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 A B S T R A C T 
The classification of time series is an important work in mechanical fault diagnosis. In recent years, image-based signal processing 
methods have been widely used in bearing fault diagnosis. However, there are still some problems in the signal classification of 
multiple fault types and weak fault characteristics. In order to improve the classification accuracy of time series, a diagnosis 
method based on variable mode decomposition (VMD) and improved Canberra distance is proposed. In this method, the 
decomposed signal is first converted into a symmetrized dot pattern. Then the image features are extracted using Canberra 
distance and maximum eigenvalue. Through the obtained features, the accurate diagnosis of bearing vibration signal is realized. 
The experimental results show that the improved Canberra distance has high classification accuracy.
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Introduction
Rolling bearing is essential for reducing the friction coefficient 

between the shaft and the shell. In many industries, such as large 
chemical industries, integration of electromechanical, aerospace, 
improving the reliability and safety of the bearing is also the 
guarantee of the stable operation of equipment and personal 
safety. The failure of the rolling bearing has not fully reached 
the design life [1]. If the rolling bearings fail, it is likely to cause 
the entire equipment to stop operation and stagnate industrial 
production, resulting in unavoidable losses [2]. Therefore, the 
fault diagnosis of rolling bearing is a very important research 
field [3].

1.	 The main structure of rolling bearing consists of four parts:
2.	 The inner ring is a bearing ring, and the outer surface of its 

raceway.
3.	 The outer ring which is fixed on the shell or seat supports the 

rolling body.
4.	 The sliding coefficient of the outer ring and the inner ring is 

reduced, and the sliding friction is converted to the problem 
of the rolling friction.

A cage that divides the rolling elements evenly and makes 
the rolling elements rotate stably [4].

The problem of this paper is the fault diagnosis of rolling 
bearing. Fault diagnosis is a meaningful and difficult problem 
in mechanical equipment. The difficulty of this problem is to 
use the vibration signal to determine whether the bearing is 
faulty. Fault diagnosis is realized by analyzing the vibration 
signal. It is an effective method to improve the signal analysis 
technology. In addition, it is also a good method to improve the 
image feature extraction technology. The spectrum analyzer first 
uses the spectrum of the original signal of the rolling bearings to 
analyze the fault of the bearings [5]. Spectrum analysis cannot 
solve the effect of noise on the diagnosis of fault. With the 
continuous improvement of industrial production requirements 
and the rapid development of network technology, various new 
intelligent rolling bearings diagnostic methods have appeared in 
information science and network technology [6,7]. In particular, 
many computer technologies such as neural network computing 
and application, deep learning and other computer technologies 
have been used in the diagnosis of rolling bearings [8,9]. With 
the development of artificial intelligence, the new technologies 
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of rolling bearing fault diagnosis have emerged endlessly 
[10]. For example, the application of element learning to the 
diagnosis of bearing faults and the application of multitask 
convolutional neural networks to diagnosis and localization 
[11]. There is also a new type of bearing failure to quickly 
diagnose measuring instruments through the improvement of 
the source of information collection [12]. Pre-processing the 
original collected rolling bearing vibration signal. Due to the 
signal collection process, the collected signal contains noise 
signals. In order to better distinguish the signal, the signal needs 
to be processed with noise reduction and retains the effective 
information of the fault [13].

Signal processing is a direct processing of the original 
noise signal, where the discrete time signal has multiple signal 
processing methods, such as digital filter [14]. There are also 
various signal decomposition methods to choose the best 
filtering band, such as variational mode decomposition, wavelet 
packet decomposition, enhanced periodic mode decomposition 
and adaptive periodic mode decomposition [15,16]. This method 
decomposes the signal into different information of various 
frequency bands, which can reduce the noise of covering the fault 
information [17]. Using different signal decomposition methods, 
the number of decomposition layers is usually different, and the 
fault information and functional information contained in each 
layer are different. There are different processing methods after 
signal extraction, such as using complex wavelet data packet 
energy entropy to process the processing signal [18]. There is 
also a Bayesian optimization method using a Bayesian neural 
network to deal with the noise signal of the rolling bearing 
[19,20]. This method can be used to process the data of rolling 
bearings. In summary, the goal of data processing is to eliminate 
the influence of noise on fault feature extraction. And the 
filtering method has been applied to the fault diagnosis of rolling 
bearings. For example, the automatic filtering scheme has been 
used in rolling bearing fault diagnosis [21].

