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 A B S T R A C T 

Given the growing risk of climate change to the financial sector's stability, institutions must modify their risk management 
practices to effectively evaluate and reduce potential impacts on their loan and lease portfolios. This paper investigates the use 
of sophisticated machine learning methods to create predictive models that measure the impact of climate-related risks on the 
likelihood of borrowers defaulting and the value of assets. These models allow for more detailed and future-oriented analysis 
than traditional methods by utilizing a modular, sector-specific approach and considering transition and physical risk factors. 
The paper introduces a thorough modeling framework, which includes architecture diagrams and pseudocode. It also illustrates 
how the model outputs can inform stress testing, portfolio management, and risk appetite setting. Moreover, it discusses the 
factors to consider when validating models and their constraints while suggesting continuous monitoring and re-validation 
methods in climate uncertainty. Financial institutions can effectively address the challenges of climate change and make better 
lending decisions by implementing machine learning-based climate credit risk models1.
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1. Introduction
1.1. The growing importance of assessing climate risk for 
financial institutions

Financial institutions must now integrate climate risk 
assessment into their risk management frameworks due to the 
increasing occurrence and intensity of climate-related events and 
the worldwide shift towards a low-carbon economy. The financial 
consequences of climate change, which encompass physical 
risks (such as asset damage caused by extreme weather events) 
and transition risks (such as policy changes and technological 
shifts), can substantially impact borrowers’ creditworthiness 
and the value of collateralized assets. Consequently, financial 
institutions must create robust techniques to measure and control 
climate-related risks in their loan and lease portfolios2.

1.2. Challenges of quantifying climate impacts on credit 
portfolios using traditional approaches Conventional 
methods for evaluating the effects of climate on credit portfolios 
typically depend on past data and linear models, which may not 
sufficiently account for the intricate and non-linear connections 
between climate factors and financial results. These methods 
also have limitations in their capacity to integrate future climate 
scenarios and offer detailed insights at the level of individual 
borrowers or assets. As a result, there is an increasing demand 
for advanced and adaptable tools that can accurately represent 
the various effects of climate change on credit risk3.

1.3. Machine learning for modeling complex relationships 
between climate scenarios and financial risks Machine 
learning has become a potent remedy for tackling these 
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difficulties. Machine learning models can utilize extensive 
datasets and sophisticated algorithms to reveal complex patterns 
and connections between climate variables and credit risk 
metrics. This empowers financial institutions to make well-
informed and proactive decisions. To thoroughly evaluate 
climate-related risks, these models can incorporate various data 
sources, such as climate scenario projections, borrower financial 
information, and asset-level characteristics. Moreover, machine 
learning methods can be customized to particular industries 
and types of assets, enabling a more detailed comprehension of 
climate-related risks in various segments of a credit portfolio.

Applying machine learning to climate credit risk assessment 
provides numerous significant benefits compared to conventional 
methods. Machine learning models can capture non-linear and 
interactive relationships between climate variables and credit 
outcomes, resulting in a more precise depiction of risk dynamics. 
Furthermore, these models can be readily updated and improved 
as fresh data emerges, guaranteeing that risk assessments stay 
pertinent and adaptable to evolving circumstances. Machine 
learning techniques can produce detailed insights at the 
individual borrower level, which can be used to develop specific 
risk reduction strategies and enhance portfolio management.

In the upcoming sections, this paper will explore the 
intricacies of applying machine learning to evaluate the 
effects of climate change on loan and lease portfolios. We will 
introduce a comprehensive modeling framework that integrates 
climate scenarios, risk drivers specific to each sector, and 
advanced machine learning techniques to produce practical and 
valuable insights for financial institutions. By implementing 
these innovative methods, institutions can bolster their ability 
to withstand climate-related risks and position themselves for 
success in the shift toward a low-carbon future4.

