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 A B S T R A C T 
Aging is a complex biological process marked by a progressive decline in physiological functions and structural integrity at 

the cellular and tissue levels, driven by hallmarks such as genomic instability, telomere shortening, mitochondrial dysfunction 
and disrupted epigenetic regulation. These interconnected mechanisms increase susceptibility to age-related diseases, including 
neurodegenerative disorders, cardiovascular conditions, metabolic syndromes and osteoporosis, imposing significant health and 
economic burdens. Recent advances have demonstrated that aging is a dynamic and modifiable process, opening avenues for 
targeted interventions aimed at enhancing healthspan and addressing the underlying causes of age-related conditions. Virtual 
screening (VS), a high-throughput computational approach, has emerged as a transformative tool in aging research, enabling 
the efficient identification of bioactive compounds by targeting key pathways such as mTOR, SIRT1 and AMPK. Compared to 
traditional experimental methods, VS enhances efficiency, reduces costs and supports the exploration of multitarget strategies and 
epigenetic regulation. By accelerating the discovery of novel molecular targets and therapeutic agents, VS provides a systematic 
framework for understanding the molecular underpinnings of aging and developing innovative anti-aging interventions. As 
the global aging population continues to grow, the integration of VS into aging research holds the potential to revolutionize 
drug discovery and therapeutic development, addressing the root causes of aging and improving health outcomes for aging 
populations worldwide.
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1. Introduction
Aging, characterized by a decline in physiological functions 

and cellular structural changes, is a significant precursor to 
various pathological conditions, including neurodegenerative 
and cardiovascular diseases1,2. This review explores the role 
of virtual screening (VS) in identifying molecular targets and 
pathways associated with aging, offering a potential strategy 
to delay or reverse the aging process3. VS, a computer-assisted 
technology, has emerged as a powerful tool in drug discovery, 
particularly in the context of aging research, where it targets 
complex molecular networks such as the mTOR, SIRT1 and 
AMPK signaling pathways4. The technology’s efficiency in 

high-throughput computing allows for the rapid identification 
of potential active compounds, streamlining the process of drug 
development and reducing associated costs1,2.

This review provides an overview of the foundational 
principles and techniques employed in Virtual Screening (VS), 
encompassing both Structure-Based Virtual Screening (SBVS) 
and Ligand-Based Virtual Screening (LBVS)5. It discusses the 
unique benefits of each approach and examines the significance 
of molecular docking and scoring functions in the context of 
forecasting interactions between compounds and their targets. 
The discussion also encompasses the advantages of VS, such as 
its high throughput and efficiency and its limitations, particularly 
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regarding the accuracy of predictive models and computational 
resource requirements6. Furthermore, the review underscores 
the importance of database resources like ZINC, PubChem and 
protein structure databases in facilitating VS7,8. It also addresses 
the challenges and future trends in VS, including the potential 
of deep learning, multi-omics data integration and the efficient 
integration of virtual screening with experimental validation to 
enhance the drug discovery process8-11.

The role of VS in aging research is further exemplified by 
studies that have used QSAR modeling and molecular docking 
to identify novel bioactive peptides with antioxidant properties, 
which are crucial in delaying aging. Additionally, the potential 
of VS in drug discovery is highlighted by its application in 
identifying BACE1 inhibitors for the management of Alzheimer’s 
disease, a neurodegenerative condition closely associated with 
aging13-24. The review also points to the growing importance of 
multi-omics data in understanding epigenetic aging and human 
longevity, which can guide VS efforts1. The integration of deep 
learning with VS is seen as a significant development, with 
the potential to improve the accuracy and efficiency of virtual 
screening campaigns4,26-32.

2. Virtual Screening Technology
2.1 Basic Principles and Methods

Virtual screening (VS) is a computer-assisted molecular 
screening technology that predicts the potential biological 
activity of compounds by simulating their interactions with 
biological targets39. This technique has become a crucial step 
in the early stages of drug discovery, offering a cost-effective 
alternative to high-throughput screening (HTS) methods.32-35 
VS allows for the automatic evaluation of large databases of 
molecular structures using computational methods, with the 
aim of identifying molecules more likely to bind to a molecular 
target, typically a protein or enzyme receptor33,35.