Rolling bearing signals can also be converted to various other 
forms of data, such as time domain diagrams and frequency 
domain charts. These images can analyze the vibration 
signals from different angles [22]. The development of image 
computing and analysis technology is very good to combine 
bearing vibration signals with digital images. Vibration data 
can be converted into different images to analyze the original 
discrete signal. For example, the signal is transformed into the 
SDP image. Then the convolution neural network is used to 
identify the SDP features under different vibration states [23,24]. 
The fault diagnosis method based on image has been applied to 
rolling bearing.

The research object of this paper is rolling bearing. This paper 
adopts the image processing method of data conversion. The 
feature extraction of different types of bearing fault information 
is realized through images. Our goal is to achieve accurate 
classification of bearing faults by converting data into SDP and 
extracting image features of SDP. And our research objective is 
to achieve more than 98% accuracy in bearing fault diagnosis. 
In order to monitor the status of rolling bearings and prevent 
accidents, our research team has carried out feature extraction, 
feature reconstruction, feature calculation and feature recognition 
for bearing fault information. We classify faults by extracting 
image features of different faults. We extracted, analyzed and 
set the range of different fault characteristics. When the fault 

characteristics are within the range, we can determine the fault 
type. Through extensive experimental data analysis, useful 
information can be extracted from fault information through 
convolution neural network [25]. The characteristics of rolling 
bearing faults can also be diagnosed by pseudo fourth-order 
moment [26]. SDP images can also be used to diagnose rolling 
bearing faults under four working conditions through improved 
Chebyshev distance and improved Manhattan distance [27, 
28]. Based on the aforementioned research results, this paper 
redesigns the signal decomposition scheme and improves the 
Canberra distance. A fault diagnosis method for bearings based 
on variational mode decomposition (VMD) and Canberra 
distance is proposed. 

The remainder of this paper is organized as follows: VMD 
decomposition and image processing methods are introduced in 
section 2, and a formula for improving the Canberra distance is 
given. The experimental design and simulation are carried out 
in section 3. The accuracy of Canberra distance and improved 
Canberra distance is compared in section 4. Comparing the 
accuracy of different signal decomposition methods verifies 
the effectiveness of the diagnostic methods based on VMD and 
Canberra distance. Finally, conclusion remarks are given in 
section 5.

Basic principles
Variational mode decomposition

Variational mode decomposition can adaptively decompose 
the original signal, which can be transformed into the 
corresponding variational problem construction and solution. It 
is mainly divided into the following three steps. 

The first step is to convert the real signal into an analytical 
signal. This step makes the signal have amplitude and phase in 
the complex domain. Hilbert transform to find the analytical 
signal, by multiplying with , the formula is as follows:

The second step is to use  to correct the signal. By 
multiplying with the operator , the central band of vk (t) is 
modulated to the corresponding baseband, as shown in eq.2. The 
third step is to estimate the bandwidth of the signal. Calculate 
the square norm  of the demodulation gradient, as shown in eq.3. 
The main purpose of this step is to ensure that the decomposed 
signal has its own center frequency. The constraint condition is 
that the sum of all modes is equal to the original signal.

where, the vk represents each mode after decomposition.

The above equation-constrained optimization problem is 
equivalent to an unconstrained optimization problem through the 
augmented Lagrang function, and finally each group of modal 
components vk is obtained. The modal component calculation 
formula is shown in eq.4, and the center frequency calculation 
formula is shown in eq.5.
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Symmetrized dot pattern

Vibration signal is a discrete signal that fluctuates within a 
certain amplitude range. The signal will become multiple signal 
components after the Variable mode decomposition in section 
2.1. The next work to be done is to select a suitable signal 
component. Then convert this component into a Symmetrized 
dot pattern. Through the calculation of the amplitude of 
one-dimensional signal by eq.6, eq.7 and eq.8, the signal data 
are projected onto the polar coordinate space Z(r(i), ϴ(i), φ(i)) 
and converted into a more intuitive two-dimensional image. The 
information of the signal is amplified, and the feature information 
is more easily extracted. An amplitude signal of one-dimensional 
original data can be mapped to two symmetrical points in the 
two-dimensional SDP diagram. Then, by rotating different 
angles, multiple amplitude data can obtain multi-branch images 
like snowflakes in different angles.

where, xmax and xmin represent respectively the minimum and 
maximum values of the original sample signal, the ϴ is the angle 
of rotation between each branch, the l is to select the time interval 
parameters of the original signal, the M is the magnification of 
the angle, the xn  represents the nth amplitude of the signal.