2. Overview of Climate Scenarios and Credit Risk
2.1. Climate-related financial risks

There are two primary classifications of financial risks 
associated with climate change5,6. Climate-related financial risks 
can be classified into two primary categories: transition risks 
and physical risks. Transition risks emerge due to the worldwide 
transition towards a low-carbon economy, propelled by 
alterations in policies, regulations, technologies, and consumer 
preferences. These risks can appear in different ways, such as 
higher expenses for companies that produce a lot of carbon 
dioxide because of carbon pricing or a decrease in the desire 
for products that rely on fossil fuels. Conversely, physical risks 
pertain to the direct consequences of climate change on tangible 
assets and economic endeavors. The risks can be categorized into 
acute risks, which refer to damages caused by severe weather 
events like hurricanes or floods, and chronic risks, which pertain 
to long-term alterations in temperature and sea levels.

2.2. The impact of climate risks on borrowers’ probability of 
default and asset valuations

Both transitional and physical risks can significantly impact 
borrowers’ creditworthiness and the value of assets used as 
collateral. Transition risks can harm borrowers’ financial 
performance by causing an increase in operating costs, a decrease 
in revenues, or the abandonment of certain assets. For instance, 
a manufacturing corporation that heavily depends on fossil fuels 
might encounter increased production expenses due to carbon 
levies or reduced demand for its goods as customers transition 

to more environmentally friendly options. These factors can 
pressure the company’s cash flows and elevate its likelihood of 
default.

Physical hazards can directly hinder borrowers’ capacity 
to repay their loans by causing harm to production facilities, 
disrupting supply chains, or diminishing the worth of collateral 
assets. For example, suppose a coastal property is used as 
collateral for a mortgage. In that case, it may decrease in 
value or become uninsurable due to increasing sea levels or 
frequent flooding. Likewise, a farming enterprise may encounter 
diminished crop productivity and income due to extended 
periods of drought or shifting temperature trends, which can 
complicate the repayment of its loans.

2.3. Examples of specific transmission channels from climate 
factors to credit outcomes for different sectors

The transmission channels from climate factors to credit 
outcomes vary significantly across various sectors. Here are 
some examples:

1.	 Energy sector: Transition risks are particularly relevant for 
the energy sector, as the shift towards low-carbon energy 
sources can lead to stranded assets and reduced profitability 
for fossil fuel companies. This can increase the probability 
of default for loans and bonds issued by these companies.

2.	 Real estate sector: Physical risks, such as sea-level rise 
and more frequent natural disasters, can directly impact the 
value of real estate assets and the credit quality of mortgage 
loans. Properties in high-risk areas may experience declining 
values, higher insurance costs, or even become uninsurable, 
leading to higher default rates.

3.	 Agriculture sector: Both physical and transition risks can 
affect agriculture. Chronic physical risks, such as changes 
in temperature and precipitation patterns, can reduce crop 
yields and increase the volatility of agricultural revenues. 
Transition risks, such as shifting consumer preferences 
towards more sustainable food options, can also impact the 
sector’s profitability and credit risk.

4.	 Transportation sector: The transportation sector is exposed 
to transition risks as the world moves towards lower-carbon 
modes of transport. For example, automotive companies 
that fail to adapt to the shift towards electric vehicles may 
face declining sales and profitability, increasing their credit 
risk. Airlines may also face higher operating costs due to 
carbon taxes or regulations on emissions.

3. Machine Learning for Climate Credit Risk Modeling
3.1. Comparing machine learning to traditional econometric 
approaches

Machine learning provides numerous benefits compared 
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to traditional econometric methods when modeling climate 
credit risk. Conventional techniques, like linear regression, 
typically assume linear connections between variables and may 
face difficulties capturing the intricate, non-linear interactions 
between climate factors and credit outcomes. Unlike other 
methods, machine learning algorithms can accurately represent 
complex and non-linear relationships and interactions between 
variables, which helps understand the underlying factors 
contributing to risk7.

Furthermore, machine learning techniques are particularly 
suitable for managing extensive, multidimensional datasets 
frequently encountered in climate risk modeling. These 
algorithms can automatically detect the most significant 
characteristics and patterns from large quantities of data, thereby 
minimizing the requirement for manual feature engineering. 
This is especially advantageous when working with various 
data sources, such as climate scenario projections, borrower 
financials, and asset-level characteristics.