The process of VS acts as a filter, reducing the number of 
candidate molecules that may become a drug to a smaller subset 
than the initial number38,39. This filtering helps in selecting 
compounds with a higher probability of presenting biological 
activity against a target of interest and eliminates those that 
may be toxic or have unfavorable pharmacodynamic and 
pharmacokinetic properties36. By doing so, biological assays are 
performed only with the most promising molecules, leading to 
lower costs and shorter development times34.

2.1.1 Structure-Based Virtual Screening (SBVS): Structure-
Based Virtual Screening (SBVS) relies on known three-
dimensional structural information of targets. It simulates the 
binding mode between compounds and targets through molecular 
docking techniques and evaluates their binding strength based 
on scoring functions. This method is particularly suitable for 
situations where the target structure is known and the active 
pocket is clear, making it widely used for screening potential 
ligands for enzymes, receptors and other proteins23. SBVS has 
been revolutionized by advancements in structural biology, 
with technologies like cryo-electron microscopy providing 
high-resolution structures for a majority of clinically relevant 
targets34. These structures often capture the target protein in 
states relevant to its biological function, providing valuable 
templates for ligand screening and lead optimization.

2.1.2 Ligand-Based Virtual Screening (LBVS): Ligand-Based 

Virtual Screening (LBVS) is based on the structural features 
of known active compounds, using chemical similarity or 
pharmacophore models to predict the activity of new molecules. 
Unlike SBVS, LBVS does not require target structure information 
and is suitable for situations where the target structure is unknown 
or not yet resolved. However, it requires a reliable reference 
ligand dataset27,31. LBVS has been enhanced by the expansion 
of drug-like chemical space, with ultra-large virtual libraries and 
chemical spaces of drug-like compounds now accessible for hit 
and lead discovery. This approach is particularly beneficial when 
the structural information of the target protein is not available or 
when the target is challenging to crystallize.

2.1.3 The Role of Molecular Docking and Scoring Functions: 
Molecular docking is one of the core steps in virtual screening, 
predicting the binding pose and affinity of compounds by 
simulating their binding modes in the target’s active site. 
Scoring functions are used to quantify the binding energy 
between compounds and targets to distinguish potential active 
molecules from inactive ones. Scoring functions can be broadly 
categorized into those that estimate van der Waals interactions 
and those that estimate electrostatic interactions26,27. However, 
existing scoring functions still have certain limitations in terms 
of accuracy and computational efficiency. Advances in machine 
learning and deep learning methods are being integrated 
into scoring functions to improve their predictive power and 
discrimination of true binders from non-binders. These methods 
learn the interlink between the physicochemical properties and 
the interactions between protein and ligand from known binding 
complexes and implement statistical methods to predict the 
interactions of unknown protein-ligand complexes. Despite 
these advances, there is still room for improvement and future 
enhancements may involve the integration of GPU acceleration 
and deep learning models for more efficient pose generation and 
improved scoring38.

2.2 Common Tools and Platforms of VS

The application of virtual screening technology relies 
on a variety of efficient software tools that play a key role in 
molecular docking and modeling. Among them, AutoDock is an 
open-source molecular docking tool, widely used in structural 
biology and drug screening research due to its flexibility and 
efficiency, especially popular in academic research4. Schrödinger 
provides a comprehensive drug discovery solution, covering 
high-precision molecular docking, pharmacophore modeling 
and free energy calculations, making it one of the mainstream 
choices in the pharmaceutical industry and academia. MOE 
(Molecular Operating Environment) is an integrated molecular 
modeling platform, combining molecular docking, dynamic 
simulation and data analysis, suitable for various scenarios 
from basic research to applied development. These classic tools 
provide strong technical support for the efficiency and reliability 
of virtual screening, promoting the progress of anti-aging drug 
research and target discovery26.

2.3 Advantages and Limitations

2.3.1 Advantages: Virtual screening technology has 
revolutionized the field of anti-aging drug development and 
research, offering a multitude of benefits that enhance efficiency 
and throughput. Virtual screening can process millions of 
compounds in a short time, significantly reducing the time and 
cost associated with traditional experimental screening. This is 
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crucial in aging research where the need to test a vast array of 
compounds for potential anti-aging properties is ever-present34-39.

It quickly identifies candidate molecules with potential 
activity, providing a clear direction for subsequent experimental 
validation. This is particularly beneficial for anti-aging drugs, 
which often require extensive validation due to the complex 
nature of aging processes. By efficiently identifying potential 
active molecules, virtual screening avoids unnecessary waste 
of manpower and materials in experiments. This is especially 
important in aging research where resources can be better 
utilized for detailed study of promising candidates.

