
Fortifying Web and Mobile Applications with PKCE and State Parameters in OAuth 
2.0

Arun Neelan*

Citation: Neelan A. Fortifying Web and Mobile Applications with PKCE and State Parameters in OAuth 2.0. J Artif Intell Mach 
Learn & Data Sci 2023 1(3), 2515-2519. DOI: doi.org/10.51219/JAIMLD/arun-neelan/538

Received: 02 September, 2023; Accepted: 18 September, 2023; Published: 20 September, 2023

*Corresponding author: Arun Neelan, Independent Researcher, PA, USA

Copyright: © 2023 Neelan A., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 1 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/arun-neelan/538

 A B S T R A C T 
As the digital landscape rapidly expands, secure authorization has become essential for safeguarding user data in apps and 

online services, whether on mobile apps, websites or APIs. OAuth 2.0 has become the standard framework for allowing third-
party services to access user data without needing to share passwords. However, OAuth 2.0 is not without its security challenges, 
especially when used by public clients like mobile apps or single-page web applications. This paper examines how OAuth 2.0’s 
security can be enhanced by focusing on two key features: Proof Key for Code Exchange (PKCE) and the State Parameter. It 
begins by explaining OAuth 2.0’s role and its inherent vulnerabilities, especially when used by public clients. The paper then 
explores how PKCE strengthens security by preventing authorization code interception attacks, contrasting it with the traditional 
OAuth 2.0 flow and the role of the State Parameter in mitigating Cross-Site Request Forgery (CSRF) attacks. Furthermore, the 
review highlights essential security considerations, best practices and the challenges developers face while implementing these 
features. In conclusion, it emphasizes how these enhancements significantly improve OAuth 2.0’s security and underscores the 
need for continued development to address emerging threats.

Keywords: OAuth2.0, Secure authorization, API security, OAuth flows, PKCE, OAuth 2.0 PKCE, OAuth 2.0 state parameter

1. Introduction
OAuth 2.0 is a widely used protocol that allows applications 

to access user data across different platforms without exposing 
sensitive login credentials. It does this by using access tokens, 
which define key details such as the scope, duration, permissions, 
validity, approved scopes and the context in which the token was 
issued-information essential for making authorization decisions 
for protected resources7. This offers a secure and flexible way to 
manage data access. In simple terms, OAuth 2.0 enables a user 
to grant a client application access to their data on a resource 
server, without the need to share their login credentials.

As outlined in1 OAuth 2.0 relies on four key roles:

•	 Resource owner: The user who owns the data and grants 
access.

•	 Resource server: The server that hosts the protected data 
or resources.

•	 Client: The application requesting access to the resource 
server on behalf of the resource owner.

•	 Authorization server: The server that authenticates the 
resource owner and issues access tokens to the client.

While OAuth 2.0 provides a strong foundation for 
authorization, it doesn’t fully address several critical security 
concerns, such as authorization code interception, user 
impersonation and token leakage. These vulnerabilities are 
particularly concerning public clients, like mobile apps and 
single-page web applications, which are unable to securely store 
client secrets. Since these clients often run on platforms such as 
browsers or mobile devices, where secrets can be easily accessed 

https://doi.org/10.51219/JAIMLD/arun-neelan/538
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/arun-neelan/538


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3Neelan A.,

2

•	 The authorization server redirects the user back to the 
client, passing an authorization code as part of the URL. 
This code represents the user’s consent. Although the intent 
is to redirect the user back to the client, it is important to 
note that a malicious app can register itself as a handler for 
the same custom scheme as the legitimate app. Once this 
occurs, the malicious app gains the ability to intercept the 
authorization code.

•	 The malicious app then exchanges the authorization code 
for an access token by making a request to the authorization 
server’s token endpoint, including the client credentials for 
authentication.

•	 The authorization server provides the malicious app the 
access token and refresh token to access the resources. Since 
the malicious app now has access token and refresh token, 
it can impersonate the legitimate app and access protected 
resources.

3. Proof Key for Code Exchange (PKCE)
This attack can be mitigated through the technique Proof Key 

for Code Exchange (PKCE, pronounced “pixy”) technique2.