Through the above formula, the time-varying signal in 
time domain can be converted into a binary image in polar 
coordinates. The principle of the transformation is shown in 
fig.1, which shows that SDP is rotationally symmetrical relative 
to the initial line.

Figure 1: Symmetrized dot pattern.

Image processing

Image binarization is often used in image processing. 
Compared with color image and gray image, the binary image 
contains only black and white information, which reflects the 
contour of the image more clearly, and reduces the amount of 

information of the image, thereby improving the efficiency of 
the calculation. By converting the original image to gray image, 
each pixel is represented by gray information from 0 to 255, and 
by selecting the appropriate threshold, each pixel is converted to 
0 or 255, so that the image has an obvious black and white effect. 
The binary conversion is shown in eq.9. Through conversion, the 
pixel information of such an image only needs to be represented 
by 0 and 255, highlighting the more important information such 
as shape and density of the image.

Where, T is the threshold.

Canberra distance and its improvement

Canberra distance is very sensitive to changes in values 
greater than or equal to 0, and does not consider the correlation 
between variables. The calculation formula of Canberra distance 
between vector xi and vector yi is as follows eq.10.

where, xi and yi represent respectively vectors of the same 
length.

In fig.2, the yellow line is the Euclidean distance from point 
O to point C, which is also the straight-line distance from (0,0) 
to (3,4). The value of this distance is 5. The green line is the 
Manhattan distance from point O to point C. It can only be 
calculated by adding up the lines in a parallel coordinate system. 
The relative distance between the horizontal coordinate point O 
and point C is 3, and the relative distance between the vertical 
coordinate point O and point C is 4. Therefore, the Manhattan 
distance is the sum of the horizontal and vertical distances. The 
distance from Manhattan is 7. Canberra distance is weighted 
based on Manhattan distance. The Manhattan distance from (0, 
0) to (3, 4) is shown by the red line in the figure. Manhattan 
distance is 2.

Figure 2: Schematic diagram of the three distances

The binary image can be regarded as a square matrix. 
Eigenvalue is a very important property of a matrix. Among 
many eigenvalues of a square matrix, the largest eigenvalue can 
best reflect the characteristics of the matrix. Therefore, we use 
eigenvalues to improve the Canberra distance. The eigenvalue 
calculation of matrix is shown in eq.11. Among the n eigenvalues, 
we select the largest eigenvalue as the feature of the image. As 
shown in eq.12. In the n Canberra distances of the image, we 
select the maximum value as the feature of the image. As shown 
in eq.12. Finally, we combine the maximum eigenvalue and the 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Sun, Y.., et al.,

4

maximum Canberra distance to obtain an improved Canberra 
distance as shown in eq.14.

where, A is the image matrix. Iis the n-order identity matrix. 
n is the order.

where, a is the maximum eigenvalue.

where, dm is the maximum Canberra distance. 

where, a and b are weighting coefficients.

Scheme Design
Scheme plan

The flow design of rolling bearing fault information is shown 
in fig.3. First, determine the number of layers of the VMD 
decomposition, and the sample data with different fault signal 
length of 6000 is selected. The appropriate decomposition level  
is determined by comparing the average instantaneous frequency 
of the signal. Then the moving average filter is used to filter the 
decomposed and reconstructed signals. Select different sequence 
length  for filtering. By judging the correlation coefficient of 
signals before and after filtering, the optimal filtering sequence 
length  is selected.

Figure 3: Process design

Use the SDP image to extract the features of different faults, 
and select the sample data under different working conditions. 
The data length is 6000, the VMD decomposition layer is K, 
and the moving average filter sequence length is N. Then the 
SDP images are plotted and the mean image is calculated. The 
Canberra distance and the largest eigenvalue between the mean 
image and the ten images are calculated. The optimal weight of 
Canberra distance and the largest eigenvalue is selected as the 
basis for fault diagnosis. Finally, randomly select data for testing. 
Determine which fault type the data belongs to by improving 
whether the Canberra distance is within the corresponding 
range, and calculate the accuracy. 

Simulation experiment and analysis

This experiment is based on the data of Case Western Reserve 
University. There is a two-horsepower motor on the left and a 
power meter on the right. The fault diameters of 0.1778 mm and 
0.3556 mm are selected for different types of faults. The bearing 
test platform is shown in fig.4.

Figure 4: Rolling bearing Test Platform

In this paper, seven different bearing working conditions are 
selected. And the driving end frequency of the rolling bearing is 
12khz. The seven working conditions are one normal working 
condition, two ball bearing faults, two inner ring faults and 
two outer ring faults. The collected bearing specifications and 
processing steps for each working condition are shown in fig.5, 
and the final unified test.

