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 A B S T R A C T 
In a time of instantaneous decision making, streaming data has become an essential tool for customer analytics. The reality 

is that organizations can leverage real-time insights if they can make sense of the vast, fast data coming from digital and social 
platforms, IoT devices, and transactional systems. However, making the best use of this data requires machine learning (ML) 
models that are both accurate and interpretable. As soon as explainable artificial intelligence (XAI) started to gain traction, 
demand for models able to provide interpretability and justifiability increased even further, particularly in consumer-facing 
domains characterized by a high degree of reliance on trust, fairness, and regulation. We present a framework for explainable 
customer analytics in streaming systems, based on the use of interpretable machine learning models. In contrast to traditional 
batch-learning techniques, our method focuses on low-latency prediction, model adaptability, and human-understandable 
insights for streaming data.

Chapter 2 explains the following customer analytics tasks: churn prediction, segmentation, personalization, lifetime value 
estimation, and the challenges associated with real-time data processing. We consider recent interpretable ML approaches, such 
as decision trees, rule-based classifiers, monotonic gradient boosting, and model-agnostic post-hoc explanations (e.g., LIME and 
SHAP). These approaches are analysed in terms of their suitability for streaming architectures and computational complexity. 
The paper concludes with a data engineering pipeline implemented on top of Apache Kafka and Apache Flink, which collects and 
preprocesses an online training dataset, then serves real-time data to the lightweight, interpretable models. We also use concept 
drift detection techniques to ensure the model’s relevance over time.

To verify the proposed method, we conducted experiments using publicly available customer data and a simulation of 
streaming with augmented customer data. The performance of models is evaluated not only on prediction accuracy, but also 
on interpretability measures, including model fidelity, coverage, and stability. The findings indicate that tree-based models 
supplemented with SHAP explanations achieve an acceptable trade-off between (real-time) performance and interpretability. We 
also discuss case studies where the model recommendations are transformed into business actions, such as delivering retention 
incentives or updating product recommendations, and demonstrate how interpretability strengthens trust among stakeholders 
and enhances operational efficiency.

Although we leave these studies out of scope, in these works, ethical and regulatory considerations of nontransparent ML 
(including in the case of customer analytics in GDPR, CCPA, and the future AI Act) are considered in detail. Explainability 
enables organizations to provide customers with meaningful explanations for automated decisions, thereby mitigating legal risk 
and enhancing the acceptance of AI-driven insights.

A roadmap is developed to describe how to integrate explainable machine learning with enterprise-level customer analytics 
platforms. We provide guidance on model selection, explanatory tools, streaming processing infrastructure, and organizational 
governance. Our results suggest that a shift from black-box optimization to a more transparent and responsible AI in customer 
analytics is warranted when decisions have a significant impact on consumer experience and loyalty.
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1. Introduction
Customer analytics today are essential to business 

intelligence, providing organizations with the ability to interpret, 
predict, and react to customer actions with unparalleled 
accuracy. Industries, from e-commerce to telecom, banking, and 
healthcare, are increasingly relying on customer data in real-time, 
not as a competitive differentiator, but as a fundamental part of 
their business processes. The explosion of data size, speed, and 
types, thanks to omnipresent connectivity, mobile apps, social 
media, and device sensors, has transformed customer data into a 
continuous stream of events that must be processed in real-time. 
Organisations are turning to streaming data platforms to record 
insights that are not only precise and actionable but also timely.

Figure 1: Distribution of customer data sources.

However, real-time processing presents its own set of 
challenges, different from those of batch analytics. The models 
in such edge installations have to be low-latency while adapting 
to concept drift and changing trends. Even more crucial, the 
opaque nature of various high-performing machine learning 
(ML) models poses perils when used for customer-facing 
decisions. In domains where predictions drive credit approval, 
personalized pricing, product recommendations, and customer-
service prioritization, this feature is not merely a nice-to-have; 
it is a mission-critical requirement. Public trust is crucial in the 
business, and customers, regulators, and stakeholders within the 
organization itself all demand transparency, particularly when 
the algorithms in question have significant implications. This 
request has sparked a surge in interest in Explainable Artificial 
Intelligence (XAI) and Interpretable Machine Learning (IML).

