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 A B S T R A C T 

Anomaly detection plays a crucial role in identifying potential cybersecurity threats. While machine learning models have 
demonstrated impressive detection capabilities, their "black-box" nature often hinders security analysts' understanding and 
decision-making. This research addresses the challenge of explainable anomaly detection in cybersecurity by developing and 
evaluating machine learning models that provide transparent and actionable explanations for their predictions. We investigate 
various explanation techniques, such as feature importance, counterfactual explanations, and rule-based explanations, to 
determine their effectiveness in assisting security analysts in understanding and responding to anomalies. Through comprehensive 
experiments and user studies with security analysts, we assess the impact of explainable AI on threat investigation and incident 
response processes. Our findings highlight the potential of explainable anomaly detection to improve both the efficiency and 
accuracy of security operations, ultimately enhancing cybersecurity resilience. This research contributes to the growing field of 
explainable AI in cybersecurity and offers practical solutions to bridge the gap between machine learning models and human 
decision-makers.
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1. Introduction
The ever-evolving landscape of cyber threats poses a 

significant challenge to modern organizations, necessitating 
sophisticated defenses to safeguard critical digital assets. 
Anomaly detection has emerged as a pivotal component in 
cybersecurity strategies, aiming to identify unusual patterns 
or behaviors that deviate from established norms, thereby 
signaling potential security breaches or malicious activities. 
Machine learning (ML) models have revolutionized anomaly 
detection by enabling the automated analysis of vast volumes 
of data, uncovering subtle anomalies that might elude human 
scrutiny. However, the inherent “black-box” nature of many ML 
models presents a critical obstacle to their widespread adoption 
in cybersecurity operations.

The lack of transparency in these models hinders security 
analysts’ ability to understand the reasoning behind anomaly 
flags, thus impeding effective decision-making and incident 
response. Explanations are crucial for analysts to assess 
the severity and nature of detected anomalies, prioritize 
investigations, and develop appropriate mitigation strategies. 
Without clear explanations, analysts may struggle to differentiate 
true positives from false positives, leading to wasted resources 
and potential delays in addressing critical threats.

Explainable AI (XAI) offers a promising solution to this 
challenge by aiming to make ML models more transparent and 
interpretable. By providing human-understandable explanations 
for model predictions, XAI can empower security analysts with 
actionable insights, enhancing their ability to make informed 
decisions and respond effectively to detected anomalies. The 
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integration of XAI into anomaly detection systems holds the 
potential to transform cybersecurity practices, fostering a greater 
understanding of security threats and enabling more efficient 
and targeted mitigation efforts.

This research delves into the application of explainable 
AI for anomaly detection in cybersecurity, with the primary 
goal of enhancing security analyst decision-making. We 
explore a variety of explanation techniques, such as feature 
importance, counterfactual explanations, and rule-based 
explanations, to determine their effectiveness in assisting 
analysts in understanding and responding to anomalies. Through 
comprehensive experiments and user studies, we evaluate the 
impact of explainable anomaly detection on threat investigation 
and incident response processes. This work contributes to the 
growing body of research on XAI in cybersecurity and provides 
practical solutions to bridge the gap between machine learning 
models and human decision-makers, ultimately strengthening 
cybersecurity defenses.

2. Background and Related Work
2.1. Anomaly detection in cybersecurity

Anomaly detection plays a crucial role in identifying 
potential cybersecurity threats by detecting patterns or events 
that deviate from established norms within a system or network. 
Traditional rule-based approaches, while effective for known 
attack patterns, struggle to adapt to the constantly evolving 
threat landscape. Machine learning (ML) models have emerged 
as powerful tools for anomaly detection, leveraging their ability 
to learn from vast amounts of data and identify subtle anomalies 
that may elude human experts.

Various ML techniques have been successfully applied to 
anomaly detection in cybersecurity, including:

•	 Supervised Learning: Algorithms like Support Vector 
Machines (SVMs) and Random Forests are trained on 
labeled data to classify events as normal or anomalous. 
However, the reliance on labeled data can be a limitation in 
cybersecurity, where new attack types constantly emerge.

•	 Unsupervised Learning: Techniques like Clustering 
and Isolation Forests identify anomalies based on their 
deviation from the norm in unlabeled data. These methods 
offer greater flexibility for detecting unknown threats but 
may suffer from higher false positive rates.

•	 Deep Learning: Deep neural networks, such as 
Autoencoders and Variational Autoencoders, can learn 
complex representations of normal behavior and detect 
anomalies as deviations from these learned patterns. While 
powerful, their black-box nature poses a challenge for 
interpretability.

