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 A B S T R A C T 
Enterprises operating on Salesforce increasingly seek to train predictive models while keeping customer data confined to its 

regional orgs and regulated environments. Federated learning (FL) offers a principled alternative to centralizing raw records by 
pushing model training to data silos and aggregating only parameter updates. This paper proposes Salesforce-centric FL patterns 
that combine Hyperforce regionalization, Shield Platform Encryption, Change Data Capture (CDC), and Heroku Shield (or 
equivalent private compute) with secure aggregation and optional differential privacy. We detail system and threat models, 
orchestration and key-management flows, and inference patterns callable from Apex/Flows via Named Credentials and External 
Services. A deployment blueprint demonstrates how churn, lead scoring, and case triage models can reach near-centralized 
accuracy while complying with data-residency and privacy requirements and minimizing exfiltration risk.
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1. Introduction
Salesforce has become the operational backbone for sales, 

service, and marketing, concentrating sensitive customer and 
operational data inside a multi-tenant SaaS. Conventional ML 
pipelines export raw objects Leads, Contacts, Opportunities, 
Cases into centralized lakes for model training. That pattern 
raises cross-border transfer risk, complicates GDPR/CCPA 
residency, and increases breach blast radius. Federated learning 
(FL) inverts the flow by moving the model to the data, training 
locally where records reside, and aggregating only parameter 
updates. In Salesforce programs, “local” typically means 
region-pinned Hyperforce orgs or org-adjacent secure compute 
(e.g., Heroku Shield Private Spaces, private Kubernetes, or 
on-prem). This paper explores Salesforce-centric FL designs 
that combine secure aggregation, optional differential privacy, 
and native platform controls Shield Platform Encryption, Event 
Monitoring, Field Audit Trail, Named Credentials to achieve 

near-centralized accuracy while materially reducing exposure. 
We position FL not as a silver bullet but as a pragmatic operating 
model for regulated enterprises that must reconcile AI ambitions 
with least-privilege data movement and auditable controls.

2. Background and Related Work
Federated optimization algorithms such as FedAvg 

coordinate many clients that hold non-IID data and periodically 
average local weight updates into a global model. The approach 
reduces raw data centralization but can leak information 
through gradients; secure aggregation protocols mitigate that by 
cryptographically masking per-client updates so the coordinator 
learns only the sum. Differential privacy complements secure 
aggregation by bounding what an attacker can infer about any 
individual from the final model or analytics. Inside Salesforce, 
Hyperforce ensures region pinning; Shield Platform Encryption 
protects PII at rest; CDC and Platform Events stream minimal 
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change vectors; Event Monitoring, Transaction Security Policies, 
and Field Audit Trail provide observability and auditability. Prior 
enterprise FL deployments focus on mobile or hospital silos. 
Salesforce adds unique constraints governor limits, multi-org 
topologies, API quotas and strengths, notably a rich event fabric 
and mature integration patterns via Named Credentials, External 
Services, and Mule Soft. Our contribution is a concrete, end-to-
end blueprint that marries FL primitives with these platform 
capabilities and operational realities.

3. System and Threat Model
We assume multiple Salesforce orgs (regional BUs or 

subsidiaries) act as FL clients, each holding sensitive CRM 
records and labels specific to its territory. A central aggregator 
coordinates rounds, persists model versions, and exposes a 
private inference endpoint. Optionally, partner orgs join as semi-
trusted clients with additional contractual controls. Adversaries 
include honest-but-curious aggregators attempting to infer client 
data from updates, curious clients trying to reconstruct other 
clients’ data, malicious clients attempting model poisoning, and 
network attackers attempting to intercept traffic. Security goals 
are to prevent disclosure of raw records beyond org boundaries; 
hide any single client’s update from the coordinator and other 
clients; ensure integrity of the global model; and reduce 
membership-inference/model-inversion risk against deployed 
models. We assume standard Salesforce hardening MFA, IP 
restrictions, least-privilege Integration users, Shield encryption 
with customer-managed keys where feasible. Non-functional 
constraints include API governor limits, callout timeouts, and 
per-transaction CPU limits, which shape orchestration and 
batching strategies.

4. Architecture and Workflow

Figure 1: Federated Learning for Salesforce.

Each org computes privacy-screened features locally through 
SOQL/Big Objects and deterministic Shield-encrypted joins 
where necessary. Deltas are streamed with Change Data Capture 
into an org-adjacent secure runtime (Heroku Shield dynos, Private 
Spaces, or a VPC-isolated container). The local trainer maintains 
a feature store, pulls the latest global checkpoint, performs fixed-
epoch training on the local slice, and prepares masked updates. 
Secure aggregation uses pairwise masks or homomorphic 
addition so the coordinator receives only an aggregate. Optional 
differential privacy noise is applied either client-side to 

updates or server-side to the finalized parameters, tracked via 
a privacy-budget ledger. The coordinator validates signatures, 
aggregates updates, evaluates on a held-out validation set, and 
publishes the new checkpoint to a private registry. Inference 
is exposed behind a private endpoint; Salesforce consumes it 
via a Named Credential and External Service or a lightweight 
Apex Queueable/Invocable Action. Predictions are written back 
to records with provenance metadata; Event Monitoring logs 
each call for audit; Field Audit Trail preserves label histories 
for reproducibility. Rollback is handled by pinning models per 
business process and using feature flags in custom metadata to 
switch versions safely.