The OAuth 2.0 PKCE flow is described in [2], where:

•	 The client generates a random value called the “code_
verifier” and derives a transformed version, “t(code_
verifier)”, known as the “code_challenge”, using a 
transformation method (or hashing algorithm) “t_m.” Both 
the “code_challenge” and the transformation method “t_m” 
are then included in the Authorization Request. t_m usually 
is SHA256. If the client can’t support SHA256, then the 
client can send the code_verifier itself where t_m then is 
assumed as plain.

•	 plain: code_challenge = code_verifier

•	 SHA256: code_challenge = BASE64URL-
ENCODE(SHA256(ASCII(code_verifier)))

•	 The Authorization Endpoint validates the request, stores the 
“code_challenge” and the transformation method and then 
returns the authorization code.

•	 The client requests an Access Token from the Authorization 
Server by sending the “code_verifier,” the random value 
generated during the Authorization Request.

•	 The authorization server transforms the ‘code_verifier’ 
into a ‘code_challenge’ using the ‘t_m’ sent during the 
Authorization Request and compares the resulting value 
with the ‘code_challenge’ sent in the same request. If the 
values match, Access Token is returned.

•	 plain: code_verifier == code_challenge.

•	 SHA256:BASE64URL-
ENCODE(SHA256(ASCII(code_verifier))) == code_
challenge

•	 The client requests the protected resource from the resource 
server and authenticates by presenting the access token.

•	 The resource server validates the access token and, if valid, 
serves the request.

In this flow, PKCE adds an extra layer of security by 
requiring the code verifier to be sent during the token exchange. 
This ensures that even if an attacker intercepts the authorization 

or reverse-engineered, they are more vulnerable to attacks. These 
risks can be mitigated by implementing PKCE (Proof Key for 
Code Exchange) and the State parameter in OAuth 2.0.

2. Authorization Code Interception Attack
In the past, public clients often used implicit flow, which 

issued an access token directly without needing an authorization 
code exchange. However, due to security concerns, the 
authorization code grant is now the preferred approach, even 
though it involves a few extra steps. That said, the authorization 
code grant is still vulnerable to interception attacks, as briefed 
in2.

Figure 1: Authorization Code Interception Attack Flow.

Figure 2: OAuth PKCE Abstract Flow.

A. Flow overview

The client (Legitimate App) directs the resource owner (user) 
to the authorization server’s authorization endpoint.

•	 The user authenticates (e.g., via username and password).
•	 The authorization server validates the credentials and 

requests consent to access specific resources.
•	 The user grants permission to the authorization server to let 

the client (Legitimate App) access specific resources.



3

Neelan A., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3

code, they cannot use it to obtain an access token and ensures the 
entity requesting the access token is same as the one that initiated 
the authorization request. Additionally, PKCE eliminates the 
need to securely store client secrets for public clients, which are 
vulnerable to reverse engineering2.

A. OAuth 2.0 vs OAuth 2.0 PKCE Flow

Table 1: OAuth 2.0 And OAuth 2.0 PKCE Comparison.

Flow
OAuth 2.0 vs OAuth 2.0 PKCE

OAuth 2.0 OAuth 2.0 PKCE

A u t h 
Request

The client sends the 
client_id, redirect_uri and 
client_secret.

The client sends code_challenge, 
transformation method (t_m) 
along with client_id, redirect_uri.

The Authorization Server 
validates the request and 
returns the authorization 
code.

Authorization Server validates 
the request, stores code_
challenge and t_m and returns the 
authorization code.

T o k e n 
Request

The client sends the 
authorization code and 
client_secret to the 
Authorization Server.

The client sends authorization 
code and code_verifier to the 
Authorization Server.

The Authorization Server 
validates client_secret and 
authorization code and if 
they are valid, it returns 
an access token.

The Authorization Server derives 
the code_challenge by applying 
t_m to the code_verifier and 
validates it against the value sent 
in the Authorization Request 
Flow. If they are valid, it validates 
the authorization code and returns 
an access token.

R e s o u r c e 
A c c e s s 
Request

The client uses the access 
token to access protected 
resources.

The client uses the access token 
to access protected resources.

O v e r a l l 
Security

OAuth 2.0 relies on 
client_secret, susceptible 
to interception attacks if 
not protected well.

Relies on dynamic verification 
mechanism using code_verifier 
and code_challenge, mitigating 
interception attacks, primarily 
in public clients. E.g., mobile or 
browser apps.