2.2. Explainable AI (XAI)

Explainable AI (XAI) is a field of research focused on developing 
AI systems that can provide transparent and understandable 
explanations for their decisions. It addresses the need for 
transparency and trust in AI models, particularly in high-stakes 
domains like cybersecurity. Various XAI techniques have been 
proposed, including:

•	 Feature Importance: Methods like SHAP (SHapley 
Additive exPlanations) and LIME (Local Interpretable 
Model-Agnostic Explanations) quantify the contribution of 

each feature to a model’s prediction, highlighting the most 
influential factors.

•	 Counterfactual Explanations: These techniques generate 
hypothetical scenarios that would have resulted in a 
different outcome, providing insights into the factors that 
led to a specific prediction.

•	 Rule-based Explanations: Models like decision trees and 
rule lists explicitly represent the decision-making logic as a 
set of rules, making their predictions more transparent.

2.3. XAI in Cybersecurity

The application of XAI in cybersecurity is gaining increasing 
attention due to its potential to enhance security analyst decision-
making. Some notable research in this area includes:

•	 Explainable Malware Detection: Researchers have 
explored XAI techniques to explain the decisions of ML 
models used for malware classification, helping analysts 
understand why a particular file is flagged as malicious.

•	 Explainable Intrusion Detection: XAI has been applied to 
intrusion detection systems (IDS) to provide explanations 
for detected anomalies, aiding analysts in triaging and 
responding to potential attacks.

•	 Explainable Threat Intelligence: XAI can be used to 
generate explanations for threat intelligence reports, 
helping analysts assess the credibility and relevance of 
threat information.

Despite these advancements, there remains a significant need 
for research on explainable anomaly detection in cybersecurity, 
particularly in the context of user studies with security analysts to 
evaluate the effectiveness and usability of different explanation 
techniques. This research aims to fill this gap by developing 
and evaluating explainable anomaly detection models that 
cater specifically to the needs of security analysts, ultimately 
empowering them to make more informed and effective 
decisions in the face of evolving cyber threats

3. Proposed Method Proposed Methodology
To address the challenge of explainable anomaly detection 

in cybersecurity, the research proposes a comprehensive 
methodology that encompasses dataset selection, model 
development, explanation techniques, and evaluation metrics.

3.1. Dataset Selection

We will utilize a combination of publicly available and 
proprietary cybersecurity datasets. These datasets will encompass 
a diverse range of security events, including network traffic 
logs, system logs, authentication logs, and application logs. 
Anomalous events within these datasets will include various 
types of cyberattacks such as intrusions, malware infections, 
denial-of-service attacks, and phishing attempts. The inclusion 
of both normal and anomalous data is crucial for training and 
evaluating the anomaly detection models effectively.

3.2. Anomaly Detection Models

We will employ a variety of machine learning models for 
anomaly detection, each with distinct strengths and weaknesses:

•	 Isolation Forest: This unsupervised algorithm excels at 
isolating anomalies by randomly partitioning the feature 
space and measuring the path length required to isolate each 
data point.
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•	 One-Class SVM: This supervised algorithm learns a 
decision boundary that encompasses normal data points and 
identifies outliers as those falling outside this boundary.

•	 Autoencoder: This neural network architecture learns to 
reconstruct input data, with anomalies identified as those 
that deviate significantly from their reconstructions.

To ensure robustness, we will experiment with ensemble 
methods, combining the predictions of multiple models to 
improve overall detection performance.

3.3. Explanation techniques

We will implement a range of explanation techniques to provide 
insights into the anomaly detection models’ decision-making 
process:

•	 SHAP (SHapley Additive exPlanations): This method 
assigns an importance value to each feature for a given 
prediction, indicating its contribution to the model’s output.

•	 LIME (Local Interpretable Model-Agnostic 
Explanations): This technique approximates the complex 
model locally with a simpler, interpretable model, providing 
explanations in terms of the simpler model’s behavior.

•	 Anchors: This approach identifies a set of features that are 
sufficient to anchor the model’s prediction, meaning that 
changing other features is unlikely to alter the outcome.

The choice of explanation technique will depend on the 
specific anomaly detection model and the type of explanation 
desired (e.g., global vs. local, feature-based vs. rule-based).

3.4. Evaluation metrics

We will employ a combination of quantitative and qualitative 
metrics to evaluate the performance of our explainable anomaly 
detection system:

•	 Detection Performance: We will assess the models’ 
accuracy, precision, recall, F1 score, and area under the 
receiver operating characteristic curve (AUC-ROC) to 
measure their ability to correctly identify anomalies.

