
Exploring Database design patterns of Microservices

Azra Jabeen Mohamed Ali*

Citation: Ali AJM. Exploring Database design patterns of Microservices. J Artif Intell Mach Learn & Data Sci 2024, 2(1), 1732-
1735. DOI: doi.org/10.51219/JAIMLD/azra-jabeen-mohamed-ali/376

Received: 02 January, 2024; Accepted: 18 January, 2024; Published: 20 January, 2024

*Corresponding author: Azra Jabeen Mohamed Ali, Independent researcher, California, USA, E-mail: Azra.jbn@gmail.com

Copyright: © 2024 Ali AJM., Postman for API Testing: A Comprehensive Guide for QA Testers., This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

1

Research ArticleVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/azra-jabeen-mohamed-ali/376

 A B S T R A C T 
This paper discusses the thorough exploration of the Database design patterns associated with the Microservices. 

Microservices have transformed the software development sector by encouraging modularity, scalability and maintainability, 
which enables businesses to react to shifting consumer needs and technology breakthroughs faster. The study's main research 
question explores the careful consideration of database design in microservice architecture due to its distributed nature of 
microservices. It also provides a thorough analysis of several microservice’s Database patterns and the way it handles its own data 
for improved scalability, flexibility and isolation. This paper is therefore meant to be more development-environment centered 
and infrastructure agnostic. Developers and architects who wish to concentrate on code, patterns and implementation specifics 
will find this part most interesting. 

Keywords: Micro Services, Design patterns, Event Sourcing, Api Composition pattern , Database design patten, monolithic

1. Introduction
1.1. Microservice Architecture:

Microservice architecture is a design methodology that 
divides a large application into smaller, autonomous services, 
each of which focuses on a distinct business function. Therefore, 
the back end is the main focus of this method, even though the 
front end can also use a microservices design. Each service runs 
independently and communicates with other processes using 
protocols including HTTP/HTTPS, WebSocket’s and AMQP.

Business-critical enterprise applications need to provide 
updates fast, frequently and reliably in order to thrive in today’s 
unstable, uncertain, complex and ambiguous reality. As a result, 
corporations are divided into small, cross-functional teams with 
limited connections. Each team uses DevOps methodologies 
to deploy software. Specifically, it makes use of continuous 
deployment. An automated deployment pipeline tests the team’s 
stream of frequent, small modifications before they are put into 

production. The intention is to allow developers to leverage 
microservices to speed up application releases by allowing 
teams to deploy each microservice as needed.

1.2. Why are Microservices Architectures used by Businesses?

Most firms start by constructing their infrastructures as 
a collection of closely related monolithic applications or as a 
single monolith. The monolith does a number of things. All of 
the programming for those functionalities is included in a single, 
cohesive piece of application code. Because the code for these 
functions is so intertwined, it is difficult to understand. The code 
of an entire program may break as a result of a single feature 
addition or alteration in a monolith. This makes any change, no 
matter how simple, expensive and time-consuming. As upgrades 
are done, programming becomes more complicated until scaling 
and upgrading are practically impossible.

Businesses can no longer make additional changes to their 
coding over time without starting over. Businesses may find 

https://doi.org/10.51219/JAIMLD/azra-jabeen-mohamed-ali/376
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/azra-jabeen-mohamed-ali/376


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Ali AJM.,

2

Schema-per-service - Every service has its own database 
schema, which is known as schema-per-service.

1.4. Database-server-per-service: Every service has a database 
server of its own.

For the purpose of establishing a barrier and preventing it 
from utilizing other service tables, each microservice should 
have its own database ID.

The following issues need to be taken into consideration 
while designing the database architecture for microservices: 
It is necessary to loosely couple services. They are independent in 
terms of development, deployment and scaling. Multiple-service 
invariants may be enforced via business transactions. Data 
owned by various providers may need to be queried in certain 
business transactions. Sometimes sharding and replication are 
necessary for databases to grow. The amount of data storage 
needed varies per service.

1.5. Challenges: Data duplication: It’s possible for certain data 
to be repeated between services. Data consistency: It gets more 
difficult to maintain consistency between services. Managing 
transactions that cross several databases or services is known as 
distributed transactions.

1.6. Shared Database per Service:

Microservices work best when there is just one database 
per service, which is only feasible in greenfield applications 
(new development, no prior work done that poses constraints 
on application) created with DDD (Domain Driven Design). 
Denormalization is difficult when attempting to convert a 
monolithic program into microservices. Shared database per 
Service is best suited for brownfield applications, this is a 
fantastic place to start when trying to break the application into 
more manageable chunks.

Single database is shared by multiple services. Through local 
ACID transactions, each service has unrestricted access to data 
that belongs to other services.

Let’s consider that we are developing a OTT platform 
application like Hulu, Disney, HBO which has Subscription 
Service and Customer Service. Customer Service stores 
information about cutomers whose data is stored in the Customer 
table in relational database and subscription service stores 
information about the subscriptions in Subscription table in the 
same relational database. With the help of Shared Database per 
Service pattern, Customer Service and Subscription Service can 
access each other’s table (Figure-2).