B. Security considerations and best practices

•	 Entropy of code_verifier value: The code verifier must be 
generated in a manner that ensures it is cryptographically 
random and has high entropy, making it impractical for an 
attacker to guess1,4.

•	 Secure storage of the code verifier and client secret: 
Though client_secret is not required in PKCE, when used 
client_secret should also be securely stored2.

•	 Use of strong cryptographic methods: The SHA-256 
code challenge method or another cryptographically 
secure mechanism should be used. If the code challenge 
is plain, alternative mechanisms, such as encrypting and 
decrypting the code verifier may be employed than relying 
on transacting with just the plain value2.

•	 Always Use TLS (https): Clients must always use TLS 
(https) or equivalent transport security when making 
requests with tokens. Failing to do so exposes the token 
to numerous attacks that could give attackers unintended 
access3,4.

C. Challenges and limitations

Though PKCE mitigates the risk of interception authorization 
code attacks, it does come with challenges and limitations.

•	 Implementation complexity & additional latency: 
Technologists need to design, implement and thoroughly test 

the creation, exchange and verification of code challenges. 
This introduces additional complexity, including future 
enhancements, compatibility with existing systems and 
other factors resulting in increased latency and response 
time.

•	 Secure storage of code verifiers: Code verifiers and details 
should be stored securely to avoid leaks or misuse.

•	 Additional protection to tokens: PKCE helps secure the 
process until the access and/or refresh token is obtained. 
However, once an attacker intercepts or steals either token, 
they can impersonate the user and access protected resources. 
This highlights the need for additional security measures, 
such as using short-lived tokens, securely storing them, 
implementing token revocation mechanisms and adding 
extra validations for both access and refresh tokens on the 
server to further protect user data5,6.

Figure 3: OAuth Code Grant with State Parameter.

4. Proof Key for Code Exchange (PKCE)
Cross-Site Request Forgery (CSRF) is an attack that tricks an 

authenticated user into performing unwanted actions on a web 
application. In the case of the Authorization Code Grant flow, 
CSRF could involve scenarios like stealing the authorization 
code during the process and using it to access protected resources 
or sending the attacker’s authorization code to a malicious client 
redirect URL4.

The state parameter mechanism plays a crucial role in 
preventing these types of attacks by ensuring that the callback 
from the authorization server matches the original request made 
by the client.

The following section explains the authorization code grant 
flow, as outlined in1, including the use of the state parameter 
when a client logs into a legitimate application. This process is 
a prerequisite for the attacks discussed earlier. The client first 
registers with the authorization server, providing redirect URLs 
where the authorization code can be sent.

A. Flow overview

•	 The client directs the resource owner (user) to the 
authorization server’s authorization endpoint. During this 
process, the client sends state param to the authorization 
server along with the redirect url to which the authorization 
code should be sent upon user consent. The redirect url sent 
in the request must be one of the urls provided during the 
registration process.



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3Neelan A.,

4

•	 The user authenticates (e.g., via username and password).
•	 The authorization server validates the credentials and 

requests consent to access specific resources.
•	 The user grants permission to the authorization server to let 

the client access specific resources.
•	 The authorization server redirects the user back to the client, 

passing an authorization code and state param as part of the 
redirect url. This code represents the user’s consent.

•	 The client checks that the state parameter matches the 
one sent in the original request. If it’s valid, the client 
then exchanges the authorization code for an access token 
by sending a request to the authorization server’s token 
endpoint, along with its client credentials for authentication.

•	 The authorization server provides the client with the access 
token and refresh token to access the resources.

In addition, the following sections outline the consequences 
of each CSRF attack scenario and explain how the state parameter 
along with redirect url validation can help address these issues. 
For both scenarios, its assumed that after the client logs into the 
application and the session is still active, the attacker sends them 
a malicious link that contains an authorization code request and 
the client unknowingly clicks on the link and visits the page 
from where the attacker takes the control.

Client has not registered the redirect urls with authorization 
server: In this scenario, it becomes much easier for an attacker 
to hijack the entire flow once the user clicks on the malicious 
link. The malicious app can send an authorization request with 
a redirect URL that’s different from the client’s, allowing the 
attacker to capture the authorization code from the callback and 
access the user’s resources. While we’ll dive deeper into the 
state parameter later, this section highlights the importance of 
validating the redirect URL to ensure the callback goes to the 
correct location2. The next section will focus on the need for the 
state parameter.