Virtual screening is applicable to various target types 
and molecules with different chemical properties, making it 
invaluable in anti-aging research where complex signaling 
pathways and multiple molecular targets are involved. Especially 
in the early stages of drug discovery, virtual screening can 
handle targets that have not been fully resolved, optimizing 
drug-like properties based on existing active molecules19. This is 
crucial for aging research where many targets, particularly those 
involved in complex pathways like mTOR and AMPK, are still 
not fully understood.

By quickly screening compounds targeting key pathways, 
virtual screening promotes the exploration of aging mechanisms 
and the formulation of intervention strategies. This has led to 
the discovery of novel compounds with anti-aging potential, 
such as natural products that inhibit BACE1, a key enzyme in 
Alzheimer’s disease pathogenesis. Also, the integration of virtual 
screening with deep learning and other advanced computational 
algorithms has improved the accuracy and efficiency of the 
technology, providing strong technical support for biomedical 
research and drug development. This is particularly relevant in 
aging research where the complexity of targets like G protein-
coupled receptors (GPCRs) and other membrane proteins 
requires sophisticated computational approaches.

Virtual Screening can enhance Chemical Space Exploration. 
The expansion of drug-like chemical space has allowed for hit 
and lead discovery with ultra-large virtual libraries, growing 
beyond billions of compounds. This vast chemical space offers 
unprecedented opportunities for finding novel anti-aging 
compounds3.

Virtual screening has been successful in identifying inhibitors 
for specialized targets like BACE1, which is highly expressed in 
the brain and plays a pivotal role in Alzheimer’s disease. This 
demonstrates the technology’s potential in targeting specific 
pathways associated with aging. The combination of physics-
based and data-driven approaches in virtual screening has shown 
promise in overcoming individual limitations and enhancing the 
discovery of anti-aging drugs39. This synergy can lead to more 
accurate predictions and a better understanding of complex 
aging mechanisms.

2.3.2. Limitations

Despite the numerous advantages, virtual screening does 
have limitations, particularly in the context of aging research:

The success of SBVS depends on the quality of the target’s 
three-dimensional structure, while LBVS relies on the reliability 
of known active compounds. Deviations in these predictive 
models may lead to inaccurate screening results. High-precision 
virtual screening often requires significant computational 

resources, especially when integrating dynamic simulations 
and large compound libraries. This can be a barrier for research 
groups with limited access to such resources.

Deep learning models, which are increasingly being used 
in virtual screening, are very data-greedy. The performance of 
these models is highly dependent on the size and quality of the 
training data. In aging research, obtaining large, high-quality 
datasets can be challenging. Data-driven methods may struggle 
to generalize beyond data-rich classes of targets, which can limit 
their applicability in aging research where some targets may not 
be as well-studied.

Deep learning models, especially those based on limited 
datasets lacking negative data, are prone to overtraining and 
spurious performance, sometimes leading to biased results. 
This can affect the reliability of virtual screening in identifying 
effective anti-aging compounds6.

3. Molecular Mechanisms and Targets Related to Aging
3.1 Molecular Pathways Related to Aging

The aging process involves multiple complex molecular 
pathways, among which ROS, mTOR and AMPK signaling 
pathways play a key role in regulating cellular functions and 
the aging process. Reactive oxygen species (ROS) are important 
mediators in aging and their abnormal changes directly affect 
cell fate. When ROS are overproduced, they can cause oxidative 
stress, leading to damage to DNA, proteins and lipids, thereby 
accelerating cellular aging and tissue functional degradation40. 
However, ROS also has a dual role; moderate levels of ROS 
can act as signaling molecules, activating cellular protective 
mechanisms, such as stimulating the expression of antioxidant 
genes. This complex mechanism makes the precise regulation of 
ROS an important focus in anti-aging research.

Another important pathway is mTOR (mammalian target 
of rapamycin), which, as a key kinase regulating cell growth, 
protein synthesis and energy metabolism, plays a significant 
role in the aging process. Studies have shown that excessive 
activation of mTOR is closely related to aging and various related 
diseases. Drugs that inhibit mTOR (such as Rapamycin) have 
shown anti-aging effects in various model organisms, becoming 
an important direction for anti-aging intervention. At the same 
time, AMPK (AMP-activated protein kinase), as a sensor of 
cellular energy status, also plays a central role in regulating the 
aging process. The activation of AMPK can not only inhibit 
the mTOR signaling pathway but also enhance autophagy and 
improve mitochondrial function, thereby delaying cellular and 
tissue aging42.