Figure 5: Flow chart of data processing

After each data collection, the obtained data is decomposed 
by VMD and filtered through a moving mean filter. Then, 
the processed data is divided into ten groups. According 
to the conversion formula of SDP, they are converted into 
two-dimensional images. Then the Canberra distance between 
the ten groups of images and the calculated mean image is 
calculated, and the improved Canberra Distance is obtained 
by weighting with the maximum eigenvalue. Then the 
corresponding improved Canberra Distance range for this group 
of data is calculated. Finally, the seven working conditions are 
tested randomly through this set range.
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Different fault signals will produce different periodic 
fluctuations with time. Theoretically, the longer the data length 
selected, the more accurate the extraction of fault signal features. 
However, since the overall sample size is 120,000, if too much 
data is selected, the remaining test data will not be convincing. 
Therefore, the total data is divided into two sections. The first 
60,000 data are used to extract features, and the last 60,000 are 
used for testing. The amount of data selected each time is 6000.

First of all, select a sample with 6,000 data length under 
normal working conditions. The diameter of the fault is 
0.1778mm, and then the sample data is decomposed for VMD. 
When there are too many decomposition layers, the vibration 
signal will be over decomposed. Take the normal working 
condition as an example, when the signal is decomposed into 
four layers, the signal will be over decomposed. The signal 
components of the four-layer decomposition are shown in fig.6. 
The horizontal axis of the image is frequency. The vertical axis 
of the image is the amplitude of the signal component. It can 
be seen from the figure. As can be seen from fig.6, the center 
frequency of the first signal is almost the same as that of the 
third signal. This indicates that the signal is over-decomposed 
at frequency. Through experimental analysis, when the signal is 
decomposed into two layers, the signal decomposition effect is 
the best.

Figure 6: Spectrum diagram of four-layer component under 
normal working condition.

The decomposed signals obtained for each working condition 
are shown in fig.7, fig.8, fig.9 and fig.10. From the figures, we 
can see that the decomposed IMF2 contains less information, 
while IMF1 contains more signal characteristics of the original 
signal compared to IMF2. The IMF2 components of ball fault, 
inner ring fault and outer ring fault are all close to a straight line. 
Therefore, IMF1 is selected here as the characteristic signal for 
the subsequent analysis.

Convert the two groups of data decomposed under each 
working condition into SDP, as shown in fig.11-17 below. It can 
be seen that IMF2 under different working conditions is basically 
the same, which can be considered as the decomposition of noise 
signal. Therefore, IMF1 is used as a useful signal for feature 
extraction of subsequent processing.

Figure 7:  Decomposition signal of normal working condition.

Figure 8: Decomposition signal of ball fault.

Figure 9: Decomposition signal of inner ring fault.

Figure 10: Decomposition signal of outer ring fault.

Figure 11:  Component signal and mean image of normal 
working condition.

After the signal is decomposed by VMD, the data 
is divided into ten parts, and the data volume of each 
part is 600. Each data is converted into a symmetrical 
point pattern image according to the SDP conversion 
formula, as shown in fig.18. It can be seen from 
the figure that the SDP images of each working 
condition are different. Compared with other working 
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conditions, the image corresponding to normal 
working conditions is longer. Different slice SDP 
images are different in mode size and edge shape. 
For example, the image of rolling fault 1 is more 
complete, while the image of ball fault 2 is thinner. 
After graying and binarization, each pixel value of the 
image is only 0 or 1.

Figure 12: Component signal and mean image of ball fault 1.

Figure 13: Component signal and mean image of ball fault 2.

Figure 14:  Component signal and mean image of inner ring 
fault 1.

Figure 15: Component signal and mean image of inner ring 
fault 2.

Figure 16: Component signal and mean image of outer 
ring fault 1.

Figure 17: Component signal and mean image of outer ring 
fault 2.

Figure 18: SDP image after binarization.

According to the pixel matrix of ten images, 
average the pixel values of the corresponding pixels 
of ten images. This method can get the average 
image of ten images. As shown in fig.19, each mean 
value image contains bearing fault information. The 
features can be extracted from the original ten images 
and the mean image.

Figure 19: Symmetrized dot pattern’s average image.