Explainability in ML concerns the ability of a model to 
make its predictions interpretable to humans. Models such as 
decision trees, logistic regression, and rule-based classifiers 
are inherently interpretable. However, such models often fail 
to perform as well as more complex models, such as deep 
neural networks or ensemble methods. To balance the trade-
off between accuracy and interpretability, post-hoc explanation 
methods, such as LIME (Local Interpretable Model-agnostic 

Explanations) and SHAP (Shapley Additive exPlanations), have 
been proposed to provide local explanations of predictions made 
by any non-transparent model. Although these methods have 
been successful in the offline and batch analytics setting, they 
are still relatively new to streaming data.

Explainability becomes more complicated for streaming 
data because it is temporal and data distribution changes 
over time (concept drift), and there may be a requirement for 
quick responses. Delivering explanations in real-time entails 
more than a practical model application, as it also involves 
scalable infrastructure for on-the-fly explanations. Additionally, 
preserving interpretability at scale requires a balance of efficient 
models, clever sampling, and effective caching tactics. In heavily 
regulated industries, explanations must satisfy legal requirements 
to act in a transparent, fair, and non-discriminatory manner under 
laws such as the General Data Protection Regulation (GDPR), 
the California Consumer Privacy Act (CCPA), and the EU’s 
proposed AI Act.

In this paper, we examine the use of Interpretable Machine 
Learning for streaming customer analytics. To that end, it 
introduces Easy Kubeflow - a modular framework for real-time 
data ingestion, stream processing, model inference, and post-hoc 
explainability, integrated into a single pipeline. The framework 
uses open-source technologies, including Apache Kafka for 
message queuing and Apache Flink for stream computation. 
It is suited for both native interpretable models and black-
box models with explanation layers. The pipeline features 
mechanisms to detect and accommodate concept drift, ensuring 
that explanations remain valid as customer behavior evolves.

This work has three contributions. It makes three novel 
contributions to the state of the art, which are as follows: First, 
it surveys interpretable ML algorithms suitable for customer 
analytics in streaming technology. Second, it offers a realistic use 
case with an end-to-end pipeline whose deployment enables us to 
maintain explainability without sacrificing latency or scalability. 
Finally, it presents empirical findings on both synthetic and 
realistic customer datasets, confirming the method’s feasibility 
and utility. Supported by technical alignment with both 
regulatory and business requirements, the suggested framework 
serves as a blueprint for organizations that need to operationalize 
explainable AI in customer-facing systems.

The rest of this paper is organised as follows: Section II 
reviews the related work in explainable ML and Streaming 
Analytics. Section III describes our proposed methodology, 
which consists of data architecture, model, and explanation. 
Section IV discusses experimental results. Section V presents 
the discussions of the results, and Section VI concludes with a 
future outlook and practical deployment implications.

Integrating interpretability into the real-time analytics lifecycle enables businesses to ensure that customer strategies are not 
only more effective but also ethical and responsible. This paper adds to the emerging body of work in trustworthy AI and offers 
a hands-on blueprint for implementing explainable ML in fast-moving, customer-centric data contexts.

Keywords: Explanable AI (XAI), Interpretable Machine Learning, Customer Analytics, Streaming Data, Real-time ML, SHAP, 
LIME, Apache Kafka, Apache Flink, Concept Drift, Responsible AI, Model Transparency, Customer Behavior Prediction, GDPR 
Compliance, Data Stream Mining
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2. Literature Review
The intersection of explainable artificial intelligence (XAI), 

customer analytics, and streaming data has gained significant 
momentum in recent years. Traditionally, customer analytics 
has focused on batch-processing models that use historical 
data to derive insights for segmentation, churn prediction, 
and personalization. However, the transition toward real-
time analytics has introduced new demands in terms of both 
computational efficiency and model interpretability. This section 
reviews foundational research and current advancements in 
explainable machine learning, streaming data architectures, and 
their application in customer-facing environments.

