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 A B S T R A C T 
For ensuring Network Security (NS) against malicious activities, Dedicated Link Aggregation (DLA) in Computer Network 

Traffic (CNT) optimizes data transmission with increased bandwidth and reliability. Nevertheless, the traditional works failed to 
identify the Attack Patterns (APs) centred on timestamps, Error Rates (ERs), and flow duration, thereby resulting in inefficiencies 
in threat detection in NS. Thus, this paper proposes Ensemble Adaptive Entropy Density-Based Spatial Clustering of Applications 
with Noise (EAE-DBSCAN) and MeDecay Heuristic-based Radial Basis Function Networks (MDH-RBFN) techniques to identify 
patterns and classify the normal and malicious traffic, respectively. Primarily, the data is pre-processed, followed by DLA utilizing 
EAE-DBSCAN and feature extraction. After that, by using EAE-DBSCAN, the patterns are identified from the extracted features 
for enhanced network performance. Subsequently, utilizing MDH-RBFN, the data is categorized as normal and malicious traffic 
with a Mean Absolute Error (MAE) of 0.0025. Here, the malicious traffic is blocked, whereas the non-attacked data is encrypted. 
Thereafter, the traffic level is predicted for non-attacked traffic data as low, medium, high, very high, and extreme. At last, the 
required loads are balanced for storing data in the cloud.

Keyword: Reed-Solomon Quantum turbo Codes Cryptography (RSQ2C), Generalized Bell-IIFuzzy Inference System (GBIIFIS), 
Weighted Round Robin with Overflow Handling (WR2QH), Computer Network Traffic (CNT), Time Series Analysis, Pattern 
Identification (PI), and Dedicated Link Aggregation (DLA).

1. Introduction
To increase bandwidth, enhance reliability, and improve 

load balancing across high-demand environments, multiple link 
connections are integrated into a single logical connection by 
DLA in CNT (Abbasi, et al. 2021) (Choi, et al. 2021). Traffic 
in networks may arise owing to the multiple link connections 
(Weerakody, et al., 2021). In this, normal traffic refers to 
legitimate data (Li, et al. 2021), whereas malicious traffic 
comprises unauthorized or harmful data packets (Lindemann et 
al., 2021). Therefore, the malicious traffic must be blocked for 
secured data transmission. 

The malicious traffic data are detected and blocked by the 
prevailing Machine Learning and Deep Learning methods, 

namely Decision Trees (Liu, et al. 2021) and Long-Short Term 
Memory (LSTM) (Drewek-Ossowicka, et al., 2021). But, the 
scalability and real-time responsiveness (Ensafi, et al. 2022, 
Barrera-Animas et al., 2022) are impacted by challenges like 
high computational demands and data requirements (Ruiz, et 
al. 2021). In addition, the conventional works failed to identify 
the APs centered on timestamps, ERs, and flow duration, 
thus leading to inefficiencies in threat detection. Thus, in the 
proposed work, EAE-DBSCAN and MDH-RBFN techniques 
are leveraged to efficiently identify and block malicious traffic.

1.1 Problem Statement

The limitations in traditional works are explained as follows,
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 » None of the prevailing works identified the APs centred 
on timestamps, ERs, and flow duration, thereby causing 
inefficiencies in threat detection.

 » The traffic level prediction for non-attacked data was not 
concentrated on in many works, thus leading to inefficient 
resource allocation and network congestion.

 » Non-aggregation of dedicated links in (Fotiadou, et al. 2021) 
resulted in suboptimal network performance, bandwidth 
inefficiencies, and limited scalability.

 » The non-attacked data in (Balamurugan, et al. 2022) were 
stored in the cloud in unencrypted form, which led to 
potential security breaches.

 » Anomaly and Normal traffic were identified utilizing 
unprocessed data in (Shen et al., 2021), which caused 
misclassified results.

 » The proposed work’s objectives are detailed below,
 » The proposed work identified the traffic APs centered 

on timestamps, ERs, and flow duration utilizing 
EAE-DBSCAN.

 » The traffic level prediction is performed using the GBΠFIS 
technique.

 » DLA is carried out using the EAE-DBSCAN algorithm.
 » Data encryption is done using RSQ2C to improve NS.
 » Data preprocessing is done for enhancing the classification 

process.