In order to easily extract fault information and 
convenient computer calculations, the intercepting 
SDP image contains 680*680 pixels, so it can be 
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converted to a matrix of 680*680. After each ten 
images are averaged, the ten images and the Canberra 
distance of the mean image, 20 groups are calculated 
for each working condition, as shown in table 1. 
According to the data, table 2 can be obtained by 

Group Normal Ball fault 1 Ball fault 2 Inner ring fault 1 Inner ring fault 2 Outer ring fault 1 Outer ring fault 2

1 91.842 127.799 94.346 62.846 50.734 62.779 122.709 

2 105.912 125.583 81.593 68.932 45.811 62.862 117.451 

3 85.390 126.008 75.930 68.997 43.932 63.418 124.732 

4 90.536 128.449 87.020 68.519 52.652 64.011 117.782 

5 104.219 127.022 84.667 68.878 43.402 64.453 119.564 

6 96.407 126.026 78.030 68.848 47.029 64.389 112.779 

7 89.716 126.224 89.371 67.380 47.686 63.108 119.566 

8 84.900 125.248 73.769 74.219 56.429 62.843 119.258 

9 92.109 127.960 84.252 66.591 54.035 63.531 121.801 

10 103.993 128.491 82.875 70.548 44.080 63.819 121.584 

11 85.740 128.405 73.315 69.228 44.461 61.777 121.833 

12 93.018 128.082 73.161 68.931 39.790 64.701 120.211 

13 89.831 128.282 81.242 74.218 49.233 62.704 122.958 

14 87.055 126.269 73.198 70.873 54.333 63.408 121.261 

15 81.360 126.181 84.621 66.377 47.333 64.131 116.655 

16 106.028 127.942 86.272 71.833 49.987 63.211 121.949 

17 80.743 121.082 84.119 70.718 41.661 63.739 120.169 

18 87.606 126.185 99.512 68.237 45.266 63.977 118.291 

19 97.750 127.118 91.386 64.052 56.361 62.648 122.037 

20 84.711 124.384 88.488 67.357 48.025 62.612 114.527 

Table 1: Canberra distance under different working conditions.

calculating the maximum, minimum and mean values 
under each condition. As can be seen from the table, 
bearing failures in different operating conditions 
have different ranges of Canberra distance. So this 
Canberra distance is an effective feature of the image.

Group Normal Ball fault 1 Ball fault 2 Inner ring fault 1 Inner ring fault 2 Outer ring fault 1 Outer ring fault 2

Maximum value 106.028 128.491 99.512 74.219 56.429 64.701 124.732 

Minimum value 80.743 121.082 73.161 62.846 39.790 61.777 112.779 

Mean value 91.943 126.637 83.358 68.879 48.112 63.406 119.856 

Table 2: Maximum, minimum and mean of Canberra distance under different conditions

In order to highlight the characteristics of each 
working condition, the concept of maximum 
eigenvalue of mean image is introduced. According 
to eq.11, adding the maximum eigenvalue, the 
eigenvalue is a very important property of the matrix. 
At the same time, after a lot of experiments, α= 0.99 
and β= 0.01 obtained the best discrimination effect. 
Table shows the improvement of twenty groups of 
calculated Canberra distances. Draw the twenty 
groups of improved Canberra distances into a boxplot 

as shown in Figure 20. The upper edge of the blue box 
in the figure represents the upper quartile of this group 
of data. The lower edge represents the lower quartile 
of the data. The red line represents the median of the 
data. It can be seen from the figure that the improved 
Canberra distance of each working condition is 
concentrated in a certain range. And the improved 
Canberra distance of each working condition 
fluctuates in different ranges. Therefore, this feature 
can be used as the basis for fault classification.

Group Normal Ball fault 1 Ball fault 2 Inner ring fault 1 Inner ring fault 2 Outer ring fault 1 Outer ring fault 2

1 599.808 585.610 602.472 616.067 635.017 621.671 587.452 

2 591.643 586.422 608.426 613.104 631.214 622.052 589.491 

3 600.903 586.327 610.233 613.378 631.417 622.408 586.793 

4 599.243 584.689 605.225 614.344 630.062 621.324 590.211 

5 592.389 585.871 607.452 613.640 634.565 621.897 589.082 

6 597.475 586.243 608.487 612.777 633.479 622.301 591.960 

Table 3: Improved Canberra distance under different working conditions.
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the experimental equipment is shown in fig.21. The speed 
and horsepower of the motor can be controlled by the speed 
controller. The speed can be rotated in the range of 0 r/min and 
3600 r/min when there is no load, and also the bearings have 
various failure types to meet the experimental requirements.

Figure 20: Range of improved Canberra distance under different 
working conditions.