1. Foundations of Interpretable Machine Learning

The field of interpretable machine learning is built upon 
early models such as decision trees, rule-based classifiers, and 
generalized linear models, which offer intrinsic explainability. 
Breiman’s Classification and Regression Trees (CART) [1] laid 
the foundation for human-readable decision-making models, 
while logistic regression remained a staple in binary classification 
due to its clear coefficient interpretation. However, the limited 
expressiveness of these models prompted the development of 
ensemble techniques, such as Random Forests and Gradient 
Boosted Trees, which often outperform interpretable models but 
at the cost of transparency.

To address this issue, Ribeiro et al. introduced LIME, a model-
agnostic explanation method that builds local surrogate models 
to approximate the behavior of black-box models [2]. Shortly 
thereafter, Lundberg and Lee proposed SHAP, a game-theoretic 
approach that attributes feature contributions based on Shapley 
values [3]. These tools have since become cornerstones of XAI 
and are widely adopted in production environments due to their 
balance between interpretability and performance. Moreover, 
Rudin [4] emphasized the importance of using inherently 
interpretable models rather than post hoc explanations for high-
stakes decisions, especially in domains such as healthcare and 
finance.

2. Real-Time Customer Analytics and Streaming Platforms

The growth of digital engagement, social media, and 
connected devices catalyzed the paradigm shift toward real-
time customer analytics. Apache Kafka [5] emerged as a 
reliable platform for high-throughput event streaming. At the 
same time, Apache Flink [6] and Apache Spark Streaming [7] 
offered capabilities for low-latency stream processing with 
fault tolerance and scalability. These systems support the real-
time ingestion and transformation of customer data, including 
clickstreams, transactions, and session logs.

Streaming architectures also necessitate reconsideration of 
traditional ML workflows. Karmel and Toshniwal [8] introduced 
the idea of stream-native ML pipelines, emphasizing lightweight 
inference and incremental updates. To maintain model 
effectiveness over time, researchers proposed drift detection 
mechanisms such as ADWIN [9], which enable adaptive 
learning in non-stationary environments. These streaming-
native techniques are especially critical for customer analytics, 
where preferences and behaviors evolve rapidly.

3. Explainability in Streaming Contexts

Despite the proliferation of XAI tools, their integration 

into streaming data pipelines remains limited. Explainability 
frameworks, such as SHAP and LIME, were initially designed 
for batch contexts and are computationally expensive when 
applied at scale. Recent studies have attempted to adapt these 
techniques to real-time settings. Hall, et al. [10] proposed a 
scalable implementation of SHAP using GPU acceleration to 
enable near-real-time explanations. Others explored hybrid 
models that balance speed and interpretability, such as rule-
augmented ensembles [11].

In practical deployments, XAI has been used to explain 
churn predictions, personalize marketing offers, and justify 
credit risk assessments. For instance, Binns, et al. [12] evaluated 
user trust in algorithmic decisions and found that explanations 
significantly improve transparency and customer satisfaction. 
Furthermore, legal compliance mandates, such as the GDPR’s 
“right to explanation” [13], have compelled organizations to 
reassess their use of opaque models, particularly in consumer 
interactions.

4. Regulatory and Ethical Considerations

The ethical use of AI in customer analytics has come under 
scrutiny due to algorithmic bias and a lack of transparency. 
Wachter, et al. [13] examined the interpretability mandates in 
GDPR, suggesting that organizations must be able to provide 
meaningful, actionable explanations when decisions impact 
consumers. Similarly, the upcoming EU AI Act [14] is expected 
to impose stricter standards for high-risk AI applications, 
including those involving financial or behavioral profiling. These 
developments underscore the necessity for interpretable models 
in customer analytics pipelines, especially when streaming data 
leads to automated interventions.

3. Methodology
To propose an explainable customer analytics framework 

with interpretable machine learning in a streaming data scenario, 
we take a tiered approach that includes real-time data ingestion 
and stream processing, model training and inference, integration 
of explainability, and adaptation to concept drift. The ultimate 
goal is not only that the machine learning outputs are available 
on time and with appropriate accuracy, but also that they are 
understandable to human decision-makers and meet regulatory 
requirements. The approach is to deploy an operational 
architecture that responds to events in motion from customers 
and generates actionable results that can be justified and acted 
upon with minimal delay.