5. Implementation in Salesforce

Figure 2: End to End Training round flow.

A production-ready implementation begins with an 
Integration User per org scoped by Profiles/Permission Sets to 
read only fields required for features and labels. Shield Platform 
Encryption is enabled for sensitive attributes, with deterministic 
mode reserved for equality joins and careful key governance. 
CDC channels publish minimal feature deltas, not raw PII, 
into an org-adjacent trainer via a MuleSoft private API or 
directly to Heroku Shield. The trainer runs in a Private Space 
with egress locked to the aggregator through mutual-TLS and 
IP allow-lists. Keys for secure aggregation and code signing 
are stored in a customer-managed HSM; secrets for service-
to-service auth are managed in Heroku Shield Config Vars or 
cloud KMS. Inference is integrated with Salesforce through a 
Named Credential (OAuth 2.0, JWT Bearer flow), with timeouts 
and retries handled by Queueables and Platform Events to 
avoid synchronous governor limits. A minimal pattern is an 
Invocable Apex method triggering a callout to /predict, parsing 
a probability, and persisting it to a Prediction__c object with 
fields for ModelVersion__c, Score__c, Confidence__c, and 
SourceOrg__c. Operational telemetry ties every prediction to 
a user/request context using Transaction Security Policies and 
Event Monitoring for end-to-end traceability.

6. Evaluation Plan
Effectiveness is measured along utility, efficiency, robustness, 

and privacy axes. Utility is the delta from a centralized baseline 
on AUROC, AUPRC, and F1 for representative tasks churn, lead 
conversion, or case auto-triage under non-IID client distributions. 
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Efficiency captures round time, bandwidth per round, and cost 
per 10k inferences with and without secure aggregation and 
differential privacy. Robustness testing includes client dropouts, 
stragglers, aggregator restarts, and Byzantine clients attempting 
poisoning or out-of-distribution drift. Privacy evaluation reports 
ε when DP is enabled, empirical resistance to membership 
inference, and leakage from gradient-inversion attempts. 
Experiments are scripted to respect Salesforce API limits by 
batching read windows and simulating CDC throughput. Success 
criteria target ≤3% AUROC loss vs. centralized training, < 25% 
round-time penalty with secure aggregation, <1s P50 inference 
latency from Apex, and DP configurations that keep ε within 
an agreed policy envelope while preserving Business-Decision 
Rate parity across protected attributes.

Figure 3: Accuracy vs Latency.

7. Governance, Compliance, and Operations
Data residency is enforced through Hyperforce region 

pinning and by ensuring raw records never traverse org 
boundaries. Processing purposes and consent are modeled in 
custom metadata and enforced by the local trainer to exclude 
disallowed records at source. Access is governed by Integration-
User scoping, Named Credential policies, and IP restrictions; 
keys are rotated under KMS with separation of duties. 
Governance artifacts include data sheets for features and labels, 
model cards documenting intended use and caveats, lineage of 
training datasets and code revisions, and reproducible pipelines 
pinned to versioned containers. 

Figure 3: Accuracy vs Privacy Budget.

Monitoring extends beyond accuracy to fairness metrics, 
drift detectors, and privacy-budget consumption with automated 
halt thresholds. Incident response integrates Event Monitoring 
alerts, quarantine of suspect clients, secure aggregation 
rekeying, and model rollback via metadata flags. Vendor and 
partner participation is codified by DPAs that mandate local 
preprocessing, prohibit raw-data export, and require audit access 
to trainer logs.

8. Limitations and Future Work
Federated learning (FL) adds complexity in orchestration, 

update scheduling, and straggler management. Secure 
aggregation and DP introduce compute and communication 
overhead, and extreme non-IID data can slow convergence or 
bias global optima toward larger clients. Salesforce-specific 
limits require asynchronous patterns and can constrain real-time 
bulk inference without careful batching. Future directions include 
using trusted execution environments for aggregation to reduce 
cryptographic cost, adaptive client sampling and importance 
weighting to counter non-IID skew, compression of updates 
to lower bandwidth, and policy-driven feature generation with 
on-platform recipes (e.g., Data Cloud/Data Prep) to standardize 
privacy filters. Zero-knowledge proofs for update validity and 
verifiable training could further strengthen assurance without 
exposing internals.

9. Conclusion
Federated learning (FL) enables Salesforce programs to 

achieve cross-org intelligence while minimizing data movement 
and strengthening compliance posture. By combining secure 
aggregation, optional differential privacy, and native platform 
controls for encryption, auditing, and integration, enterprises 
can deliver production-grade use cases churn prediction, lead 
scoring, case triage with near-centralized accuracy and auditable 
privacy guarantees. The approach shifts risk left: privacy is built 
into the training and inference workflow rather than retrofitted. 
With the operational playbooks outlined here, organizations can 
move from pilots to durable, governed AI services aligned with 
regulatory and customer-trust expectations.
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