
Evolution of Serverless Computing: A Detailed Analysis

Goutham Sabbani

MSc FinTech (UK), MA-ITM (US)*

Citation: Sabbani G. Evolution of Serverless Computing: A Detailed Analysis. J Artif Intell Mach Learn & Data Sci 2024, 2(2),
750-752. DOI: doi.org/10.51219/JAIMLD/goutham-sabbani/187

Received: 03 April, 2024; Accepted: 28 April, 2024; Published: 30 April, 2024

*Corresponding author: Goutham Sabbani, MSc FinTech (UK), MA-ITM (US)

Copyright: © 2024 Sabbani G., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 2 & Iss: 2

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/goutham-sabbani/187

 A B S T R A C T

The serverless computing that AWS Lamda condenses has transformed application deployment and handled over 3 trillion
monthly, showing its vast adoption. Itilaly, serverless computing freed developed from server management, enabling focus on
code. We will explore the evolution of several ess architecture, as well as its benefits, limitations, and prospects5.

Firstly, we will look at how this serverless technology has evolved in the early stage, examining how it began and the challenges
it addressed. This has critical advancements and innovations that make its early adoption. Next, we will analyze the growth and
adoption of serverless technologies such as Google Cloud Functions and Azure functions, highlighting Functions as a service
and auto-scaling capabilities, as well as event-driven execution models.

This analysis provides a comprehensive overview of the serverless computing journey from inception to the current stage,
emphasizing its transformative impact on applications and deployment of this advanced technology.

Keywords: Serverless computing AWS Lambda, Google Cloud Functions, Azure Functions, Function-as-a-Service (FaaS), Cold
start latency

1. Evolution of Serverless Computing
Serverless computing refers to abstracting underlying

infrastructure, allowing developing to focus the software
developers solely on writing code without worrying about server
management. In this model, cloud service providers manage the
provision scaling and maintenance of the servers. This approach
decreases proximity, enhances productivity, and can lead to cost
savings due to its pay-as-go pricing model.

For instance, AWS Lambda launched the Amazon Web
services in 2014, which is one of the most notable examples of
serverless computing. AWS lambda has significantly deployed
serverless architecture across various. Amazon’s web service
success is attributed to multiple things like ease of use, scalability,
cost efficiency, and integration of AWS services3.

Serverless computing emerged in 2010 when cloud

computing technology evolved; serverless computing means
is like server management from an end user. Initial milestones
were FAAS(Fast-as-a-service), where discrete piece code of the
function to be executed in response to specific events without
needing to distract the server. AWS was a serverless platform
allowing developers to run code without provisioning or
managing servers.

2. Growth and Adoption of Serverless Technologies
Serverless technologies have had remarkable benefits since

their inception. There are several critical trends, like increased
demand for agility, because organizations or individuals
continuously seek more applications more quickly and
efficiently. Serverless technology allows for rapid iteration and
deployment, reducing time to maket. The pay-as-go model has
proven highly attractive, especially for startups and businesses

https://doi.org/10.51219/JAIMLD/goutham-sabbani/187
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/goutham-sabbani/187

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Sabbani G.,

2

with variable workshops. By only paying for the resources we
have used, we significantly reduce infrastructure costs.

Figure 1: Adoption of serverless technology (2014-2020).
Source: Serverless computing case study2

The serverless platform has built-in scalability and high
availability, which means application can have varying loads
without manual intervention and improve user experience.
This technology can abstract the complexity of managing
infrastructure, allowing developers to focus on writing code and
delivering features.

Adoption has happened on various platforms like AWS
Lambda, which has set the stage for serverless computing.
Google Cloud platforms provide a serverless execution
environment for building and connecting servers. It supports
a variety of use cases, including HTTP servers, real-time data
processing, and more4.

FaaS functions as a service and is a crucial component of
serverless computing, enabling developers to deploy individual
functions as response time. The key feature of this technology
is driven execution. These functions are triggered by specific
requests such as HTTP requests, changing databases, or
messages in the queue. Auto-scaling is also a key feature for
FaaS because these can automatically scale up or down based on
incoming requests. Ensuring efficient resource utilization. Here
is a line chart summarising the growth of serverless computing
technology.