One additional benefit of machine learning is its capacity to 
adjust and acquire knowledge from fresh data. Machine learning 
models can be readily retrained and updated to incorporate 
recent trends and insights as climate conditions change and new 
information emerges. Adaptability is essential when considering 
climate risk, as the factors contributing to this risk may evolve 
due to changes in policies, technologies, and the physical 
impacts of climate change.

3.2. Machine learning model types

Several machine learning model types are particularly well-
suited for climate credit risk modeling:

1.	 Neural Networks: Neural networks, intense learning 
models, are powerful tools for modeling complex, non-linear 
relationships. They can learn hierarchical representations of 
data, capturing intricate patterns and interactions among 
climate variables and credit risk factors. Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks 
(RNNs) are specific architectures that can be effective for 
analyzing spatial and temporal patterns, respectively, which 
are often relevant in climate risk modeling.

2.	 Gradient Boosting Machines (GBMs): GBMs, such as 
XGBoost and LightGBM, are ensemble learning methods 
that combine multiple weak learners (typically decision 
trees) to create a robust predictive model. They are known 
for handling large datasets, dealing with missing values, 
and capturing complex relationships among variables. 
GBMs have been successfully applied in various credit risk 
modeling tasks and can be adapted to incorporate climate 
risk factors.

3.	 Random Forests: Random forests are another ensemble 
learning method that constructs multiple decision trees and 
combines their predictions to improve accuracy and reduce 
overfitting. They can handle numerical and categorical 
variables and provide a measure of feature importance, 
which can help understand the relative contribution of 
different climate risk drivers.

3.3. Important data considerations for model training

When training machine learning models for climate 
credit risk, it is crucial to consider the quality, relevance, 
and representativeness of the input data. Some critical data 
considerations include:

1.	 Climate scenario variables: Incorporating forward-looking 
climate scenario data is essential to capture the potential 
impacts of future climate change on credit risk. These 
scenarios should cover a range of possible climate futures, 
including transition and physical risk pathways. Examples 
of relevant variables include greenhouse gas emissions, 
carbon prices, temperature and precipitation projections, 
and the frequency and severity of extreme weather events.

2.	 Borrower financials: Historical and projected financial 
data for borrowers, such as revenue, operating expenses, and 
cash flows, are critical for assessing their creditworthiness. 
When modeling climate risk, it is essential to consider how 
climate-related factors, such as changes in energy costs, 
market demand, or physical asset values, may impact these 
financials.

3.	 Asset-level characteristics: Detailed information on the 
physical characteristics and location of assets pledged 
as collateral can help assess their vulnerability to climate 
risks. For example, data on a property’s elevation, flood 
risk, or energy efficiency can be valuable when modeling 
the impact of physical dangers on real estate portfolios.

4.	 Data quality and completeness: Ensuring input data’s 
accuracy, consistency, and completeness is critical for 
developing robust climate credit risk models. This may 
involve data cleaning, normalization, and imputation 
techniques to handle missing or inconsistent values.

4. Modeling Framework and Methodology
4.1. The overall framework for incorporating climate 
scenario impacts into credit risk models 

To effectively incorporate climate scenario impacts into 
credit risk models, we propose a comprehensive modeling 
framework that integrates climate risk drivers, sector-specific 
impact models, and machine learning techniques. The framework 
consists of the following key components8,9:

1.	 Climate scenario generation: This component defines and 
quantifies relevant climate scenarios, including transition 
and physical risk pathways. The scenarios should capture 
a range of potential climate futures and provide granular 
projections of essential climate variables, such as carbon 
prices, temperature changes, and the frequency and severity 
of extreme weather events.

2.	 Sector-specific impact models: Given the heterogeneous 
nature of climate risk impacts across industries, the 
framework employs a modular, sector-specific approach. A 
dedicated impact model is developed for each sector (e.g., 
energy, real estate, agriculture) to translate climate scenario 
variables into sector-specific financial and operating 
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metrics, such as revenue, costs, and asset values.
3.	 Machine learning-based credit risk models: The sector-

specific impact models feed into machine learning-based 
credit risk models, which assess the creditworthiness of 
individual borrowers and estimate key risk parameters, such 
as the probability of default (PD) and loss-given default 
(LGD). These models capture the complex, non-linear 
relationships between climate-adjusted financial metrics 
and credit outcomes, enabling a more accurate assessment 
of climate-related credit risk.