The paper is structured as: The related works are discussed 
in Section 2, the proposed methodology is described in Section 
3, the results and discussion are presented in Section 4, and 
lastly, the proposed work is concluded in Section 5 with future 
development.

2. Literature Survey
(Fotiadou, et al. 2021) presented a DL-based approach for 

threat detection and control of traffic flow in NS. In this, based 
on patterns that were automatically learned through LSTM, the 
traffic flows were controlled. Hence, the malicious traffic data was 
effectively identified by the framework. Yet, misclassifications 
were caused by the unprocessed data usage, thereby hindering 
the effectiveness of the DL-based threat detection method.

(Balamurugan et al., 2022) accomplished an Enhanced Deep 
Reinforcement Learning (EDRL) algorithm to enhance Network 
Traffic (NT) analysis and prediction. In this framework, the 
EDRL technique was used to analyze and predict different 
types of NT, comprising unencrypted and encrypted data traffic. 
However, during NT analysis, high computational complexities 
in this framework caused increased latency.

(Shen, et al. 2021) introduced a Decentralized Applications 
(DApp) fingerprinting approach utilizing Graph Neural 
Networks (GNNs) to efficiently identify users’ visits to specific 
DApps by analyzing encrypted NT. To preserve multiple-
dimensional features in bidirectional client-server interactions, 
a Traffic Interaction Graph was used as an information-rich 
representation. However, due to the slow learning process, the 
framework had issues with adaptability to traffic changes and 
time efficiency.

(Khan, et al. 2022) established a Bayesian model that 
automatically analyzed the abnormal traffic flow patterns. In this 
work, Distributed Denial of Service attacks and Flash Crowds in 

Wireless Sensor Networks were also distinguished. In addition, 
high traffic caused by malicious attacks and legitimate spikes in 
user activity was differentiated in this model. This method failed 
to encrypt the non-attacked data despite efficient categorization, 
thus causing security breaches. Therefore, the entire work 
performance was hindered.

(Dong, 2021) developed a Cost Sensitive Support Vector 
Machine (CMSVM) to accurately identify application types 
in internet traffic using network flow level characteristics. 
Moreover, in this work, the dynamic assignment of weights 
enhanced the classification performance. Nevertheless, as 
CMSVM failed to handle highly imbalanced datasets, it attained 
an increased error rate. Hence, it decreased the accuracy of 
predicting the traffic flow levels.

3. Proposed Methodology for Pattern Identification and 
Traffic Level Prediction in Dedicated Link Aggregation

In Figure 1, the structural diagram of the proposed 
EAE-DBSCAN and MDH-RBFN techniques is shown.

Figure 1: Structural Diagram of the Proposed Work.

3.1. Data Collection

The proposed work begins by collecting the data from two 
datasets, such as Network Anomaly Detection (NAD) and 
Network Analytics Time Series (NATS). It is shown as,

fdata CCCC ,,, 21
=    (1)

Where, the total number of collected data ( )dataC is signified 
as ( )f .

3.2. Preprocessing

After that, by using Data Deduplication (DD), Missing Value 
Imputation (MVI), and Normalization techniques, the collected 

data ( )dataC  is preprocessed as shown below,

The duplicate copies are removed from ( )dataC  using 

deduplicated data size ( )dedupC . Hence, the reduced data ( )dataR  
is articulated as,

( )
data

dedupdata
data

C
CCR −

=    (2)

Further, MVI fills in the missing data for completeness as 
exhibited below,

( )datavi RM ϕ←     (3)
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Here, the process to fill in the missing values is specified 

as ( )ϕ , and the data after the imputation of missing values is 

notated as ( )viM .

Afterward, based on minimum and maximum values, the 

data is normalized ( )υN , which is shown as,

vivi

vivi

MM
MMN

minmax

min

−
−

=υ     (4)

Here, the minimal and maximal values of ( )viM  are 

represented as ( )vivi MM maxmin , , and ( )PD  is the preprocessed data.