In addition to these signaling pathways, epigenetic 
modifications also play a crucial role in the aging process. 
The temporal changes in DNA methylation are considered a 
“biological clock” that can reflect an individual’s biological age 
and provide a basis for assessing the degree of aging. In addition, 
histone deacetylases (such as SIRT1) play an important role in 
regulating gene expression and maintaining genomic stability35. 
The dysfunction of SIRT1 is considered one of the key drivers 
of aging. In summary, the regulation of signaling pathways and 
epigenetics is involved in the occurrence and development of 
aging, providing a rich set of molecular targets for studying aging 
mechanisms and developing anti-aging intervention measures.
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3.2 Screening of Key Targets

Intervention measures against aging depend on the precise 
screening and validation of molecular targets, which is key to 
developing anti-aging drugs and intervention strategies. Current 
research indicates that multiple molecular targets play a core 
role in delaying aging and related pathological changes, among 
which SIRT1, NRF2 and FOXO are particularly important. 
SIRT1 is an NAD+-dependent deacetylase that, by regulating 
key proteins such as FOXO and p53, plays an important role 
in improving cellular stress tolerance, enhancing DNA repair 
and maintaining energy metabolism balance. SIRT1 activates 
the FOXO transcription factor, promoting the expression of 
antioxidant genes while inhibiting pro-apoptotic signals, thus 
protecting cells from oxidative stress and damage31.

In addition, SIRT1 shows potential for delaying aging in 
regulating mitochondrial function and lipid metabolism and its 
agonists have been verified in various model organisms to extend 
lifespan. NRF2 (nuclear factor erythroid 2-related factor 2) is 
the main regulator of cellular antioxidant defense, activating the 
expression of antioxidant enzyme genes to reduce the damage of 
reactive oxygen species (ROS) to cells. Under normal conditions, 
NRF2 is regulated by the inhibitory protein Keap1, but under 
oxidative stress, NRF2 is released and transferred to the nucleus, 
initiating the expression of antioxidant enzymes such as HO-1 
and NQO1, thereby enhancing cellular antioxidant capacity and 
reducing inflammation and mitochondrial dysfunction43. 

FOXO (forkhead transcription factor), as a downstream 
effector molecule of multiple signaling pathways (such as the 
insulin/IGF-1 pathway), plays an important role in delaying 
aging and maintaining cellular homeostasis by regulating 
antioxidant responses, autophagy, DNA repair and cell cycle 
processes. FOXO can induce the expression of antioxidant 
enzymes and DNA repair enzymes, reduce the accumulation of 
ROS and improve cellular function by promoting autophagy to 
clear damaged organelles18.

4. Application of Virtual Screening Technology in Aging 
Research

Virtual screening (VS) has become a transformative tool in 
aging research, addressing the complexities of drug discovery 
for age-associated diseases and interventions aimed at slowing 
the aging process. Leveraging computational methods, VS 
facilitates the rapid identification of bioactive compounds 
targeting key pathways, such as mTOR, SIRT1 and AMPK. 
Below, the diverse applications of VS in aging research are 
explored in depth.

4.1 Discovery of Small Molecule Anti-Aging Compounds

Virtual screening has proven highly effective in identifying 
small molecules with anti-aging properties. For example, 
computational efforts have pinpointed SIRT1 activators, 
such as resveratrol analogs, that modulate the activity of this 
key deacetylase involved in stress resistance and metabolic 
regulation. Studies like those by Sun et al. (2016) utilized 
ligand-based virtual screening to identify SIRT1 inhibitors 
within natural product databases, providing promising leads 
for pharmaceutical development46. Similarly, BACE1 inhibitors 
have been identified for combating Alzheimer’s disease, a 
neurodegenerative condition closely linked to aging. Gheidari 
et al. (2024) demonstrated how structure-based virtual screening 
combined with molecular docking and ADMET predictions could 

uncover potential inhibitors with optimized pharmacokinetic 
profiles49.