4.	 Portfolio aggregation and reporting: The output of the 
credit risk models is aggregated at the portfolio level to 
provide a comprehensive view of climate risk exposure. 
This allows for the computation of portfolio-level risk 
metrics, such as expected loss and risk-weighted assets, 
under different climate scenarios. The results can be 
further analyzed and visualized to inform risk management 
decisions and support stakeholder disclosures. 

4.2. Modular, sector-specific approach for differentiated 
impact modeling

Adopting a modular, sector-specific approach is imperative in 
comprehending how climate risk can affect different industries. 
The framework can incorporate specialized impact models for 
individual sectors, allowing for consideration of the distinct 
factors that influence risk, how impacts are transmitted, and the 
ability of each industry to adapt.

In the energy sector, the impact model would specifically 
examine how transition risks, such as carbon pricing and the 
transition to renewable energy, influence the demand for fossil 
fuels, the profitability of energy companies, and the value of 
their assets. On the other hand, the impact model designed for 
the agriculture sector would prioritize assessing tangible risks, 
such as alterations in temperature and precipitation patterns, and 
their consequences on crop productivity, production expenses, 
and land prices.

4.3. Core model components translating climate factors into 
financial drivers and credit outcomes

The core components of the modeling framework work 
together to translate climate factors into financial drivers and, 
ultimately, credit outcomes. The following diagram illustrates 
the flow of information through components:

The sector-specific impact models utilize climate scenario 
variables as input and convert them into sector-specific financial 
and operational metrics. The metrics are inputted into machine 
learning-based credit risk models, which then calculate each 
borrower’s probability of default (PD) and the loss-given default 
(LGD). The Probability of Default (PD) and Loss Given Default 
(LGD) estimate the anticipated loss and risk-weighted assets 
at the portfolio level, offering a comprehensive perspective on 
credit risk related to climate change.

Here’s an example of how the energy sector impact model 
could translate climate factors into financial drivers:

This example illustrates the effects of carbon pricing and the 
transition to renewable energy on the financial aspects of energy 
companies, including their revenue, operating costs, and asset 
values. Credit risk models utilize machine learning and employ 
climate-adjusted financial metrics to calculate the probability 
of default (PD) and loss-given default (LGD) for individual 
borrowers in the energy sector.

Financial institutions can utilize this modeling framework 
to enhance their understanding of climate-related credit risk 
exposure and effectively manage and mitigate these risks. 
The framework allows for analysis across various sectors and 
aggregates results at the portfolio level.

5. Use Cases
5.1. Model outputs: Climate-conditioned probabilities of 
default and credit rating transitions 

The credit risk models that utilize machine learning techniques 
produce multiple significant outputs that offer valuable insights 
into the potential consequences of climate change on credit risk. 
Climate-conditioned probabilities of default (PDs) and credit 
rating transitions are two of the most significant outcomes.

Climate-conditioned probability distributions estimate the 
probability of a borrower failing to meet their obligations under 
various climate scenarios. Financial institutions can evaluate the 
additional influence of climate risk on the creditworthiness of 
borrowers by contrasting these probability distributions (PDs) 
with the baseline PDs that are not adjusted for climate factors. As 
an illustration, a borrower who initially has a baseline probability 
of default (PD) of 1% could experience an increase in their PD to 
1.5% in a severe climate risk scenario. This signifies an elevated 
risk of default caused by climate-related factors.

Credit rating transitions illustrate the anticipated changes 
in borrowers’ credit ratings in response to various climate 
scenarios. The model offers a predictive assessment of potential 
deterioration in credit quality caused by climate risk by 
estimating the likelihood of a borrower moving from one credit 
rating to another (e.g., from ‘A’ to ‘BBB’). This information can 
assist financial institutions in predicting and controlling credit 
risk associated with climate change in their portfolios.
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Here’s an example of how climate-conditioned PDs and 
credit rating transitions could be visualized: 

5.2. Applications for stress testing, portfolio management, 
and risk appetite setting

The results of the climate credit risk models have various 
significant applications, such as stress testing, portfolio 
management, and determining risk appetite.