Figure 2: Impactful growth of serverless technologies (2014-
2020).
Source: Serverless computing trends5

3. Benefits of Serverless Computing
Serverless computing, unlike the traditional methods,

charges the users only based on the actual computing time used.
Previously, models were based on those that required pre-allocated
resources. Serverless computing eliminates the need to pay for
idle server time. This pay model ensures the business model can
optimize their IT expenditure, which is especially beneficial for
startups and business variable workloads.

One of the most notable benefits of serviceless technology is
its built-in scalability. Serverless platforms have automatically
scaled applications in response to the number of incoming
requests. This means the application can have various and
vast amounts without any manual intervention, ensuring high
scalability and performance during peak time.

A video streaming platform uses Google platform functions
to process user uploads and generate thumbnails during popular
events when many users upload videos at a time. The serverless
platform scales up automatically to handle the increased load,
ensuring smooth and uninterrupted service.

Here is a bar chart showing all the benefits of serverless
computing

Figure 3: Benefits of serverless computing.
Source: Google Cloud Functions6

4. Limitations of Serverless Technology
One of the primary limitations of serverless technology is cold

start latency. If a period is inactivity, it may experience a delay
as the cloud provider initializes the execution environment. For
instance, a web application with AWS lambda may experience
delays when serving the first request after a period of inactivity,
which could lead to suboptimal user experience during traffic
times.

Serverless technology often leads to vendor lock-in, where
applications become highly dependent on the specific services
and APIs provided by a single provider. The dependency can
make it challenging to migrate to another provider without the
issue of refraction and potential architecture.

Serverless technology allows execution time limits for
functions ranging from seconds to several minutes. The
limitation can be restrictive for long-running processes or tasks
that require extended execution times. For example, a financial
services company, JP Morgan, adopted serverless technology,
AWS Lamda, to run complicated checks on financial transactions
after a period of inactivity and significant delays due to cold
start latency. This was unacceptable because of the real-time
processing required for immediate response3.

Here is a pie chart showing the limitations of Serverless
computing.

https://www.dataversity.net/serverless-computing-use-cases/
https://www.dataversity.net/serverless-computing-use-cases/
https://www.infoq.com/articles/cloud-computing-post-serverless-trends/
https://firebase.google.com/docs/functions

3

Sabbani G., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

Figure 4: Limitation of serverless computing.
Source: Limitation of cloud computing and serverless
technology7

5. Future Prospects and Emerging Trends
One of the areas to focus on in the future of serverless

technology is reducing cold start times; cloud providers are
continuously working to optimize the initialization process to
minimize the latency for serverless functions. Technologies are
waring containers using light-weight runtimes and adopting
more efficient execution environment being developed at
address challenge.

As businesses seek to avoid vendor lock and improve
resilience, the adoption of multi-cloud servers and hybrid
serverless solutions is on time. These solutions allow enterprises
to deploy serverless functions across multiple cloud providers
or on a premises environment, providing greater flexibility and
reliability.

The future of serverless computing will see the introduction
of more sophisticated developer tools and frameworks to
simplify the development, deployment, and management
of serverless applications. These tools will offer enhanced
capabilities for debugging, monitoring, and security, making it
easier for developers to build robust serverless solutions. These
service frameworks and AWS are example tools of that help
developers manage service applications more effectively8.

6. Bottom Line
Serverless computing has revolutionized the way applications

are developed and deployed by abstracting the complexities of
server management. Since the introduction of AWS Lambda in
2014, serverless technologies have seen significant adoption,
driven by their cost efficiency, scalability, and ability to enhance
developer productivity. As organizations increasingly demand
agility, serverless architectures provide the flexibility to rapidly
iterate and deploy applications while only paying for actual
usage, leading to substantial cost savings.

