Optimizers 
to Generative Models

Before Traditional query optimization methods have long 
served as the foundation of relational database systems, using 
rule-based and cost-based approaches to determine efficient 
execution plans. These traditional paradigms examine query 

structure, estimate costs using statistics, and generate execution 
paths that minimize I/O and CPU usage. Rule-based systems 
frequently use heuristics like predicate pushdown or join 
reordering, whereas cost-based optimizers use exhaustive or 
heuristic search to select the best plan from a set of alternatives. 
Despite their fundamental role, traditional optimizers are limited 
when dealing with dynamic workloads, incomplete statistics, 
or highly complex query patterns. Furthermore, as modern 
databases evolve to support distributed and semi-structured data, 
traditional optimizers struggle to keep up. Nonetheless, their 
deterministic nature and transparency are useful, especially in 
highly regulated domains. Pioneering systems, such as System R 
and PostgreSQL’s optimizer, demonstrate these paradigms and 
have laid the groundwork for newer learning-based models7,8. 
While these systems remain effective in controlled environments, 
their adaptability and scalability to modern workloads are 
becoming increasingly limited, necessitating the development 
of more data-driven, context-aware optimization strategies.

In response to these constraints, machine learning 
techniques, specifically neural and reinforcement learning (RL) 
models, have been developed to improve query optimization by 
learning from execution feedback. Neural optimizers use models 
like deep Q-networks or graph neural networks to predict 
optimal plans or cardinalities based on patterns from previous 
workloads. Reinforcement learning frameworks, in particular, 
treat query planning as a sequential decision-making problem, 
with optimizers iteratively selecting operators or joining orders 
based on reward signals such as latency or resource usage. 
These systems improve as they receive more feedback, allowing 
them to adapt in ways that traditional optimizers cannot. MSCN 
(Multi-Set Convolutional Network) and other learned cardinality 
estimators outperform traditional estimators in complex joins 
and skewed distributions9. Similarly, ReJOIN and Neo show 
that RL agents can learn effective join sequences with minimal 
supervision10. Despite their promise, these methods have 
limitations in terms of training time, interpretability, and cross-
schema generalization. Nonetheless, their ability to constantly 
adapt and optimize under changing workloads represents a 
significant shift in the evolution of query optimization, as 
static rules are gradually supplemented or replaced by dynamic 
learning agents.

A parallel advancement has emerged in the form of text-to-
SQL systems, which convert natural language into structured 
queries, allowing non-experts to interact with databases without 
understanding SQL syntax. These models generate SQL queries 
that are syntactically and semantically valid by combining 
natural language understanding and schema grounding. Early 
systems used rule-based mappings, but the landscape has since 
shifted toward deep learning approaches that use sequence-
to-sequence architectures, transformers, and schema-aware 
encoders. Datasets like Spider11 have simplified benchmarking, 
while models like SQLNet and IRNet have introduced new ways 
to handle complex query structures. These systems fill the gap 
between user intent and database semantics, offering simple 
interfaces for enterprise analytics and citizen data science. 
The challenge remains to ensure query correctness, manage 
ambiguity, and align generated queries with user expectations 
and security constraints. Furthermore, many systems still require 
task-specific training and fine-tuning, limiting their immediate 
use across domains. However, the direction is clear: Text-to-
SQL systems are a significant step toward democratizing data 
access, with language models serving as interfaces for structured 
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information retrieval and optimization focusing not only on 
performance but also on accessibility and trustworthiness in the 
generation pipeline.

Figure 1: Generative query optimization.

The introduction of foundation models such as large language 
models (LLMs) has expanded the capabilities of automated query 
generation and optimization, particularly in hybrid and federated 
data environments. These models, which were trained on massive 
amounts of structured, semi-structured, and unstructured data, 
show the ability to generalize across schemas, domains, and 
query languages. Unlike task-specific neural models, foundation 
models like T5 and Codex can adapt query generation patterns 
without extensive training. These models aid in the creation 
of coherent queries in hybrid architectures that contain data 
from both relational and non-relational sources by interpreting 
metadata, documentation, and user prompts. In federated 
systems, they aid in decomposing queries across distributed 
nodes while preserving semantic integrity and optimizing 
resource allocation. Regardless of computational requirements, 
foundation models offer scalability, robustness, and adaptability 
that traditional or even RL-based systems cannot match. Their 
incorporation into optimization pipelines raises new questions 
about explainability, compliance, and inference costs, but their 
trajectory indicates a shift toward intelligent systems that learn 
from structure and intent11,12. As these models evolve, their role 
in the query optimization stack is expected to grow, potentially 
transforming the optimizer into a generative reasoning agent.

4. Evaluation Protocols in Generative Query 
Optimization

Sfd Benchmarking is critical for understanding the progress 
and reliability of generative query optimization systems. As 
models become more capable of translating natural language 
to structured SQL or optimizing queries based on learned 
representations, the demand for standardized and meaningful 
evaluations grows. Early evaluation protocols prioritized 
syntactic correctness and execution success, frequently 
determining whether the generated query ran without errors. 
However, this narrow focus overlooks more important concerns 
such as semantic equivalence, execution efficiency, and 
contextual alignment with user intent. Benchmarking in modern 
systems must take into account both functional and performance 
dimensions, particularly in data warehouse environments 
where queries must scale across distributed architectures. 
Benchmarks in such situations must assess not only correctness 
but also how efficiently generated queries perform under real-
world workloads. As AI-powered systems are integrated into 
federated and hybrid data warehouses, evaluation becomes more 
complicated, necessitating fine-grained analysis of latency, 
throughput, and accuracy. Without strict benchmarks, it is 
difficult to compare systems and identify areas for improvement. 
As a result, defining robust evaluation protocols is critical to 
developing reliable generative optimizers14,15.