Stress testing involves using climate-conditioned probability 
distributions (PDs) and credit rating transitions to evaluate the 
potential effects of various climate scenarios on a financial 
institution’s credit portfolio. Using these results with the 
institution’s existing portfolio composition, stress tests can 
calculate the anticipated losses and risk-weighted assets across 
different climate risk scenarios. This data assists institutions in 
assessing their ability to withstand credit risks associated with 
climate change and pinpoint possible weaknesses.

Portfolio management: The model’s results can guide 
portfolio management choices by identifying borrowers and 
sectors most vulnerable to climate risk. Financial institutions 
can utilize this information to realign their portfolios, modify 
lending criteria, or formulate focused risk mitigation strategies. 
For instance, an organization may opt to decrease its involvement 
in sectors or borrowers with high levels of risk or demand extra 
collateral or covenants to handle credit risk associated with 
climate change.

The climate credit risk model outputs can be used to develop 
and implement risk appetite frameworks that specifically 
consider climate risk. Financial institutions can establish risk 
appetite statements and limits by assessing the potential impact 
of climate scenarios on credit risk. This allows them to maintain 
their exposure to climate-related credit risk at acceptable levels. 
This aids in harmonizing the institution’s comprehensive 
risk profile with its strategic goals and the expectations of its 
stakeholders.

5.3. Visualizations of model results across different scenarios

It is essential to visually represent model outcomes under 
various climate scenarios to effectively communicate the 
potential consequences of climate risk to stakeholders and 
facilitate decision-making. Here are several instances of how the 
outcomes of a model could be displayed visually

Figure 1: Heatmap of sector-level PDs under different climate 
scenarios.

Figure 2: Stacked bar chart showing the distribution of credit 
ratings under different climate scenarios.

These visualizations provide clear and concise representations 
of the potential impacts of climate risk on credit portfolios, 
making it easier for stakeholders to understand and act upon the 
insights generated by the climate credit risk models.

6. Model Validation and Limitations
6.1. Statistical performance measures for model validation

Validating the performance of climate credit risk models 
is essential to ensure their reliability and accuracy. Several 
statistical measures can be used to assess the predictive power 
and robustness of these models10-12:

1.	 Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC): This measure evaluates the model’s ability 
to discriminate between defaulting and non-defaulting 
borrowers. A higher AUC-ROC indicates better model 
performance, with a value of 0.5 corresponding to a random 
classifier and 1 representing a perfect classifier.

2.	 Accuracy Ratio (AR): The AR is another measure of the 
model’s discriminatory power, calculated as the ratio of the 
area between the perfect and random classifiers to the area 
between the model’s ROC curve and the random classifier. 
Like AUC-ROC, higher AR values indicate better model 
performance.

3.	 Brier Score: The Brier Score measures the calibration of 
the model’s predicted default probabilities. It calculates the 
mean squared difference between the predicted probabilities 
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and the actual binary outcomes (default/non-default). Lower 
Brier Scores indicate better calibration.

4.	 Kolmogorov-Smirnov (KS) Statistic: The KS statistic 
measures the maximum difference between the cumulative 
distribution functions of the model’s predicted probabilities 
for defaulting and non-defaulting borrowers. A higher KS 
statistic indicates better model discrimination.

Here’s an example of how these performance measures could 
be calculated and visualized:

6.2. Challenges related to climate model uncertainty and 
limitations of historical data

Although climate credit risk models are sophisticated, it 
is essential to recognize and tackle several challenges and 
limitations.

Climate model uncertainty: The climate scenarios utilized as 
inputs in the credit risk models are derived from intricate climate 
models inherently prone to uncertainty. Variations in climate 
model assumptions, parameters, and structures can result in a 
spectrum of possible future climate scenarios. Utilizing multiple 
climate models and scenarios is crucial to account for uncertainty 
and evaluate how credit risk estimates are affected by various 
climate assumptions.