3.3. Dedicated Link Aggregation

Subsequently, the dedicated links are aggregated from ( )PD  
by identifying the dense regions in traffic data using the DBSCAN 
technique. Nevertheless, due to fixed parameters, DBSCAN 
struggles with varying density clusters. Hence, Ensemble 
Adaptive Entropy (EAE) technique, which dynamically adjusts 
MinPts and Epsilon based on local density estimates and 
quantifies cluster uncertainty, is used. The algorithmic steps are 
explained below,

Primarily, the ( )l  numbers of ( )PD  are signified as,

( )ltoPwhereDDDD lP 1,, 21 ==   (5)

Further, the core points required for grouping are centered 
on MinPts and Epsilon. Here, the EAE technique with min-max 

adaptive parameter ( )ε  is used for Epsilon determination, 
which is shown as,

( )( ){ } ( )minmax2min log11 εεε −××−+=Φ Pmea
P DA

D
 (6)

Where, ( )Φ and ( )meaA  signify the optimal epsilon value 

and the local density-based adaptive measure for ( )PD , 
respectively. 

After that, the core points ( )21 , PtsPts CC  are calculated based 

on MinPts ( )ϑ  using minimum and maximum of ( )Φ , which 
are equated as,

ϑ×Φ= max
1
PtsC     (7)

ϑ×Φ= min
2
PtsC     (8)

Subsequently, the noise points (that do not come under the 
boundary of core points) are removed as,

( ) ( )minmax ,ΦΦ∀<→ ϑnoiseP   (9)

Here, the noise points to be ignored for aggregation are 

notated as ( )noiseP . Thus, ( )agL  specifies the optimally 
aggregated dedicated links.

3.4. Feature Extraction and Error Rate Analyzation

Thereafter, the features like flow_duration, protocol_type, 
service_flag, dst_host_count, src_bytes, dst_bytes, num_failed_
logins, srv_count, dst_host_count, dst_host_srv_count, class, 
Timestamp, Outbound_Utilzation, and more are extracted from 

( )agL  and are denoted as ( )feaE .

Further, by using error count, ERs are analyzed to enhance 
the overall traffic security and performance. Thus, the analyzed 

ERs ( )rateE  are represented as,

100×
+

= EC

ECEC
rate

T
RSE    (10)

Where, the synchronization and rejection error count based 

on NTs is signified as ( )ECEC RS , , and the total connections (error 

count) are denoted as ( )ECT .

3.5. Pattern Identification

Based on timestamp, analyzed ERs, and flow duration, the 
APs are identified after ER analysis to avoid inefficiencies in 
threat detection using EAE-DBSCAN, which is explained in 

(section 3.3). Thus, ( )PatternI  represents the identified APs.

Then, the malicious and normal traffic data are categorized 
as explained in the below sections.

3.6. Normal and Malicious Traffic Classification

Further, to categorize the malicious and normal traffic 

data, the identified APs ( )PatternI  and extracted features 

( )feaE  are inputted to Radial Basis Function Networks 
(RBFN). Nevertheless, underfitting or oversensitivity issues 
could be caused by the poor selection of width parameters in 
RBFNs, thereby degrading the model’s accuracy. Hence, the 
MeDecay Heuristic (MDH) technique, which adaptively sets 
width parameters for improved stability and generalization, is 
introduced. Figure 2 exhibits the MDH-RBFN classifier.

Figure 2: MDH-RBFN classifier

Input State Calculation

Primarily, the inputs ( )PatternI  and ( )feaE  are combinedly 

signified as ( )gλ . Thus, the ( )x  numbers of ( )gλ  are articulated 
as,

( )xtogwherexg 1,, 21 == λλλλ   (11)

In addition, the center point is initialized based on the input 

data ( )gλ , which is shown as,

gbfr λ←      (12)

Where, the center point based on the Radial Basis Function 

(RBF) is represented as ( )bfr .
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Hidden State Calculation

Here, using Euclidean Distance (ED), the distance is 

calculated between ( )gλ  and ( )bfr , and the calculated distance 

( )Ed  is equated as,

( )2gbfE rd λ−∑=    (13)

After that, the hidden state ( )χ  is computed for each ( )bfr  
as,

( )
( ) 











℘
−= 2

2

2
exp

Edχ     (14)

Here, the exponential function is signified as ( )exp , and the 

width parameter is notated as ( )℘ . Here, ( )℘  is adaptively set 
utilizing the MDH technique as,

( ) 2

2
gbfgbf rr λϖλξ −×+−=℘



  (15)

Where, the loss function is represented as ( )ξ , the 

regularization parameter is specified as ( ) , and the median 

function is denoted as ( )ϖ .