Despite its benefits, serverless computing faces challenges
such as cold start latency, vendor lock-in, and debugging
difficulties. However, ongoing advancements aim to mitigate
these issues. For example, improvements in cold start times,
the emergence of multi-cloud and hybrid-cloud solutions, and
enhanced developer tools are paving the way for more robust
and efficient serverless applications.

Adoption across significant platforms like Google Cloud
Functions and Azure Functions highlights the growing
preference for serverless models. As Function-as-a-Service
(FaaS) continues to evolve, it enables developers to deploy
functions triggered by specific events, supported by auto-scaling
capabilities that ensure efficient resource utilization.

The future of serverless computing is promising, with
continuous innovations expected to address current limitations
and expand its capabilities. This evolution will not only
enhance the developer experience but also significantly impact
various industries, enabling more efficient, scalable, and
resilient applications. As serverless technology matures, it will
undoubtedly play a crucial role in shaping the future of cloud
computing and application deployment.

7. References

1.	 Barokah I, Asriyanik A. Analisis perbandingan serverless
computing pada google cloud platform. Jurnal Teknologi
Informatika dan Komputer 2021.

2.	 Brand L, Mock MU. SFL: A compiler for generating stateful aws
lambda serverless applications. Proceedings of the Seventh
International Workshop on Serverless Computing (WoSC7)
2021.

3.	 Choudhary B, Pophale C, Gutte A, Dani A, Sonawani S. Case
study: Use of AWS lambda for building a serverless chat
application. Proceedings of the International conference on
cloud computing and virtualization 2020.

4.	 Fuerst A, Sharma P. FaasCache: Keeping serverless computing
alive with greedy-dual caching. Proceedings of the 26th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems 2021.

5.	 Grzesik P, Mrozek D. Serverless nanopore basecalling with AWS
Lambda. International Conference on Conceptual Structures
2021.

6.	 Jonas E, Schleier-Smith J, Sreekanti V, et al. Cloud programming
simplified: A berkeley view on serverless computing. arXiv 2019.

7.	 Jia Z, Witchel E. Nightcore: Efficient and scalable serverless
computing for latency-sensitive, interactive microservices.
Proceedings of the 26th ACM International Conference on
architectural support for programming languages and operating
systems 2021.

8.	 Kondratiuk T, Naumenko T. Comparison of using Apache
OpenWhisk and Google Cloud Functions for Development of
Serverless Applications on Google Cloud Platform. Sys Res
Inform Technol 2021.