Historical data limitations: Climate credit risk models 
depend on historical data to understand the connections between 
climate factors and credit outcomes. Nevertheless, the historical 
documentation might not comprehensively depict the possible 
consequences of forthcoming climate change if the intensity and 
frequency of climate occurrences surpass previous observations. 
This constraint can be partially mitigated by incorporating 
prospective climate scenarios to complement past data, but 
it still poses an inherent difficulty in modeling unprecedented 
climate hazards.

There are gaps and inconsistencies in climate-related 
data, which means the data may not be available or of good 
quality in specific sectors, regions, and periods. Insufficient 
data, discrepancies, and absence of uniformity can impede 
the progress and verification of climate credit risk models. It 
is essential to make significant efforts to enhance climate risk 
disclosure, share data, and establish standardized practices to 
tackle these challenges effectively.

6.3. Approaches for ongoing model monitoring and 
re-validation

To effectively address the changing nature of climate risks 
and the inherent uncertainties in climate credit risk modeling, 
it is crucial to establish solid procedures for continuously 
monitoring and re-validating models.

Regular performance monitoring: Model performance 
should be continuously monitored using the statistical measures 
discussed in Section 6.1. Any deterioration in model performance 
or significant deviations from expected outcomes should trigger 
further investigation and potential model recalibration.

Benchmark against external models: Comparing the 
model’s outputs with those of external climate credit risk models 
or industry benchmarks can help identify potential issues or 
areas for improvement. Regularly participating in industry-wide 
model comparison exercises can provide valuable insights into 
model performance and best practices.

Sensitivity analysis and stress testing: Conducting 
sensitivity analyses and stress tests can help assess the model’s 
robustness to changes in input parameters, assumptions, and 
climate scenarios. By systematically varying these factors and 
evaluating the impact on model outputs, potential weaknesses or 
instabilities can be identified and addressed.

Periodic model re-validation: Climate credit risk models 
should undergo periodic re-validation to ensure their ongoing 
relevance and accuracy. This process should comprehensively 
review the model’s assumptions, input data, methodologies, 
and performance. The re-validation frequency should be 
commensurate with the pace of change in climate risks and the 
model’s materiality.

The following diagram illustrates the continuous cycle of 
model development, validation, monitoring, and re-validation: 

7. Conclusion
Machine learning-based climate credit risk models provide 

substantial advantages for financial institutions aiming to 
evaluate and control the potential consequences of climate 
change on their loan and lease portfolios. These models can 
use sophisticated algorithms and extensive datasets to capture 
intricate and non-linear connections between climate factors and 
credit outcomes. As a result, they offer more precise and detailed 
insights compared to conventional methods. Financial institutions 
can effectively anticipate and address climate-related risks by 
integrating future climate projections and conducting impact 
assessments for specific sectors. This approach also facilitates 
stress testing, portfolio management, and the establishment of 
risk appetite. Nevertheless, the creation and execution of these 
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models are not exempt from difficulties, such as the uncertainty 
of climate models, constraints imposed by historical data, and 
the necessity for continuous model validation and monitoring. 
Given the ongoing evolution of climate risks and the availability 
of new data and modeling techniques, financial institutions must 
allocate resources toward research and development to improve 
and strengthen their ability to assess credit risks associated with 
climate change. This encompasses the investigation of novel 
machine learning architectures, integrating alternative data 
sources, and cooperation with climate scientists and industry 
partners to construct more resilient and all-encompassing 
models. Financial institutions prioritizing climate credit risk 
modeling can effectively manage their risks and contribute 
significantly to the transition toward a more sustainable and 
resilient global economy.

8. References

1.	 Meckling J, Allan BB. The evolution of ideas in global climate 
policy. Nature Climate Change 2020;10: 434-438. 

2.	 Chenet H, Ryan-Collins J, van Lerven F. Finance, climate-
change and radical uncertainty: Towards a precautionary 
approach to financial policy. Ecological Economics 2021;183: 
106957. 

3.	 Fiedler T, Pitman AJ, Mackenzie K, Wood N, Jakob C, Perkins-
Kirkpatrick SE. Business risk and the emergence of climate 
analytics. Nature Climate Change 2021;11: 87-94.