4.2 Targeting Specific Pathways in Aging

The application of VS in aging research often focuses on 
specific molecular pathways. For instance, the mTOR signaling 
pathway, a regulator of cellular growth and metabolism, is a 
well-established target for anti-aging interventions. Rapamycin, 
an mTOR inhibitor, has been widely studied for its lifespan-
extending effects50. Virtual screening has played a pivotal role 
in designing rapamycin derivatives, such as everolimus, which 
offer enhanced pharmacokinetics and reduced side effects. 
Similarly, AMPK activators identified through VS hold promise 
for promoting autophagy and mitigating cellular aging. Zhang 
et al. (2016) highlighted the use of VS in screening AICAR 
analogs, which demonstrated significant effects on cellular 
energy homeostasis and lifespan extension in model organisms51.

4.3 Database Resources Supporting VS in Aging Research

The efficiency and success of VS in aging research are 
underpinned by comprehensive databases that provide rich 
repositories of chemical compounds and target structures: 
Compound Libraries include: ZINC: A freely available database 
hosting millions of drug-like molecules, enabling high-throughput 
screening for potential therapeutic candidates52.PubChem: 
Maintained by NCBI, this extensive database includes tens of 
millions of chemical entities, providing a wealth of information 
for ligand-based virtual screening53. Protein Structure Databases 
include: PDB: Offers experimentally resolved protein structures 
that are instrumental for structure-based docking studies. 
AlphaFold: By predicting protein structures with high accuracy 
using deep learning, AlphaFold expands the scope of VS, 
particularly for previously uncharacterized targets involved in 
aging24.

4.4 Multi-Scale Modeling Integration in Aging Research

Virtual screening has transcended its initial role as a molecular 
filtering tool, integrating with multi-scale modeling to connect 
molecular findings to systemic biological effects. Molecular 
dynamics simulations validate the stability of compound-target 
interactions identified through VS, elucidating their potential 
mechanisms of action within cellular environments. Such 
approaches have proven invaluable in confirming the efficacy 
of mTOR3.Systems biology models incorporate VS data into 
broader frameworks, enabling predictions of how compounds 
modulate entire biological networks. For example, integrating 
mTOR inhibitors into metabolic models has provided insights 
into their effects on energy balance and organismal aging.

4.5. Applications in Multi-Target Drug Discovery

Aging is characterized by interconnected molecular 
pathways, necessitating multi-target approaches in drug 
design. Virtual screening has been instrumental in identifying 
compounds that act on multiple targets simultaneously11. For 
example, dual-action molecules targeting both mTOR inhibition 
and NRF2 activation have shown promise in preclinical aging 
studies. These compounds leverage the interplay between 
metabolic regulation and antioxidant defenses to address aging 
more comprehensively.

4.6. Integration of VS with Emerging Technologies

The synergy between VS and emerging technologies like 
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deep learning and multi-omics is transforming aging research. 
Machine learning algorithms enhance the predictive accuracy of 
VS, enabling the identification of novel bioactive compounds 
with greater efficiency. Additionally, multi-omics data integration 
provides a more holistic view of aging processes, guiding the 
selection of drug targets and informing compound optimization4.

Through these diverse applications, virtual screening 
continues to revolutionize aging research by accelerating drug 
discovery and expanding our understanding of the molecular 
mechanisms underpinning aging. As the technology evolves, its 
role in developing effective anti-aging therapies will undoubtedly 
grow, offering new hope for addressing the challenges posed by 
an aging global population.

5. Challenges and Future Directions in Virtual 
Screening for Aging Research
5.1 Complexity and Diversity of the Aging Process

Aging is an intricate biological phenomenon resulting from 
the interplay of multiple molecular pathways, diverse cell types 
and complex biological networks. The heterogeneity of aging 
processes presents significant challenges for drug discovery and 
target identification. For instance, the rate and characteristics 
of aging differ markedly across tissues organs and individuals, 
introducing variability that complicates the design of universal 
therapeutic strategies. While certain tissues, such as the brain 
and cardiovascular system, exhibit pronounced vulnerability to 
age-related decline, others may demonstrate more resilience. 
These disparities arise from differences in metabolic activity, 
regenerative capacity and exposure to environmental stressors, 
among other factors.