Finally, we use the improved Canberra distance to 
diagnose the type of fault. The main algorithm is to set 
the upper and lower limits of the improved Canberra 
distance for each condition to determine the type of 
fault. First you need to calculate the difference between 
the maximum and minimum distances to improve 
Canberra for each condition. Select the minimum 
value of the difference as one of the conditions for 
calculating the upper and lower bounds. The average 
of each working condition plus half of the minimum 
difference is taken as the upper bound. The mean of 
each condition is subtracted by half of the minimum 
difference as the lower limit. Judgment range of each 
condition is shown in Table 4.
Comparative Experiments

The above experiments are based on Case Western Reserve 
University to analyze the experiments. Here, the validity 
of the above method is verified using its own platform, and 

7 599.148 585.626 602.091 614.622 632.753 621.677 588.752 

8 601.307 586.674 612.999 611.962 627.054 621.692 589.107 

9 598.812 585.515 606.030 616.164 624.711 621.674 587.649 

10 593.390 584.476 607.184 613.466 635.512 621.633 588.000 

11 601.604 585.041 610.820 613.416 636.399 622.229 587.301 

12 597.979 584.992 610.967 612.372 635.816 621.689 588.475 

13 599.521 584.949 608.604 612.390 631.697 622.002 587.242 

14 600.243 585.982 612.710 613.155 624.871 622.509 587.722 

15 602.067 586.248 603.533 614.643 629.261 621.406 589.584 

16 591.196 585.485 603.497 612.328 627.941 621.420 587.472 

17 601.921 588.744 605.987 611.279 636.410 621.900 588.585 

18 599.889 586.275 599.564 615.249 633.736 621.582 589.060 

19 595.858 585.423 602.989 615.368 627.484 622.823 587.987 

20 600.680 587.235 603.939 615.407 628.799 621.494 590.830 

Maximum value 602.067 588.744 612.999 616.164 636.410 622.823 591.960 

Minimum value 591.196 584.476 599.564 611.279 624.711 621.324 586.793 

Mean value 598.254 585.891 606.660 613.757 631.410 621.869 588.638 

Group Original Canberra Distance Present method

1 65.00% 98.00%

2 66.33% 99.67%

3 63.33% 98.67%

4 67.00% 99.00%

5 66.00% 99.33%

6 71.33% 98.00%

7 68.00% 99.33%

8 69.33% 100.00%

9 67.00% 100.00%

10 68.67% 97.67%

Mean value 67.20% 98.97%

Table 4: Comparison of accuracy between original Canberra distance 
and improved Canberra.

Figure 21:  Experimental platform.

Comparative Experiment 1: with original Canberra distance

Calculate the improved Canberra distance of a layer of VMD 
decomposition, and test it randomly. It can be seen from Table 
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4 that the average accuracy of the improved Canberra distance 
in judging the type of rolling bearing fault is 98.97%. Then 
use the same conditions and the same method to calculate the 
accuracy of original canberra distance. A layer of VMD is used 
to decompose the data, and the data is divided into 10 groups and 
converted into 10 SDP images. The converted image is binarized, 
and the mean image of ten images is obtained. Only the Canberra 
distance of ten images and the mean image is calculated. Using 
the mean value of Canberra distance, calculate the range of 
original canberra distance for each working condition, and then 
calculate the accuracy of ten groups of original canberra distance 
as shown in tab.12. The average accuracy of our method is 
97.67%. The average accuracy of improved Canberra distance is 
31.77% higher than that of original canberra distance.

Comparative Experiment 2: with different decomposition 
methods

There are other signal decomposition methods similar to 
those in this paper. EMD, EEMD and CEEMD are selected 
to decompose the original signal. The purpose of EMD is to 
decompose the signal into a superposition of intrinsic mode 
function. After testing, it is found that the first intrinsic mode 
function of different decomposition methods contains useful 
information of the signal, so the first intrinsic mode function 
is selected as the decomposed data. Convert the data into 
SDP images, calculate the mean image, and then calculate the 
Canberra distance and the maximum eigenvalues. According to 
the method in this paper, the corresponding ranges are obtained 
respectively, and the accuracy is calculated, as shown in tab.5.

diagnostic effect than other decomposition methods. In two 
comparative experiments, the present has high classification 
performance. In future work, we propose to improve the 
processing speed of this method. In addition, improving image 
quality is also a feasible research direction in the future. This 
method provides a new idea for signal processing. Signal 
classification based on image features can be applied in other 
fields.
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