The first part of the approach focuses on implementing the 
real-time data pipeline. Apache Kafka serves as the backbone 
for data ingestion, collecting customer-centric events such 
as transactions, website behavior, support tickets, mobile 
interactivity, and sensor readings from distributed systems. 
These events are further serialized to Avro in Kafka topics, where 
topics now enforce a schema. Every customer session is stamped 
with metadata, including session IDs, timestamps, geolocations, 
and channel indicators. High availability and horizontal 
scalability are made possible with the Kafka partitioning and 
replication mechanism, both of which are necessary functions 
for maintaining low-latency processing under load conditions.

Then, Apache Flink is used as the stream processing engine. It 
performs in-flight data enrichment (such as building the customer 
feature vector and joining behavioral signals with static profiles, 
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which can be stored in Redis or Cassandra, etc.). It calculates 
real-time aggregations (e.g., recent purchase frequency, number 
of support queries, or browsing depth). Flink’s event-time 
stream processing and windowing capabilities provide support 
for sophisticated temporal analytics that are resilient to out-of-
order and late data. This element ensures the temporal alignment 
and context relevance of ML features.

After the features are created, they are input to the light 
interpretable ML models served by a model serving layer, 
MLFlow model serving. The model is offline trained with 
historical data but re-trained with periodic micro-batches 
to capture more recent patterns. The main models used are 
(monotonic) decision trees and (monotonic) gradient boosting 
models, such as Explainable Boosting Machine (EBM), with 
built-in interpretability and exemplary performance in tabular 
data. The EBMs, which are implemented as an integral part of 
Microsoft’s Interpret ML library, are transparent models in that 
feature effects are structured in additive, easy-to-interpret plots. 
These models are serialized and exposed as REST endpoints to 
score streaming feature vectors.

Intrinsic explanation approaches, such as model 
interpretability, are employed, and the framework also involves 
post hoc interpretability. SHAP values are computed for each 
model prediction on the fly with optimized tree explainer 
implementations that leverage the structure of ensemble models 
to perform a fast sum of values decomposition. The solution 
includes a caching mechanism that saves explanation templates 
for previously seen inputs, significantly reducing computational 
overhead. SHAP values enable the reproducible expression 
of even complex feature contributions to a prediction, which 
are often presented as part of a dashboard to be consumed by 
a business user or served in an API, that becomes part of a 
customer-facing notification.

With its evolving customer behaviour, the methodology 
incorporates concept drift detection through the Adaptive 
Windowing (ADWIN) algorithm. Incoming predictions are 
observed on actuals; this temporal evolution of distributional 
change is quantified. Retraining pipelines are automatically 
initiated if substantial drift is detected. The retrained models 
are versioned and registered in MLFlow along with metadata 
about their performance, training window, and top features. 
This ensures the trackway and reproducibility of the predicted 
behaviors over time.

Data protection and ethical standards are integrated at every 
step. Tokenization is applied to protect PII prior to model training. 
The framework applies feature audit to identify potential sources 
of bias, that is, proxied for protected attributes. It also features 
customizable feature attribution thresholds (including varying 
explanation fidelity based on user access level or business 
importance).

We conclude the methodology with a unified dashboard that 
provides analysts, product managers, and compliance officers 
with instant visibility into user segments, model outputs, and 
the rationale behind every prediction. Additionally, the system 
allows for capturing feedback from customer service agents 
to confirm or override model decisions, creating a human-
in-the-loop feedback loop that enhances both accuracy and 
explainability.

Through this holistic approach, we enable operational 
scalability and maintain interpretability, fairness, and 
transparency. It provides the groundwork for utilizing trusted AI 
in customer analytics scenarios, where both trustworthiness and 
latency are equally important.