Adding to the complexity, key signaling pathways implicated 
in aging, such as reactive oxygen species (ROS), AMPK and 
mTOR, may exhibit context-dependent or even contradictory 
functions. ROS, for example, can act as damaging agents at 
high levels, promoting oxidative stress and cellular damage, 
but they also serve as signaling molecules at physiological 
levels, triggering protective responses. Similarly, mTOR, which 
drives growth and protein synthesis, can be detrimental when 
hyperactivated in aging contexts but essential for tissue repair 
and immune responses in others. These dual and sometimes 
conflicting roles pose substantial challenges for precise targeting, 
requiring nuanced therapeutic approaches that balance activation 
and inhibition depending on the biological context.

Furthermore, the interdependence of aging-related pathways 
complicates drug design. Interventions targeting a single 
pathway may inadvertently affect others, potentially leading 
to unintended side effects or diminishing therapeutic efficacy. 
For example, inhibiting mTOR might promote autophagy and 
longevity but could simultaneously impair anabolic processes 
essential for tissue maintenance. This intricate network of 
interactions necessitates the development of multitarget 
strategies or pathway-specific modulation to achieve effective 
and context-appropriate outcomes.

5.2 Incompleteness and Bias in Biological Data

A significant obstacle in virtual screening for aging research 
is the incompleteness and bias inherent in existing biological 
data. High-quality, comprehensive datasets are essential for 
the accuracy and reliability of virtual screening models, yet 
substantial gaps remain in available information. For example, 

the coverage of three-dimensional protein structures in databases 
such as the Protein Data Bank (PDB) is far from exhaustive. 
Many aging-relevant proteins, particularly those with transient 
or intrinsically disordered regions, remain unresolved or poorly 
characterized, limiting the applicability of structure-based 
virtual screening (SBVS).

Moreover, the datasets used for ligand-based virtual 
screening (LBVS) are often derived from experimentally 
validated active compounds, which may not capture the full 
chemical or biological diversity of potential ligands. This 
reliance on historical data introduces biases that can skew 
screening results toward well-studied targets while neglecting 
less-explored but potentially critical pathways. Additionally, 
data quality issues, such as inconsistencies in experimental 
conditions, sample heterogeneity and reporting standards, 
further exacerbate inaccuracies and reduce reproducibility. For 
instance, compounds that show promising in silico results may 
fail during in vitro or in vivo validation due to discrepancies in 
binding affinity, bioavailability or toxicity.

Efforts to address these limitations include the expansion of 
databases to incorporate more comprehensive protein structures 
and diverse chemical libraries. Advances in experimental 
techniques, such as cryo-electron microscopy and AlphaFold, 
are beginning to close the structural gap by resolving previously 
inaccessible protein conformations. Concurrently, integrating 
multi-omics datasets, including proteomics, transcriptomics and 
metabolomics, can provide richer and more nuanced biological 
context for target selection and validation.

5.3 Model Interpretability and Practical Verification 
Difficulties

While virtual screening offers substantial efficiency 
advantages, the interpretability of its predictive models remains 
a critical limitation. The algorithms underlying virtual screening, 
including molecular docking and scoring functions, often fail 
to fully capture the complexities of molecular interactions. For 
example, current scoring functions primarily focus on estimating 
binding energy through simplified representations of van der 
Waals forces, hydrogen bonding and electrostatic interactions. 
These approximations, while computationally efficient, may 
overlook critical factors such as conformational dynamics, 
water-mediated interactions and allosteric effects, leading to 
false positives or false negatives in screening results.

Moreover, the transition from virtual predictions to 
experimental validation is fraught with challenges. Candidate 
compounds identified through virtual screening often encounter 
obstacles such as poor bioavailability, off-target effects 
and unexpected toxicity during in vitro or in vivo testing. 
These practical issues highlight the need for more robust and 
interpretable models that can better predict pharmacokinetic and 
pharmacodynamic properties, as well as potential side effects29.

To address these challenges, the integration of molecular 
dynamics simulations and advanced machine learning algorithms 
is being explored. Molecular dynamics can provide a more detailed 
understanding of ligand-protein interactions by simulating their 
behavior over time, offering insights into binding stability and 
conformational changes. Meanwhile, machine learning models 
trained on large datasets of experimental results can improve 
the predictive accuracy of scoring functions, particularly when 
applied to novel or poorly characterized targets.
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binding kinetics and stability. High-throughput screening (HTS) 
platforms can then be employed to validate these predictions in 
cell-based or biochemical assays, ensuring rapid and reliable 
evaluation of compound efficacy.