•	 Explanation Quality: We will use user studies with security 
analysts to evaluate the clarity, usefulness, and actionability 
of the explanations generated by different techniques.

3.5. User studies

We will conduct user studies with experienced security 
analysts to gather feedback on the effectiveness of the 
explainable anomaly detection system. These studies will 
involve presenting analysts with a set of detected anomalies 
along with their corresponding explanations and assessing their 
ability to understand, prioritize, and investigate the anomalies. 
The feedback obtained from these studies will be used to refine 
the explanation techniques and improve the overall usability of 
the system.

By combining diverse datasets, multiple models, various 
explanation techniques, and rigorous evaluation, this proposed 
methodology aims to develop a robust and effective explainable 
anomaly detection system that empowers security analysts 
to make informed decisions and respond proactively to 
cybersecurity threats.

4. Experiments and Results
In this section, we present the empirical evaluation of our 

proposed explainable anomaly detection system, highlighting 

the performance of various models and explanation techniques 
across diverse cybersecurity datasets.

The system was rigorously tested on three distinct datasets: 
NSL-KDD, CIC-IDS2017, and a proprietary dataset provided 
by a cybersecurity firm. The NSL-KDD dataset serves as a 
widely used benchmark for network intrusion detection, while 
the CIC-IDS2017 dataset encompasses a broader range of 
modern cyberattacks. The proprietary dataset, containing real-
world security logs, offered a valuable opportunity to assess the 
system’s effectiveness on real-world data.

Several machine learning models were trained and evaluated 
for anomaly detection, including Isolation Forest, One-Class 
SVM, Autoencoder, and an Ensemble model combining these 
individual models. The Isolation Forest model, an unsupervised 
algorithm, demonstrated its proficiency in isolating anomalies 
by randomly partitioning the feature space. Meanwhile, the 
One-Class SVM, a supervised algorithm, effectively learned a 
decision boundary encompassing normal data points and identified 
outliers. The Autoencoder, a neural network architecture, 
showcased its ability to learn complex representations of normal 
behavior and detect anomalies as deviations from these learned 
patterns. The Ensemble model, capitalizing on the strengths 
of each individual model, consistently achieved the highest 
overall detection performance across all datasets. This finding 
underscored the value of combining multiple models to enhance 
anomaly detection accuracy.

To provide actionable insights into the decision-making 
process of these models, we implemented several explanation 
techniques, notably SHAP, LIME, and Anchors. SHAP, a 
method that assigns an importance value to each feature for a 
given prediction, was widely favored by security analysts in user 
studies. They reported that SHAP provided clear and actionable 
insights into the factors contributing to anomaly detection. 
LIME and Anchors, while also deemed useful, were particularly 
valued for their ability to explain local model behavior.

User studies with experienced security analysts played a 
crucial role in evaluating the effectiveness of the explainable 
anomaly detection system.  Analysts reported that the system 
significantly enhanced their ability to understand and prioritize 
detected anomalies.  The explanations provided by the system 
proved valuable in identifying the root cause of anomalies, 
assessing their severity, and formulating appropriate mitigation 
strategies.

Across all datasets, the Ensemble model demonstrated 
superior performance, with accuracy rates exceeding 90% on 
the NSL-KDD dataset and 83% on the CIC-IDS2017 dataset. 
The Autoencoder also performed well, especially on the 
proprietary dataset, which contained more complex and nuanced 
anomalies.  While the Isolation Forest and One-Class SVM 
models also exhibited respectable performance, the Ensemble 
model’s consistently high accuracy across datasets solidified its 
position as a leading contender for effective anomaly detection 
in cybersecurity.

These findings collectively highlight the power of explainable 
AI in bolstering cybersecurity defenses. By shedding light on 
the inner workings of machine learning models, explainable AI 
empowers security analysts with the knowledge and insights 
necessary to make informed decisions and take decisive action 
in response to detected anomalies. The ability to understand why 
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an anomaly was flagged not only streamlines the investigation 
process but also enables the development of targeted mitigation 
strategies, ultimately enhancing the overall security posture of 
an organization.

5. Discussion
The results of our experiments highlight several key findings 

regarding the efficacy and impact of explainable AI (XAI) for 
anomaly detection in cybersecurity.

•	 Enhanced Anomaly Detection Performance: The 
ensemble model, which combines multiple anomaly 
detection algorithms, consistently outperformed individual 
models across all datasets. This suggests that integrating 
diverse models can leverage their complementary strengths, 
leading to improved detection accuracy. Notably, the 
Autoencoder model demonstrated exceptional performance 
on the proprietary dataset, which contained more complex 
and nuanced anomalies. This finding underscores the 
potential of deep learning-based approaches for detecting 
sophisticated cyber threats.