4. Results
We evaluated the application of our XCA framework in terms 

of predictive performance, explanation fidelity, system latency, 
and user interpretability. To mimic a real-world streaming 
environment, a stream of customer events was ingested through 
Apache Kafka, and the data was processed in real-time with 
Apache Flink. For this experiment, we utilized a publicly 
available dataset on customer behavior, specifically the Online 
Retail II dataset (from the UCI Machine Learning repository), 
in which we simulated a customer’s daily activity by generating 
time-stamped clickstreams (product views, adds to cart, and 
purchases) and transaction events at regular intervals. We infuse 
synthetic drift halfway through to test how robust the models 
and explanations are to shifting behaviors.

Initially, two model types were employed: a simple decision 
tree classifier and a monotonic Explainable Boosting Machine 
(EBM). In both models, a binary prediction target was trained to 
determine whether a customer would churn within the following 
interaction window. Feature inputs included the recency of the 
last purchase, the number of support requests, the average basket 
value, and behavioral metrics such as click depth and session 
length. The two models had similar AUC-ROC scores on pre-drift 
data: EBM (0.82) and decision tree (0.78). The post-hoc SHAP-
enhanced explanations were used for the EBM predictions in 
feature importance analysis, aiming at interpretability.

The deployed models were then tested for latency in 
inference on a stream. The decision tree achieved a steady 4 ms 
per prediction, while the EBM, which is more computationally 
intensive, maintained an average of under 10 ms per prediction. 
The computation of SHAP values added 15-20 ms per example 
when implemented in a real-time fashion. With the introduction 
of caching of frequent feature patterns and template explanation, 
this overhead was reduced by 35%. In this way, end-to-end 
prediction and explanation were achieved under 40 ms, the 
acceptable limit for real-time recommendation systems.

Interpretability metrics were also assessed. The fidelity 
of explanations, captured by how much the local surrogate or 
the attribution method’s explanation approximates the actual 
behavior of the model, was assessed with a perturbation-based 
consistency test. SHAP explanations maintained a high fidelity 
score (0.92) over our streaming windows, also surpassing 
LIME’s 0.86. The consistency of explanations for similar 
examples was found to be highly important for user trust and 
was scored higher for EBMs due to their additive property. 
When only input features were slightly disturbed (e.g., slight 
variations in basket value), SHAP explanations still consistently 
attributed importance to core behavioral drivers, such as session 
recency and support inquiry count.

To assess the operational impact of explanations, a human-
in-the-loop simulation was conducted with 15 business analysts. 
Subjects were presented with several predictions and asked to 
rank the clarity of the explanations produced by the system. 
SHAP-enhanced visualizations with EBMs were rated more 
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positively by the analysts (mean grading score: 4.5 out of 5) than 
decision trees with raw feature paths (mean grading score: 3.7). 
These insights could then could be identified by participants such 
as detecting when a customer was at high risk of churn because 
of a recent decline in engagement metrics and associating these 
insights to specific retention tactics.

Figure 2: Explanation of fidelity scores by method.

The system’s capacity to process concept drift was also 
verified. Precisely 30 minutes into the simulated streaming, 
we transitioned to a change point (simultaneously in both the 
overview implicit feedback and the customer engagement): 
customers started to browse more and buy less. The ADWIN-
based drift detection method caused the model to retrain 
automatically, resulting in a 7% increase in post-drift AUC-ROC. 
Furthermore, explanation switches were monitored, and changes 
in main features, including historical buying frequency, session 
duration, and browsing depth, were observed. Such transparency 
allowed business teams to course-correct in the moment by 
adjusting campaign strategies and focusing more on engagement-
based outreach than transactional follow-up (committed to the 
prospect).

Finally, a comparison benchmark was also performed against 
a vanilla batch-trained XGBoost model with no explanation 
layer. The XGBoost model had a slightly higher AUC-ROC 
(0.84), though it did not meet latency requirements (avg. 75 ms) 
and provided no inherent interpretability. In real-world scenarios, 
business stakeholders were hesitant to take action based on 
opaque predictions without context, which further underscored 
the need for explainability in customer analytics pipelines.

Our findings demonstrate that an interpretable framework not 
only achieves competitive prediction and streaming efficiency 
compared to black-box models but also provides clear, human-
readable insights to inform strategic decision-making in various 
customer-centric functions.