Client has registered the redirect urls with authorization 
server: The authorization server will reject requests if the 
redirect URL provided by a malicious application differs from 
the registered one. However, the malicious app can provide a 
valid redirect url in the authorization request with different client 
credentials that will result in a different, but a valid authorization 
code sent to client. Additionally, without a secure transport layer, 
the attacker could modify the response, say., authorization code. 
Both these attacks can cause potential harm.

B. Security considerations and best practices

•	 Enforce state parameter: Implementing state parameter 
will prevent clients from using the invalid authorization code 
to obtain access token. In this case, the client will check if 
the state parameter value that comes in the callback matches 
with the one sent in the authorization request earlier. If no 
match, the client will not proceed with the flow1,4.

•	 Entropy of code_verifier value: Make sure the value of 
the state parameter has high entropy so that it’s difficult 
to predict for attackers. To enforce high security, the state 
parameter value can be encrypted at the client and decrypted 
at the authorization server so only these two parties know 
how to interpret the value2.

•	 Register and Validate redirect URLs: Make sure valid 
redirect URLs are provided during registration process and 

authorization server performs validations with the one sent 
during the authorization request process. The authorization 
server should send the response only if the validations are 
through.

•	 Always use TLS (HTTPS): Usage of HTTPS ensures 
the requests and responses can’t be intercepted or altered, 
protecting applications from potential attacks3,4.

•	 Limited Time Usage of Auth Code: Restrict the usage of 
authorization code to obtain access tokens to prevent brutal 
force attacks or unauthorized access attempts7.

C. Challenges and limitations

Additional logic, maintenance and testing are required to ensure

•	 Valid redirect urls are stored and validated with the one that 
comes with the authorization request.

•	 The state param value is managed securely so that the correct 
state param value (the one that came with the authorization 
request) is sent in the callback along with authorization 
code.

•	 Encryption keys should be properly managed, shared and 
rotated in case the state parameter value is to be exchanged 
securely than just plain value.

PKCE helps ensure that only authorized clients can exchange 
authorization codes for tokens, while the State Parameter 
protects against cross-site request forgery (CSRF) attacks that 
could steal tokens. Using both together helps mitigate the risk 
of token leakage. As mentioned earlier, following best practices 
alongside PKCE and the State Parameter is crucial to achieving 
the best results.

5. Conclusion
PKCE helps protect against authorization code interception 

attacks by introducing a dynamic verification process with the 
code_verifier and code_challenge. This is particularly useful for 
public clients that can’t securely store client secrets. The State 
Parameter, on the other hand, helps prevent Cross-Site Request 
Forgery (CSRF) attacks by ensuring the callback from the 
authorization server matches the original client request.

While these techniques significantly improve security, 
additional measures are still needed to better protect user 
data. These include using short-lived tokens, enabling token 
revocation, validating access and refresh tokens on the server, 
checking redirect URLs and ensuring TLS/HTTPS is used. 
However, these added protections come with trade-offs, like 
increased complexity, potential delays and the need for secure 
storage of code verifiers.

In conclusion, PKCE and the State Parameter significantly 
strengthen OAuth 2.0’s security. However, as attackers 
continuously seek out new vulnerabilities, it is essential to 
continually refine these mechanisms to stay ahead of emerging 
threats, all while ensuring they remain simple to implement.

6. References

1.	 Hardt D. The OAUTH 2.0 Authorization Framework, 2012.

2.	 Bradley J and Agarwal N. Proof key for code exchange by 
OAuth public clients, 2015.

3.	 Dierks T and Rescorla E. The Transport Layer Security (TLS) 
Protocol Version 1.2, 2008.

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246


5

Neelan A., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3

4.	 McGloin M and Hunt P. OAUTH 2.0 threat model and security 
Considerations, 2013.

5.	 Jones M and Hardt D. The OAUTH 2.0 Authorization Framework: 
Bearer Token usage, 2012.

6.	 Dronia S and Scurtescu M. OAUTh 2.0 token revocation, 2013.

7.	 OAUth 2.0 token introspection, 2015.

https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7009
https://www.rfc-editor.org/info/rfc7662

	_GoBack