Emerging technologies such as microfluidics and organ-
on-a-chip systems offer additional opportunities for efficient 
validation. These platforms enable the testing of candidate 
compounds in physiologically relevant environments, bridging 
the gap between in vitro studies and in vivo applications. By 
incorporating these innovations, the virtual screening pipeline 
can be further optimized, reducing the time and cost associated 
with drug discovery.

6. Summary and Outlook
Virtual screening (VS) has emerged as a cornerstone in aging 

research, providing an indispensable computational approach for 
exploring the molecular mechanisms of aging and accelerating 
the development of anti-aging therapies. By targeting pivotal 
signaling pathways such as mTOR, SIRT1, AMPK and FOXO, 
VS has facilitated the discovery of numerous active compounds 
that delay aging-related cellular and systemic dysfunctions. 
These advancements not only pave the way for novel drug 
development but also contribute to a deeper understanding of 
aging as a dynamic and modifiable process. VS has transformed 
the traditional pipeline of drug discovery by integrating 
compound libraries such as ZINC and PubChem, along with 
structural databases like PDB and AlphaFold, to enable high-
throughput and precise identification of promising targets. This 
capability has reduced the timeline and cost associated with drug 
development, positioning VS as a key driver of innovation in the 
anti-aging field.

Despite its successes, VS in aging research faces significant 
challenges stemming from the inherent complexity of aging. 
Aging is governed by interconnected molecular networks 
involving multiple signaling pathways, epigenetic modifications 
and diverse cell types, all of which vary significantly across 
tissues and individuals. For instance, the roles of pathways 
such as ROS, AMPK and mTOR are context-dependent, often 
exhibiting dual or contradictory effects in different biological 
systems. This complexity complicates the identification of 
universal targets and necessitates a more nuanced approach to 
drug design. Additionally, the incomplete and biased nature of 
existing biological data poses a major hurdle. While databases 
like PDB and AlphaFold have expanded the accessibility of 
protein structure information, many critical targets remain 
unresolved or poorly characterized. Experimental datasets often 
suffer from variability in experimental conditions or sample 
sources, further exacerbating issues of reproducibility and 
predictive accuracy.

The predictive models underpinning VS also present 
limitations. Scoring functions, while central to molecular 
docking, frequently oversimplify the interactions between ligands 
and their targets. This can lead to false positives or negatives, 
resulting in wasted resources during experimental validation. 
Furthermore, current models often struggle to incorporate the 
dynamic and flexible nature of protein-ligand interactions, as 
well as the influence of cellular and systemic environments. The 
reliance on computationally intensive processes also limits the 
scalability of VS in scenarios requiring the integration of large 
compound libraries or high-resolution simulations.

5.4 Combination of Deep Learning and Virtual Screening

The integration of deep learning into virtual screening 
represents a transformative advancement, enhancing both 
accuracy and efficiency. Deep learning models, such as 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), excel at identifying complex patterns and 
relationships within large datasets. In the context of virtual 
screening, these models can be applied to tasks such as protein-
ligand docking, activity prediction and de novo molecule 
generation.

One notable application is the use of AlphaFold-predicted 
protein structures to optimize structure-based virtual screening 
campaigns. By providing high-accuracy models for previously 
unresolved targets, AlphaFold enables the screening of ligands 
against a broader range of proteins, including those with 
significant implications for aging. Additionally, generative 
adversarial networks (GANs) and variational autoencoders 
(VAEs) are being employed to design novel compounds with 
desired properties, expanding the chemical space available for 
anti-aging drug discovery.

Despite these advances, challenges remain in ensuring the 
interpretability and generalizability of deep learning models. 
Training these models requires extensive, high-quality datasets 
and their predictions must be validated through experimental 
studies to ensure real-world applicability. Future developments 
in explainable AI and transfer learning may help address these 
issues, enabling more reliable and actionable insights6.

5.5 Aging Drug Discovery Driven by Multi-Omics Data

The advent of multi-omics technologies, encompassing 
genomics, transcriptomics, proteomics and metabolomics, has 
revolutionized aging research by providing a systems-level 
understanding of molecular processes. Integrating these datasets 
with virtual screening offers unprecedented opportunities to 
identify novel drug targets and intervention strategies.