4.	 Denis DK, Jochem T, Rajamani A. Shareholder Governance 
and CEO Compensation: The peer effects of say on pay. Rev 
Financial Studies 2019;33: 3130-3173. 

5.	 Allen T, et al., Climate-Related scenarios for financial stability 
assessment: An application to france. SSRN Electronic Journal 
2020. 

6.	 Monasterolo I. Climate Change and the Financial System. 
Annual Rev Resource Economics 2020;12: 299-320. 

7.	 Petropoulos A, Siakoulis V, Stavroulakis V, Vlachogiannakis 
NE. Predicting bank insolvencies using machine learning 
techniques. Int J Forecasting 2020;36: 1092-1113. 

8.	 Aziz S, Dowling M. Machine Learning and AI for Risk 
Management. Palgrave Studies in Digital Business &amp; 
Enabling Technologies 2018; 33-50. 

9.	 Mai F, Tian S, Lee C, Ma L. Deep learning models for bankruptcy 
prediction using textual disclosures. Eur J Operational Res 
2019;274: 743-758. 

10.	 Beutel J, List S, von Schweinitz G. Does machine learning help 
us predict banking crises? J Financial Stability 2019;45: 100693. 

11.	 Addo P, Guegan D, Hassani B. Credit Risk Analysis Using 
Machine and Deep Learning Models. Risks 2018;6: 38. 

12.	 Petropoulos A, Siakoulis V, Stavroulakis E, Vlachogiannakis 
NE. Predicting bank insolvencies using machine learning 
techniques. Int J Forecasting 2020;36: 1092-1113. 

13.	 Aziz S, Dowling M. Machine Learning and AI for Risk 
Management. Palgrave Studies in Digital Business &amp; 
Enabling Technologies 2018; 33-50. 

14.	 Meckling J, Allan BB. The evolution of ideas in global climate 
policy,” Nature Climate Change 2020;10:434-438. 

https://www.nature.com/articles/s41558-020-0739-7
https://www.nature.com/articles/s41558-020-0739-7
https://www.sciencedirect.com/science/article/pii/S092180092100015X
https://www.sciencedirect.com/science/article/pii/S092180092100015X
https://www.sciencedirect.com/science/article/pii/S092180092100015X
https://www.sciencedirect.com/science/article/pii/S092180092100015X
https://www.nature.com/articles/s41558-020-00984-6
https://www.nature.com/articles/s41558-020-00984-6
https://www.nature.com/articles/s41558-020-00984-6
https://academic.oup.com/rfs/article/33/7/3130/5572671
https://academic.oup.com/rfs/article/33/7/3130/5572671
https://academic.oup.com/rfs/article/33/7/3130/5572671
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3653131
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3653131
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3653131
https://www.annualreviews.org/content/journals/10.1146/annurev-resource-110119-031134
https://www.annualreviews.org/content/journals/10.1146/annurev-resource-110119-031134
https://www.sciencedirect.com/science/article/abs/pii/S0169207019302663?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0169207019302663?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0169207019302663?via%3Dihub
https://link.springer.com/chapter/10.1007/978-3-030-02330-0_3
https://link.springer.com/chapter/10.1007/978-3-030-02330-0_3
https://link.springer.com/chapter/10.1007/978-3-030-02330-0_3
https://www.sciencedirect.com/science/article/abs/pii/S0377221718308774?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0377221718308774?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0377221718308774?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1572308918305801?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1572308918305801?via%3Dihub
https://www.mdpi.com/2227-9091/6/2/38
https://www.mdpi.com/2227-9091/6/2/38
https://www.sciencedirect.com/science/article/abs/pii/S0169207019302663?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0169207019302663?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0169207019302663?via%3Dihub
https://link.springer.com/chapter/10.1007/978-3-030-02330-0_3
https://link.springer.com/chapter/10.1007/978-3-030-02330-0_3
https://link.springer.com/chapter/10.1007/978-3-030-02330-0_3
https://www.nature.com/articles/s41558-020-0739-7
https://www.nature.com/articles/s41558-020-0739-7