Datasets continue to play an important role in evaluating 
SQL generation and optimization tasks. Spider, WikiSQL, and 
AdvisingSQL are examples of commonly used datasets that 
allow for large-scale experimentation and model comparison. 
These datasets vary in complexity, schema diversity, and question 
formulation, posing a variety of challenges to generative models. 
Spider, for example, supports cross-domain multi-table queries, 
which makes it ideal for testing generalization capabilities14. In 
contrast, WikiSQL is simpler and more structured, providing 
a solid foundation for single-table performance. Furthermore, 
some datasets, such as JOB-light and TPC-H, are designed to 
evaluate cost-based query optimization rather than generation, 
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with an emphasis on the performance of different query plans 
under varying workloads. Synthetic benchmarks, such as 
TPC-H, provide standardized ways to measure performance 
in data warehouses, but they lack the linguistic complexity of 
natural language data. As a result, combining datasets from the 
optimization and language generation domains is becoming 
more important. These hybrid evaluation strategies enable 
researchers to assess how well a model combines user intent with 
efficient data retrieval which is especially important in large-
scale, distributed systems where optimization is not optional but 
required15.

To fairly evaluate generative query systems, a variety of 
evaluation metrics are used, ranging from syntactic correctness 
to execution fidelity. The most commonly used metric for natural 
language to SQL tasks is exact match accuracy, which determines 
whether the generated query string is identical to the gold query14. 
While useful, this metric is frequently overly strict, failing to 
account for logically equivalent rewrites. Execution accuracy, 
which checks whether the output of the generated query matches 
the reference output, is a more reliable alternative. Some systems 
also employ component-level metrics, such as the accuracy 
of specific columns, aggregation functions, or conditions. In 
an optimization context, metrics such as cost estimation error, 
runtime latency, and plan stability under workload variation are 
more important15. End-to-end performance is critical for data 
warehouse scenarios, including time-to-insight and resource 
utilization. Models are also evaluated using human-in-the-loop 
metrics, which allow domain experts to determine whether 
queries meet user expectations or regulatory requirements. 
However, the variety of evaluation criteria makes cross-model 
comparison difficult, especially when different studies report 
conflicting metrics16. Thus, aligning evaluation strategies with 
real-world usage scenarios is critical for ensuring that generative 
query optimizers are both technically sound and useful.

Despite the availability of benchmarks, numerous limitations 
remain. Most current datasets are static and domain-specific, 
with no consideration for changing schemas or context-aware 
reasoning. In enterprise data warehouses, schemas frequently 
change, workloads shift, and optimization priorities evolve, 
rendering static benchmarks ineffective16. Furthermore, many 
evaluation protocols ignore semantic nuances or assume 
idealized database conditions that are rarely encountered in 
practice. Execution metrics also differ between implementations, 
complicating reproducibility. Furthermore, most models are 
trained and tested on English-based datasets, leaving a gap 
for multilingual and localized query generation14. To address 
these issues, future benchmarks should include dynamic 
schema variations, real-time user feedback, and multilingual 
support. Including data from production data warehouses, while 
anonymized and privacy-compliant, may provide richer, more 
representative challenges15. There is also a need for community-
driven benchmarking platforms that standardize evaluation 
environments and encourage reproducible outcomes. These 
enhancements will not only strengthen the scientific foundation 
of generative query optimization, but will also ensure its 
viability in real-world data ecosystems where performance, 
dependability, and alignment with user goals are critical.

5. Conclusion
This review investigated the evolving field of generative 

query optimization in the context of modern data warehousing, 
with a particular emphasis on foundation model-based 
methods. From traditional rule- and cost-based optimizers to 
the emergence of neural, reinforcement learning, and text-to-
SQL systems, the field has seen significant diversity in query 
generation and optimization. Each approach introduces its 
own set of trade-offs in terms of accuracy, adaptability, and 
operational complexity, particularly when applied to hybrid 
and federated architectures with distributed, heterogeneous, and 
dynamic data. Although evaluation practices are becoming more 
robust, they still face challenges in terms of standardization, 
real-world alignment, and support for changing workloads 
and schema. While the use of large-scale foundation models 
opens up new avenues for generalization and scalability, their 
practical limitations in terms of interpretability, reproducibility, 
and resource requirements remain unexplored. Overall, this 
review demonstrates that generative query optimization is still 
a developing field influenced by a variety of competing factors, 
including system design constraints, data architecture shifts, and 
changing user expectations. Continued comparative evaluation, 
interdisciplinary collaboration, and realistic benchmarking will 
be required to refine the role of generative systems in enterprise 
data environments and progress toward more reliable and 
context-aware optimization solutions.
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