https://www.okta.com/identity-101/serverless-computing/
https://www.okta.com/identity-101/serverless-computing/
https://www.semanticscholar.org/paper/Analisis-Perbandingan-Serverless-Computing-Pada-Barokah-Asriyanik/9bf22aa16e3fd00b4a3f9c41840c961188bcc702
https://www.semanticscholar.org/paper/Analisis-Perbandingan-Serverless-Computing-Pada-Barokah-Asriyanik/9bf22aa16e3fd00b4a3f9c41840c961188bcc702
https://www.semanticscholar.org/paper/Analisis-Perbandingan-Serverless-Computing-Pada-Barokah-Asriyanik/9bf22aa16e3fd00b4a3f9c41840c961188bcc702
https://www.semanticscholar.org/paper/SFL%3A-A-Compiler-for-Generating-Stateful-AWS-Lambda-Brand-Mock/3abdc5cb93f40d6c35652c729fae26ddec565c5b
https://www.semanticscholar.org/paper/SFL%3A-A-Compiler-for-Generating-Stateful-AWS-Lambda-Brand-Mock/3abdc5cb93f40d6c35652c729fae26ddec565c5b
https://www.semanticscholar.org/paper/SFL%3A-A-Compiler-for-Generating-Stateful-AWS-Lambda-Brand-Mock/3abdc5cb93f40d6c35652c729fae26ddec565c5b
https://www.semanticscholar.org/paper/SFL%3A-A-Compiler-for-Generating-Stateful-AWS-Lambda-Brand-Mock/3abdc5cb93f40d6c35652c729fae26ddec565c5b
https://link.springer.com/chapter/10.1007/978-981-15-0790-8_24'
https://link.springer.com/chapter/10.1007/978-981-15-0790-8_24'
https://link.springer.com/chapter/10.1007/978-981-15-0790-8_24'
https://link.springer.com/chapter/10.1007/978-981-15-0790-8_24'
https://www.semanticscholar.org/paper/FaasCache%3A-keeping-serverless-computing-alive-with-Fuerst-Sharma/3c05fec4087d94c61233a482e59b613388b2c3ae
https://www.semanticscholar.org/paper/FaasCache%3A-keeping-serverless-computing-alive-with-Fuerst-Sharma/3c05fec4087d94c61233a482e59b613388b2c3ae
https://www.semanticscholar.org/paper/FaasCache%3A-keeping-serverless-computing-alive-with-Fuerst-Sharma/3c05fec4087d94c61233a482e59b613388b2c3ae
https://www.semanticscholar.org/paper/FaasCache%3A-keeping-serverless-computing-alive-with-Fuerst-Sharma/3c05fec4087d94c61233a482e59b613388b2c3ae
https://www.semanticscholar.org/paper/Serverless-Nanopore-Basecalling-with-AWS-Lambda-Grzesik-Mrozek/70617a616d5e3615173325c20938da5eb1833ee9
https://www.semanticscholar.org/paper/Serverless-Nanopore-Basecalling-with-AWS-Lambda-Grzesik-Mrozek/70617a616d5e3615173325c20938da5eb1833ee9
https://www.semanticscholar.org/paper/Serverless-Nanopore-Basecalling-with-AWS-Lambda-Grzesik-Mrozek/70617a616d5e3615173325c20938da5eb1833ee9
https://www.semanticscholar.org/paper/Cloud-Programming-Simplified%3A-A-Berkeley-View-on-Jonas-Schleier-Smith/05a2f1fe94ac485d9adf9a5bce131b66c56b47c4
https://www.semanticscholar.org/paper/Cloud-Programming-Simplified%3A-A-Berkeley-View-on-Jonas-Schleier-Smith/05a2f1fe94ac485d9adf9a5bce131b66c56b47c4
https://www.semanticscholar.org/paper/Nightcore%3A-efficient-and-scalable-serverless-for-Jia-Witchel/ec590215e04ede80bb98c95fc2d80d36038f697b
https://www.semanticscholar.org/paper/Nightcore%3A-efficient-and-scalable-serverless-for-Jia-Witchel/ec590215e04ede80bb98c95fc2d80d36038f697b
https://www.semanticscholar.org/paper/Nightcore%3A-efficient-and-scalable-serverless-for-Jia-Witchel/ec590215e04ede80bb98c95fc2d80d36038f697b
https://www.semanticscholar.org/paper/Nightcore%3A-efficient-and-scalable-serverless-for-Jia-Witchel/ec590215e04ede80bb98c95fc2d80d36038f697b
https://www.semanticscholar.org/paper/Nightcore%3A-efficient-and-scalable-serverless-for-Jia-Witchel/ec590215e04ede80bb98c95fc2d80d36038f697b
https://www.semanticscholar.org/paper/Comparison-of-using-Apache-OpenWhisk-and-Google-for-Kondratiuk-Naumenko/4b29d880fdb8a3bb0e8c89b9857cb8c02c1220ce
https://www.semanticscholar.org/paper/Comparison-of-using-Apache-OpenWhisk-and-Google-for-Kondratiuk-Naumenko/4b29d880fdb8a3bb0e8c89b9857cb8c02c1220ce
https://www.semanticscholar.org/paper/Comparison-of-using-Apache-OpenWhisk-and-Google-for-Kondratiuk-Naumenko/4b29d880fdb8a3bb0e8c89b9857cb8c02c1220ce
https://www.semanticscholar.org/paper/Comparison-of-using-Apache-OpenWhisk-and-Google-for-Kondratiuk-Naumenko/4b29d880fdb8a3bb0e8c89b9857cb8c02c1220ce

	_GoBack
	_gjdgxs