Output State Calculation

The output ( )ψ  is further computed utilizing ( )χ  and 

weights ( )w  assigned for each ( )gλ  as shown below,

( )Edw χψ ×∑=     (16)

traffictraffic NM ,→ψ     (17)

Here, the malicious and normal traffic data in the cloud 

environment are notated as ( )traffictraffic NM , .

Pseudo code of MDH-RBFN

Input: Combined input, ( )gλ

Output: Malicious and Normal traffic, ( )traffictraffic NM ,
Begin

Initialize iterations, ( )max,ττ

While ( )maxττ <

Initialize ( )gλ , ( )bfr

Calculate ED, ( )2gbfE rd λ−∑=
Evaluate width parameter,

( ) 2

2
gbfgbf rr λϖλξ −×+−=℘



Compute, ( )Edw χψ ×∑=
End while

Return traffictraffic NM ,→
End

Here, to prevent security breaches, ( )trafficM  a r e 

blocked; for enhanced security, ( )trafficN  are encrypted.

3.7. Data Encryption

( )trafficN  are encrypted after categorization by using 
Quantum Cryptography (QC), which provides unconditional 
security based on the laws of quantum mechanics. However, 
the random qubit sequence in QC decelerates key generation, 
particularly over longer distances. Thus, Reed-Solomon Turbo 
Codes (RSTC), which correct single-qubit errors and enhance 
key generation, are utilized.

Initially, for faster key generation, a quantum key ( )keyq  

is generated using RSTC. Here, to create a unique key, ( )keyq  

analyzes the public and private keys ( )keykey rp ,  and is shown 
as,

( )
( ) keykeykey

rkey
key

prp
pq

key

−+
−

=
12

  (18)

( )ℑ×= keykey pr    (19)

Where, the coefficient of ( )keyr  is specified as ( )ℑ . Then, 

( )trafficN  are encrypted ( )encrypty  as exhibited below,

( )Γ×= αtrafficencrypt Ny    (20)

Here, the polarization factor that converts all ( )trafficN into 

photons ( )Γ  for respective encryption is specified as ( )α . 

Finally, for secure communications, eavesdropping ( )eavesD  
is checked as equated below,

( )[ ]
( )[ ]





=Ε

=Ε
=

0
1

* encrypttraffic

encrypttraffic
eaves

yNwhen
yNwhen

D  (21)

Here, ( )Ε  and ( )*Ε represent the absence of ( )eavesD  when 

the value is 1 and the presence of ( )eavesD  when the value is 0, 
respectively.

Pseudo code of RSQ2C

Input: Normal traffic data, ( )trafficN

Output: Encrypted data, ( )encrypty
Begin

Initialize iterations, ( )max,ττ

While ( )maxττ <

Initialize ( )keykey rp ,

Generate ( )keyq , 
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( )

( ) keykeykey

rkey
key

prp
pq

key

−+
−

=
12

  Encrypt ( )trafficN , 

   ( )Γ×= αtrafficencrypt Ny
  Check ( )eavesD
 End while

End

3.8. Traffic Level Prediction

By using the Fuzzy Inference System (FIS), the traffic 
level is predicted after encrypting the data. But FIS has tuning 
difficulty of membership function and control rules. Thus, 
the Generalized Bell-Π (GBΠ) membership function, which 
balances interpretability and effectiveness in FIS by addressing 
the tuning challenges, is used. The working steps of GBΠFIS are 
detailed as follows,

Initially, the rules ( )ℵ  are set centered on the if-then 
condition as,

Here, the condition states that if outbound utilization 

( )utO  is 
, then low, medium, high, very high, and extreme traffic 

( )traffictraffictraffictraffictraffic EVHHML ,,,,  is predicted.