1.7. Pros: Easy to manage a single database. Very familiar and 
straightforward ACID transactions can be used to enforce data 
consistency.

1.8. Challenges:

•	 Runtime Coupling: Availability of one service is impacted 
by the availability of another service. The Subscription 
Service will be blocked if a Customer Service transaction 
locks the subscription table.

• A single database might not be able to meet all the services’ 
needs for data access and storage.

•	 Development time coupling: Developers of other services 
that utilize the same tables must coordinate schema changes 
with those working on the Subscription Service, for 

themselves stuck with antiquated procedures for a long time 
after they should have modernized, as the process soon becomes 
too difficult to handle.

In addition to other pertinent factors, company objectives 
will determine which pattern (or patterns) is best to use. For 
microservices, there are numerous design patterns, each with its 
own advantages and disadvantages. Design patterns are grouped 
according to their intended use like Decompose patterns, 
Observability patterns, Integration patterns, Database patterns, 
Cross-Cutting concern patterns. Database design patterns, 
including Database per Service, Shared Database per Service, 
CQRS, Event Sourcing and Saga patterns, are the main topic of 
this article.

1.3. Database Per Service: The majority of services require data 
to be stored in a database. Let’s picturize that we are developing 
a ott platform application like Hulu, Disney,HBO which has 
Subscription Service and Customer Service. Customer Service 
stores information about cutomers whose data is stored in 
relational database and subscription service stores information 
about the subscriptions whose data is stored in NoSQL database 
(Figure-1).

Figure-1

In this design pattern every microservice ought to have its 
own database that it controls on its own. It cannot be accessed 
by other services directly. Instead, the persistent data of each 
microservice exclusive to that service and only available through 
its API. By doing this, microservices are guaranteed to be 
loosely connected and are free to develop their own data models 
and storage systems. Various microservices can employ various 
database technologies according to the use case (e.g., NoSQL 
for rapid reads and good at storing complex and unstructured 
data, SQL for transactional). Only a service’s database is used in 
transactions. Independent scalability is possible for each service 
and its database.

If the database is relational, there is no need to set up a 
database server for every service. The choices for such a scenario 
are

1.3. Private-tables-per-service: Each service has a set of tables 
that are private to that service and can only be accessed by that 
service.



3

Ali AJM., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

instance. Further coordination and this linkage will slow 
down progress.

Figure-2

2. API Composition Pattern
The necessity for this architecture is created by the Database 

per Service pattern. Services may utilize APIs to retrieve data from 
other services rather than sharing a database. In this approach, 
a composite service calls the APIs of several microservices to 
aggregate data from them, then composes the answer to produce 
a single, cohesive outcome. In order to execute a query, an API 
Composer has to be defined that calls the data’s services and 
joins the results in-memory (Figure-3).

Figure-3

API Composition Pattern depicts a “client” submitting a 
request to a “API Gateway,” which then makes calls to several 
“Microservices” to obtain data. An “API Composer” component 
is in charge of integrating the output from these services into 
a single response, thereby carrying out an in-memory join to 
provide the client with a single data set.

2.1. Pros: In a microservice design, it’s an easy method of 
querying data. Instead of using shared data stores, each service 
is in charge of its own data. Data from many services can be 
combined and presented to the client by the composition layer.

2.2. Challenges: The system becomes more complex as a result 
of services becoming reliant on one another. Performance may 
have an affect especially for large datasets when making several 
API calls for a single query. If one service is down, the composed 
response might be incomplete or fail.

3. CQRS (Command Query Responsibility Segregation)
In microservice architecture, the CQRS pattern provides a 

way to implement a query that pulls information from several 
services. The CQRS pattern divides the data model into two 
parts: one for writing operations, which manages the command 
side such as CREATE, UPDATE and DELETE requests and one 
for read operations, which handles the query side using views. 
This technique makes it possible to optimize the write side for 
consistency and integrity and the read side for querying (using 
denormalized data).

3.1. Working model of CQRS: (Figure-2) The basic step is 
to determine the read and write activities of the application so 
that the read operations are segregated to read model and write 
operations are segregated into Command model. The command 
model and read model are physically isolated. The command / 
write operation modifies the data based on the command and 
does not return any data. Whereas the read operation does not 
modify the data and returns the data.

Figure-2

3.2. Working model of CQRS with Event Sourcing pattern: 
(Figure-3) In the same working CQRS, say suppose if the 
databases used for read and command operations are different 
(one as relational DB and other as NoSQL Db), both data should 
be in sync. For such synchronization process, Event handlers 
take the command model data and send it asynchronously to 
another module in order to save the same data to the materialized 
view (NoSQL database). All the command requests or data 
changes are created as an event and stored as a series of events 
for tracking purpose. This provides an audit trail by storing the 
entire history of state changes.

Figure-3

3.3. Pros of CQRS:

3.3.1. Read and write optimization: The command model 
can be optimized for consistency and write efficiency, while 
the query model can be optimized for quick readings. Complex 
queries and writes can be managed more effectively by dividing 
concerns and thereby performance is increased. Enables to scale 
the read and write sides independently.