5. Discussion
Our findings in this paper validate the feasibility and Strategic 

value of utilizing interpretable machine learning techniques in 
streaming customer analytics pipelines. Moreover, as companies 
make more use of real-time data to affect customer decisions that 
can range from personalization in marketing to fraud warnings, 
the need for explainability goes beyond academic questioning 
to something you can hang an industry on. Results: The results 
highlighted several key issues related to the task of human-
centered explanation, including the trade-off between prediction 
and interpretability, the architectural decisions necessary for 
time-sensitive systems, and the practical implications of human-
centered explanations.

A central insight of evaluating the model is that the 
interpretability of the model need not be traded off against 

performance. Although black-box models, such as XGBoost 
and neural networks, can potentially provide slightly better 
predictive scores, interpretable models, like EBMs, when 
appropriately tuned to the customer analytics domain, can achieve 
comparable performance. Furthermore, such models generate 
actionable insights as their output. Business users examining 
churn predictions or customer lifetime value predictions do 
not just care if the output is accurate knowing why a specific 
prediction was made and the ability to act on it to improve the 
outcome in a meaningful way is the most that can be asked of 
them. Under such a setting, EBMs offer an interpretable and 
additive decomposition of features, and SHAP values provide 
instance-level explanations that can be used to induce trust and 
accountability.

In addition, the combination of SHAP with streaming 
data imposed unique challenges that were resolved through 
system-level improvement. Explanation algorithms for real-
time interpretability need to be computationally efficient and 
incrementally responsive. The latency of SHAP calculations was 
addressed by precomputing explanation templates for the most 
common feature vectors and caching high-volume patterns. 
This demonstrates that explanation layers can be implemented 
without compromising performance compared to standard 
stream-processing systems.

The mechanism that enables these models to adapt to concept 
drift, facilitated by Audio ADWIN, is also crucial in maintaining 
the long-term performance and credibility of the models. 
Specific customer behaviors are naturally dynamic; changes 
in season, economic conditions, or the actions of competitors 
can instantly alter a customer’s behavior, affecting the usage of 
products or services. The capability to both analyze and respond 
to such changes in near real-time is what makes both these 
predictions and their explanations always up-to-date. Further, 
explanation attribution tracking (e.g., feature dominance change) 
amplifies interpretation. For example, if a sudden increase in 
the significance of browse depth suggests purchase intent is 
decreasing, the marketing teams may want to re-engage.

Figure 3: Feature attribution shift due to concept drift.

An additional important result is the improved decision 
support provided internally. Visual explanation dashboards 
were used by analysts to quickly interpret predictions, identify 
customer segments based on dominant features, and explain 
predictions to non-technical stakeholders. This democratization 
of AI insights helps resolve a long-standing obstacle to enterprise 
AI adoption: the gulf between technical model outputs and 
business user comprehension. Through the synchronization 
between model reasoning and domain knowledge, the approach 
leverages human-machine collaboration for decision-making 
and mitigates resistance to automation.
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The study also considers regulatory compliance aspects. 
Under specific regimes, such as the GDPR or the EU’s upcoming 
AI Act, not only is it a best practice, but also the ability to 
provide a meaningful explanation for automated decisions is 
a legal requirement. The interpretability of this framework 
contributes to satisfying obligations of transparency, fairness, 
and non-discrimination. The tokenized PII, bias audit, and 
explanation access control policies employed by the system also 
reinforce responsible AI principles. For companies that operate 
in highly regulated industries, such as finance or healthcare, this 
schema establishes the foundation for secure and prudent AI 
implementation.

Finally, the trade-offs presented in this work have implications 
for future development. Interpretable models that provide 
transparency may, however, be less effective in dealing with 
complex feature interactions or high-dimensional data. Post hoc 
approaches to explanations, such as SHAP, can help address this 
gap; however, they should be implemented carefully as part of a 
stream processing system. Future work may investigate hybrid 
modeling techniques that combine interpretable core models with 
auxiliary black-box modules within the bounds of explanation. 
Furthermore, user studies investigating end-consumer responses 
to explanations can provide a more comprehensive picture of 
why and how interpretability affects trust, satisfaction, and 
behavioral change.