After that, to overcome the tuning difficulties, the GBΠ 

membership function ( )ΠG  is assigned for fuzzy and is shown 
as,

b

a

G 2

1 






 ℵ
+

ℵ
=Π     (23)

Here, the scaling parameters of the GBΠ function are 

specified as ( )ba, .

Further, using a fuzzy relationship ( )FuzR , the final decision 

( )DF  is obtained as shown below,

( )
Π

ℵ×∑
=

G
RyF

Fuzencrypt
D    (24)

Subsequently, the crisp output ( )outC  is obtained from 

( )DF and is exhibited as,

Π

Π

∑
×∑

=
G

GFC
D

out     (25)

Therefore, the traffic levels

( )traffictraffictraffictraffictraffic EVHHML ,,,,  are categorized 
based on rules. 

3.9. Load Balancing

Subsequent to categorization, ( )traffictraffic ML , data 
are directly stored in the cloud for future usage, whereas 

( )traffictraffictraffic EVHH ,,  are balanced utilizing the WR2QH 
technique. 

Primarily, the weights are assigned ( )asw  for each server/

link/data ( )serverl . 

After that, the total weight is determined for each ( )serverl  

as ( )W .

Then, the portion of traffic ( )TRAP  is calculated as,

TRA
as

TRA I
W
wP ×=     (26)

Here, the total incoming traffic is specified as ( )TRAI .

Thereafter, the traffic is handled in ( )serverl  based on capacity 
and is shown below,

( )[ ]Wcn serverserver ×+∑= %1   (27)

Where, the current and next server are signified as 

( )serverserver nc , , and ( )dataB  denotes the balanced data, which 
are then stored in the cloud for future usage. In further sections, 
the performance assessment of the proposed work is described. 

4. Results and Discussion
In this section, the performance assessment of the proposed 

and traditional techniques is compared. In addition, the entire 
work is implemented in the PYTHON platform.

4.1. Dataset description

NAD and NATS datasets, which are gathered from publicly 
available sources, are used in the proposed work. Here, the NAD 
and NATS datasets together contain 73367 data with 42 features 
and 2 classes, such as normal and anomaly traffic. From the 
datasets, the proposed work used 45697 data (80%) and 27670 
data (20%) for training and testing, respectively.

4.2. Performance analysis of the proposed work

Here, the proposed EAE-DBSCAN, RSQ2C, GBΠFIS, and 
MDH-RBFN are analogized with existing techniques and related 
works. The proposed MDH-RBFN’s performance assessment is 
shown below,
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Figure 3: Performance Assessment of the Proposed MDH-RBFN.

In Figure 3, the performance assessment of the proposed 
MDH-RBFN and the traditional RBFN, Bidirectional Long-Short 
Term Memory (BiLSTM), LSTM, and Artificial Neural Network 
(ANN) techniques is shown. Here, the proposed MDH-RBFN 
attained high Accuracy (99.05%), Precision (98.95%), Recall 
(99.01%), F-measure (99.17%), Sensitivity (99.01%), and 
Specificity (98.64%) values than prevailing techniques. This 
enhanced performance is owing to the utilization of MDH, 
which adaptively sets width parameters centered on penalizing 
deviations.

Figure 4: Comparative Analysis based on MAE, MAPE and 
RMSE.

Table 1: Training Time Analysis.
Techniques Training Time (ms)

Proposed MDH-RBFN 34252

Existing RBFN 56893

Existing BiLSTM 89436

Existing LSTM 97803

Existing ANN 107845

The MAE, Mean Absolute Percentage Error (MAPE), Root 
Mean Squared Error (RMSE), and Training Time (TT) of the 
proposed MDH-RBFN and traditional RBFN, BiLSTM, LSTM, 
and ANN techniques are illustrated in Figure 4 and Table 1. 
Here, the proposed MDH-RBFN has minimum MAE (0.0135), 
MAPE (0.0167), RMSE (0.0127), and TT (34252ms) values due 
to the enhanced performance, whereas the traditional techniques 
exhibit degraded performance due to the oversensitivity issues. 