3.3.2. Challenges:

In terms of data synchronization, it will be challenging to 
maintain the read and write models in sync. Consistency issues 
could arise when the system takes some time to update to the 
most recent state. It is necessary to carefully analyze data storage 



J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Ali AJM.,

4

and retrieval patterns in order to store all events. Rebuilding the 
state after an event can be challenging, particularly when there 
are more occurrences.

3.3.3. Saga pattern:

The Saga pattern is a way to implement cross-service 
transactions (Figure-4). If an application has multiple 
microservices with different database records, then this saga 
pattern is one of the best choices to allow the transactions 
between multiple microservices with rollback functionalities. 

Figure-4

A series of local interactions is called a saga. Every 
local transaction in the saga causes a message or event to be 
published, updating the database and setting off the subsequent 
local transaction. In the event that a local transaction fails due 
to a violation of a business rule, the saga initiates a sequence of 
compensatory transactions that reverse the modifications made 
by the previous local transactions. This can be achieved by two 
ways namely Choreography orchestration.

3.3.4. Choreography: 

As the name mentioned above, it is based on choreography-
based saga meaning the sequential steps to be carried out. Every 
local transaction trigger local transaction in other services 
by publishing domain events. There will be no centralized 
coordination. After completing a transaction, a service will 
publish an event using the choreography approach. Other 
services may occasionally react to those events that are published 
and carry out duties in accordance with their coded instructions. 
Depending on defaults, these secondary tasks may or may not 
also post events.

3.3.5. Orchestration: 

Similar to orchestration orchestrator coordinates with the 
services and decides what local transactions to be executed. 
An orchestration technique will use an object to orchestrate 
transactions and publish events, which will cause other services 
to finish their tasks in response.

3.3.6. Pros:

The pattern’s distributed design makes it possible to handle 
long running process more effectively. To reduce complexity, 
each microservice manages its own local transaction.

3.3.7. Challenges:

State management, compensation actions and service 
coordination are necessary for saga implementation which 
makes it bit complex. The system may only become consistent 
over time, similar to event sourcing, necessitating cautious 
management of errors and retries.

4.	Benefits	of	Database	Design	Patterns	in	Microservice	
Architecture?
4.1. Decentralized Data Ownership: Each microservice usually 
oversees its own database in a microservices architecture. This 
promotes service autonomy and lessens tight coupling between 

services by guaranteeing that the service has complete control 
over its data.

4.2. Flexibility: Each service can use the database type (SQL, 
NoSQL, graph, etc.) that best suits its requirements thanks to 
microservices.

4.3.	Simplified	Data	Management: Instead of a shared database 
with a complicated and generic schema, each service can have 
its own data model that reflects its particular domain by isolating 
databases.

4.4. Fault tolerance: Problems with one service’s database (such 
as outage or performance degradation) won’t directly impact 
other services when each microservice has its own database.

4.5. Optimized Performance: To maximize performance in 
microservices, database design patterns like Event Sourcing and 
CQRS (Command Query Responsibility Segregation) might be 
used.

4.6. Data Consistency and Eventual Consistency: Strong 
consistency, which can be difficult to maintain in a microservices 
context, can be avoided by using patterns like Saga or Eventual 
Consistency, which allow microservices to achieve eventual 
consistency in a distributed system.

4.7. Improved Security and Access Control: Better isolation is 
made possible by microservices with distinct databases, which 
improves security.

5. Conclusion
For microservices to stay scalable, maintainable and loosely 

connected, database design is essential. The particular use case, 
including read/write patterns, consistency requirements and the 
intricacy of the business logic, frequently determines the best 
design pattern. An architecture may employ a mix of these 
patterns to accommodate diverse microservice requirements.

6. References

1. https://microservices.io/patterns/data/database-per-service.
html

2. https://dzone.com/articles/design-patterns-for-microservices 

3. h t t p s : / / l e a r n . m i c r o s o f t . c o m / e n - u s / a r c h i v e / m s d n -
magazine/2009/february/best-practice-an-introduction-to-
domain-driven-design

4. https://microservices.io/patterns/data/shared-database.html 

5. https://microservices.io/patterns/data/api-composition.html 

6. https://microservices.io/patterns/data/event-sourcing.html

7. https://microservices.io/patterns/data/saga.html 

8. https://www.openlegacy.com/blog/microservices-architectu-
re-patterns/ 

9. https://microservices.io/patterns/microservices.html

https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/database-per-service.html
https://dzone.com/articles/design-patterns-for-microservices
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/best-practice-an-introduction-to-domain-driven-design
https://microservices.io/patterns/data/shared-database.html
https://microservices.io/patterns/data/api-composition.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/saga.html
https://www.openlegacy.com/blog/microservices-architecture-patterns/
https://www.openlegacy.com/blog/microservices-architecture-patterns/
https://microservices.io/patterns/microservices.html

	_GoBack