For example, transcriptomic analyses can reveal age-related 
changes in gene expression, highlighting pathways that may 
be amenable to therapeutic modulation. Proteomic studies can 
further elucidate post-translational modifications and protein-
protein interactions that drive aging processes. Metabolomics, 
meanwhile, can provide insights into metabolic shifts associated 
with aging and identify small molecules that may restore 
homeostasis.

By combining these data streams, researchers can construct 
comprehensive models of aging networks, enabling the 
identification of key nodes and hubs for targeted intervention. 
Virtual screening can then be applied to identify compounds that 
modulate these targets, accelerating the translation of omics-
based insights into therapeutic candidates.

5.6 Efficient Integration of Virtual Screening and 
Experimental Validation

The seamless integration of virtual screening with 
experimental validation is essential for realizing its full potential 
in anti-aging drug development. Rational screening workflows 
should prioritize high-confidence candidates for validation, 
leveraging advanced computational techniques to refine 
predictions and reduce experimental burden10.

Molecular dynamics simulations, for instance, can 
complement docking studies by providing detailed insights into 
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To address these challenges, future developments in VS will 
need to prioritize several key areas. The integration of deep 
learning technologies holds immense promise for improving 
the accuracy and scalability of virtual screening. By leveraging 
neural networks, VS can predict compound-target interactions 
with higher precision, even in cases involving highly dynamic 
or poorly characterized targets. Deep learning models can also 
assist in generating novel molecular structures and exploring 
vast chemical spaces, enabling the discovery of innovative 
compounds with anti-aging potential. For example, the use of 
AlphaFold’s predicted protein structures in conjunction with 
advanced deep learning algorithms could revolutionize structure-
based VS by enhancing the quality of docking predictions.

The incorporation of multi-omics data-spanning genomics, 
transcriptomics, proteomics and metabolomics-represents 
another critical frontier. Multi-omics approaches can uncover 
the dynamic changes in molecular networks during aging, 
providing a comprehensive framework for identifying and 
validating therapeutic targets. For instance, transcriptomic data 
highlighting age-related changes in gene expression can guide 
the prioritization of targets for intervention, while metabolomic 
analyses can reveal potential biomarkers for evaluating drug 
efficacy. Integrating these datasets with VS workflows will 
allow researchers to tailor drug discovery efforts to the complex, 
multifactorial nature of aging.

Moreover, the efficient integration of VS with experimental 
validation will be crucial for translating computational 
predictions into actionable therapies. Advances in molecular 
dynamics simulations can refine docking results by accounting 
for protein flexibility and solvent effects, improving the reliability 
of hit compounds. High-throughput experimental techniques, 
such as high-content screening and mass spectrometry, will 
further accelerate the validation of candidate molecules. These 
experimental platforms can also provide feedback to refine 
VS models, creating a synergistic cycle that enhances both 
computational predictions and empirical outcomes.

Another promising avenue is the development of multitarget 
drugs that address the multifaceted nature of aging. Aging 
involves the simultaneous dysregulation of multiple pathways 
and therapies targeting a single mechanism are often insufficient. 
By designing compounds that modulate multiple pathways-such 
as mTOR inhibition coupled with AMPK activation-researchers 
can develop interventions that provide more robust and holistic 
benefits. Advances in computational methods, including network 
pharmacology and systems biology approaches, will enable the 
rational design of these multitarget agents4,24-28.

In addition to methodological advancements, the expansion 
and refinement of supporting databases will play a pivotal role 
in the future of VS. Databases that integrate comprehensive 
information on aging biomarkers, experimental validation 
results and clinical trial outcomes will enhance the reliability 
and relevance of VS predictions3.

Cloud-based computing platforms, offering scalable and 
high-performance computational resources, will further support 
large-scale VS campaigns, enabling the efficient screening of 
ultra-large virtual libraries containing billions of compounds.

As these technologies and methodologies converge, VS 
is poised to remain at the forefront of aging research, driving 
innovations that not only elucidate the molecular basis of 

aging but also accelerate the development of precise, effective 
interventions. By addressing the challenges of complexity, 
data quality and translational validation, VS can help bridge 
the gap between basic research and clinical application. This 
will ultimately enable the development of therapies that extend 
health span, mitigate age-related diseases and improve the 
quality of life for an aging global population. The future of VS 
in aging research is one of immense potential, marked by the 
promise of transformative breakthroughs in our understanding 
and management of the aging process1.
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