As shown in Figure 5, the Pattern Identification Time (PIT) 
and Aggregation Time (AT) of the proposed EAE-DBSCAN are 
analogized with the traditional DBSCAN, K-Means Clustering 
(KMC), Fuzzy C Means (FCM), and K-Nearest Neighbor 
(KNN) techniques. Here, the proposed EAE-DBSCAN attained 
minimum PI (3578ms) and AT (2389ms). But, the traditional 

DBSCAN, KMC, FCM, and KNN attained average maximum 
PIT (8493ms) and AT (7457ms). The proposed technique is 
enhanced since EAE usage in DBSCAN dynamically adjusts the 
parameters in varying-density datasets.

Figure 5: Pattern Identification and Aggregation Time 
Validation.

(a)

(b)
Figure 6: (a) Encryption, Decryption Time, and (b) Security 
Level validation of the proposed RSQ2C.

As shown in Figures 6 (a) and 6 (b), the proposed RSQ2C 
is compared with traditional QC, Elliptic Curve Cryptography 
(ECC), Rivest-Shamir-Adleman (RSA), and ElGamal 
techniques. Here, RSTC enhances QC by improving error 
correction and key generation. So, the proposed RSQ2C has a 
minimum Encryption time of 987ms and a Decryption time of 
945ms, with a high Security Level (SL) of 98.85%. However, the 
traditional approaches had maximum encryption and decryption 
times with low SL, which degraded the entire work performance.
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Figure 7: Performance Analysis of the Proposed GBΠFIS.

The performance analysis of the proposed GBΠFIS and 
the prevailing FIS, Sigmoid Fuzzy (SF), Trapezoidal Fuzzy 
(TF), and Singleton Fuzzy (SiF) is shown in Figure 7. Here, 
the proposed work is enhanced in predicting traffic levels 
by achieving minimum Fuzzification Time (FT= 2132ms), 
Defuzzification Time (DFT= 2085ms), and Rule Generation 
Time (RGT= 1045ms). This enhancement is owing to the 
utilization of GBΠ in FIS, which renders flexible membership 
modeling and enhances traffic prediction accuracy. However, the 
traditional techniques exhibit more FT, DFT, and RGT values 
than the proposed GBΠFIS, thereby hindering the process of 
predicting traffic levels.

Table 2: Comparative Analysis with Related Works.

Study Techniques RMSE MAPE

Proposed Work MDH-RBFN 0.0127 0.0167

(Yang et al., 2021) ARIMA-BPNN 0.076 0.099

(Bi et al., 2022) ST-LSTM 0.036 -

(Xu et al., 2021) AE 0.129 -

(Wan et al., 2022) LSTM 0.112 -

(Pan et al., 2022) FPKNet 0.509 0.369

In Table 2, the proposed work is related to prevailing works. 
Here, for enhanced performance, the proposed work used the 
MDH technique, thus attaining minimum RMSE and MAPE 
values. Nevertheless, the conventional (Yang et al., 2021) and 
(Pan et al., 2022) utilized AutoRegressive Integrated Moving 
Average model-based Back Propagation Neural Network 
(ARIMA-BPNN) and Fusion Prior Knowledge Network 
(FPKNet) with maximum MAPE values. Additionally, (Bi et al., 
2022), (Xu et al., 2021), and (Wan et al., 2022) used Savitzky–
Temporal-based Long-Short Term Memory (ST-LSTM), 
AutoEncoder (AE), and LSTM techniques with average 
maximum RMSE value (0.1724ms) owing to overfitting and 
slow learning effects. Hence, the proposed work outperformed 
in analyzing the malicious traffic networks than the traditional 
works.

5. Conclusion
In this research, the APs based on timestamp, flow duration, 

and ERs are effectively identified for more enhanced NS. 
Initially, the data gathered from the datasets were preprocessed. 
After that, the dedicated links were aggregated within 2389ms. 
In addition, using EAE-DBSCAN, the APs were identified 
with a minimum PIT (3578ms). Subsequently, MDH-RBFN 
categorizes the normal and malicious traffic with 99.05% 

accuracy and an encryption time of 987ms. At last, the traffic 
level was predicted with a minimum RGT (1045ms). Hence, the 
proposed work performed better in predicting malicious traffic 
for enhanced NS. 

6. Future Recommendation
However, numerous approaches will be implemented in 

the future to predict the traffic severity for more secure data 
transmission.
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