Above all, the conversation highlights that explainability is 
not just a technical characteristic; it is a business imperative for 
customer analytics in the age of the cloud and real-time. The 
combination of explainable ML, scalable stream infrastructure, 
and considered system design enables companies to offer 
AI-driven experiences that are both intelligent and interpretable.

6. Conclusion
We have introduced an end-to-end framework for 

explainable customer analytics in a streaming data scenario 
through interpretable machine learning models. In an era where 
organizations are being challenged to make decisions in real-
time based on data and be transparent and ethical in doing 
so, the convergence of streaming analytics and explainable 
AI has become more than just a fundamental need; it is a 
strategic opportunity. By thoughtfully combining a framework 
that involves interpretable models, real-time processing 
infrastructure, and post-hoc explanation methods, we believe 
this work represents a positive first step toward reconciling 
transparency with performance in today’s customer analytics.

The study also demonstrated that transparent models, such 
as decision trees and Explainable Boosting Machines, can 
achieve high predictive performance while maintaining a level 
of interpretability. Whether used in partnership with optimized 
SHAP value calculations or on their own, these models allow 
businesses to not only accurately predict customer behavior but 
also communicate the “why” behind the prediction as it happens. 
This directly benefits marketing, sales, and support teams that 
rely on AI insights to execute actions such as sending retention 
offers, processing credit approvals, and prioritizing services.

The use of interpretable machine learning models in a 
high-throughput streaming setting, utilizing Apache Kafka and 
Apache Flink in the data pipeline, succeeds as expected, serving 
as implicit evidence of the feasibility of interpretable models 

in this context. While Kafka was responsible for providing 
fault-tolerant, high-throughput data ingestion, and Flink was 
responsible for supporting complex stateful computations, 
the system demonstrated responsiveness even with real-time 
explanation layers on top of it. Experiments based on the study 
demonstrate that combining interpretable models with stream 
processing can meet the high timing requirements of real-time 
decision support systems without compromising the quality of 
the predicted insights.

One key reason is that this work focuses on dynamical 
adaptability. Concept drift detectors are installed by default in 
the models to continuously adapt to changing customer behavior 
patterns, which is so important for dynamic business landscapes. 
Most importantly, the ability to track model performance, not 
only in terms of predictive performance but also in terms of 
shifts in model explanations, allows companies to understand 
how and why customer drivers are changing over time. This 
meta-insight is crucial for refining strategy and identifying 
emerging customer trends and pain points early.

A related strength of the proposed framework is that it aligns 
with the prevailing ethical and regulatory climate. Laws such as 
GDPR, CCPA, and the soon-to-come EU AI Act are mandating 
the importance of explainable AI, and the ability of this system 
to generate transparent, meaningful, and usable explanations 
directly enables regulatory readiness. Should that happen, the 
use of PII safeguards, bias audits, and explanation audit logs 
guarantees that AI-informed decision-making remains lawful 
and accountable.

This work also describes a feedback loop with a human in the 
loop, where call center agents can confirm, reject, or comment on 
the model prediction. This development both makes the model 
more accurate and interpretable over time, while it builds user 
confidence and involvement. Connecting algorithmic reasoning 
with human judgment enables a more holistic and responsible 
model of AI-aided operational decision-making in customer 
operations.

Our work can be built upon by investigating hybrid models 
that combine both interpretable and opaque models, which 
switch between these dynamics based on sensitivity to context 
or business needs. Moreover, more exhaustive user studies can 
contribute to a better understanding of the psychological effects 
and behavioral changes in customers and internal users, generated 
by diverse explanation formats. Natural language generation 
(NLG) methods for generating explanation summaries and 
model concept implications through knowledge graph fusion 
may lead to greater interpretability for non-experts.

Regarding the study’s results, we can conclude that 
interpretability in a streaming data environment is technically 
feasible and potentially beneficial. The recommended model 
not only enhances real-time customer understanding and 
actionability but also paves the way for responsible AI 
applications across various industries. As companies work to 
align advanced analytics with ethical practices, the ability to 
explain not merely predict customer behavior in real-time will 
be the hallmark of an ethical data system.
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