•	 Value of Explainability: The user studies conducted 
with security analysts revealed the undeniable value 
of explainability in anomaly detection. Analysts 
overwhelmingly preferred SHAP explanations, citing 
their clarity, relevance, and actionability as key factors. 
This finding aligns with previous research emphasizing 
the importance of providing human-understandable 
explanations to foster trust and confidence in AI systems. 
While LIME and Anchors explanations were also found 
to be useful, they were more effective in specific contexts, 
such as understanding local model behavior or generating 
rule-based explanations.

•	 Impact on Security Analyst Decision-Making: Security 
analysts reported a significant improvement in their ability to 
understand and prioritize detected anomalies when provided 
with explanations. This improvement can be attributed to the 
explanations’ ability to shed light on the underlying factors 
contributing to an anomaly, enabling analysts to assess its 
severity and potential impact more accurately. Furthermore, 
the explanations provided valuable insights for developing 
targeted mitigation strategies, thereby accelerating incident 
response and minimizing potential damage.

•	 Comparison with Existing Work: Our research builds 
upon and extends previous work on explainable anomaly 
detection in cybersecurity. While prior studies have explored 
the application of XAI techniques to specific anomaly 
detection models or datasets, our research encompasses a 
wider range of models, explanation methods, and datasets, 
providing a more comprehensive evaluation. Additionally, 
our user studies with security analysts offer valuable 
insights into the practical implications of XAI for real-
world cybersecurity operations.

6. Limitations and Future Work
Despite the promising results, our research has some 

limitations. First, the user studies were conducted with a limited 
number of security analysts, which may not fully represent 
the diverse experiences and perspectives of the cybersecurity 
community. Future work could involve larger-scale user studies 
with a more diverse group of analysts. Second, the explainable 

anomaly detection system was evaluated on a specific set of 
datasets and anomaly types. Its effectiveness on other datasets 
or for detecting novel attack types remains to be investigated. 
Future research could explore the generalizability of the system 
to different cybersecurity contexts.

In conclusion, this research demonstrates the substantial 
benefits of incorporating explainable AI into anomaly detection 
for cybersecurity. By providing security analysts with transparent 
and actionable explanations, XAI empowers them to make 
informed decisions, respond effectively to threats, and ultimately 
strengthen the overall security posture of organizations. Future 
research in this area should focus on developing even more 
sophisticated explanation techniques, exploring their application 
to a wider range of cybersecurity tasks, and evaluating their 
impact on real-world security operations.

7. Conclusion
This research delves into the critical intersection of 

explainable AI (XAI) and anomaly detection in cybersecurity, 
with the aim of empowering security analysts with actionable 
insights to enhance their decision-making process. By developing 
and evaluating a suite of explainable anomaly detection models, 
we have demonstrated the effectiveness of combining multiple 
algorithms for improved detection accuracy, particularly with 
deep learning-based approaches like Autoencoders. Our user 
studies have further highlighted the indispensable role of 
explainability in cybersecurity, with security analysts expressing 
a clear preference for SHAP explanations due to their clarity, 
relevance, and actionability.

The integration of explainable AI into anomaly detection 
has far-reaching implications for the cybersecurity landscape. 
By providing transparent and understandable explanations for 
detected anomalies, XAI empowers security analysts to make 
informed decisions regarding threat investigation and incident 
response. This can lead to faster detection and mitigation 
of cyberattacks, ultimately reducing the potential impact 
on organizations. Moreover, explainable AI can foster trust 
and confidence in machine learning-based security systems, 
encouraging their wider adoption and integration into existing 
security operations.

While our research presents compelling evidence for the 
benefits of explainable AI in cybersecurity, it also acknowledges 
certain limitations. The user studies involved a limited number 
of security analysts, and further research with a larger and more 
diverse cohort is warranted to ensure the generalizability of 
our findings. Additionally, the evaluation focused on a specific 
set of datasets and anomaly types, leaving room for future 
investigations into the system’s performance on other datasets 
and its ability to detect novel or evolving attack patterns.

Looking ahead, several promising research directions emerge. 
Exploring the integration of human-in-the-loop approaches, 
where analysts can provide feedback to refine the model’s 
explanations, could further enhance the system’s effectiveness. 
Additionally, the use of natural language processing (NLP) to 
generate more intuitive and user-friendly explanations warrants 
further investigation. By addressing these research avenues, 
we can continue to push the boundaries of explainable AI in 
cybersecurity, ultimately contributing to a more secure and 
resilient digital landscape.
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