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1. Introduction
TThe development of large-scale speech datasets is often 

limited by resource constraints, including the availability of 
labeled data and financial costs. Training ASR models, particularly 
for low-resource languages, poses additional challenges due 
to the lack of sufficient labeled samples. Data augmentation 
techniques provide a promising solution by generating variations 
of existing audio data, thereby increasing dataset diversity and 
improving the robustness of ASR systems1. Through controlled 
modifications to audio signals, these techniques can enhance 
ASR performance across various languages. Recent studies have 
focused on fine-tuning pre-trained ASR models for low-resource 
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In recent years, significant progress has been made in automatic speech recognition (ASR) systems, especially for languages 
with abundant transcribed speech data. However, freely accessible models for low-resource languages, particularly those other 
than English, are still scarce. This study aims to enhance the performance of the prominent multilingual ASR model, Whisper, 
through fine-tuning and data augmentation techniques. Comprehensive and systematic experiments are conducted on time, 
frequency and time-frequency domain augmentation strategies across multiple low-resource languages (German, Farsi, Arabic, 
Russian) to investigate whether these techniques could improve ASR performance in low-resource settings. The study sheds light 
on the feasibility and limitations of various data augmentations, with a specific emphasis on classic augmentation approaches 
including audio and spectrogram-based techniques. The findings indicate that audio-based augmentation generally outperforms 
other evaluated methods. Furthermore, the study explores understanding the effects of data augmentation on model regularization 
and learning behavior, an aspect that, to our knowledge, has not been extensively explored in ASR. Our findings reveal different 
behaviors of these techniques not only in the learning process but also in model regularization and generalization. This insight 
is crucial for integrating these methods into more sophisticated deep learning models, particularly those employing aligned data 
augmentation in conjunction with classic approaches.
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languages, demonstrating the potential of data augmentation 
to overcome data scarcity2-4. However, the impact of specific 
augmentation techniques on model performance, particularly 
when data is limited, remains an open question. Gaining a deeper 
understanding of how data augmentation influences the learning 
and generalization of ASR models is essential for improving 
performance across a wide range of languages.

This study investigates the fine-tuning of Whisper5, a state-
of-the-art multilingual ASR model developed by OpenAI, 
using a range of data augmentation techniques. While Whisper 
has achieved near-human performance in transcribing English 
speech5, its performance in low-resource languages requires 
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further exploration. This work aims to evaluate Whisper’s 
performance across languages with limited data availability 
by applying time, frequency and time-frequency domain 
augmentation methods. The study comprehensively compares 
these augmentation techniques, highlighting their effects on 
model generalization and regularization. This paper aims to 
address the following Research Questions (RQ):

•	 RQ1: How do time, frequency and time-frequency domain 
feature representations as data augmentation techniques 
affect the generalization ability and representation 
improvement in ASR models across different low-resoures 
languages?

•	 RQ2: What are the effects of data augmentation 
techniques on learning behavior, model regularization and 
generalization in Whisper and how do these effects vary 
across languages?

•	 RQ3: How can insights from data augmentation 
techniques, considering cross-linguistic variations, inform 
the integration of aligned data augmentation with classic 
approaches in more sophisticated deep learning-based data 
augmentation techniques?

The main contributions of this paper are as follows:

•	 Data Augmentation Enhancement: This study conducts 
a comprehensive analysis of three widely-used data 
augmentation techniques-time, frequency and time-
frequency domain representations. By systematically 
experimenting with these techniques, the study enhances 
the generalization ability of ASR models, improving their 
representation across different linguistic contexts.

•	 Novel Insights into ASR: An in-depth analysis is provided 
on how data augmentation techniques influence the Whisper 
ASR model, with a specific focus on learning behavior and 
model regularization. These aspects have been relatively 
unexplored in ASR research, particularly for multilingual 
models like Whisper. The findings highlight the distinct 
effects of each augmentation technique on both the learning 
process and generalization, offering valuable insights for 
integrating these methods into advanced ASR systems.

•	 Cross-Linguistic Evaluation: The study offers a detailed 
cross-linguistic evaluation of Whisper’s performance, 
analyzing how data augmentation techniques impact 
generalization across different languages. By focusing 
not just on a single language but exploring multilingual 
performance, the research provides valuable insights into 
how augmentation techniques should be tailored for specific 
linguistic challenges in ASR.

•	 Framework for Future Integration: The findings offer 
a framework for integrating classic and aligned data 
augmentation techniques into more sophisticated deep 
learning models. This contribution provides practical 
guidelines for enhancing model regularization and 
performance in future ASR systems, especially when 
dealing with low-resource languages.

2. Augmentation Approaches 
Data augmentation approaches involve employing 

techniques intended to expand the size and diversity of training 
datasets, thereby improving the performance and generalization 
of ASR models. By leveraging multiple augmentation methods, 

these approaches contribute significantly to enhancing ASR 
capabilities. These techniques are typically classified into two 
main categories. The first is Audio-based Augmentation (AbA), 
which entails directly altering audio samples6,7 through various 
modifications. The second category is spectrogram-based 
augmentation, which involves adjusting the spectrogram of each 
sample8.

A. Audio-based Augmentations

In this study we explore several variations of AbA. The pitch 
shifting augmentation involves randomly adjusting the pitch 
value within a range of -3 to 3 semitones, where positive values 
raise the pitch and negative values lower it9,10. Noise injection is 
applied by adding a uniform magnitude of 0.005 across all time 
frames, effectively introducing white noise7. Time stretching 
adjusts the playback speed at a randomized rate between 0.8 and 
1.2, with values greater than 1.0 accelerating the audio and values 
below 1.0 slowing it down9,10. Time shifting introduces a random 
temporal adjustment within a range of -0.5 to +0.5 seconds, 
which is then converted into samples and applied accordingly. 
The echo effect is implemented by applying a delay of 0.25 
seconds with an attenuation factor randomly selected between 
0.2 and 0.3. The audio is processed using a filter to simulate the 
echo and the resulting signal is normalized to maintain audio 
quality. The reverb technique involves generating an impulse 
response with a duration between 0.1 and 0.3 seconds, which 
is then applied to the audio via convolution. A reverb strength 
of 0.4 is used and the audio is normalized to avoid distortion or 
clipping. Finally, background noise is introduced by mixing the 
original audio with background sounds randomly selected from 
a predefined library of noise samples. The background audio is 
repeated to match the length of the original sample and a volume 
factor of 0.5 is applied to ensure the noise does not overpower 
the original speech.

B. Spectrogram-based Augmentations

We apply data augmentation using three variations of 
masking in SpecAugment11 (SA), considering time, frequency 
and time-frequency masking, as well as MixSpeech (MS)12.

SA in the frequency domain features11 focuses solely 
on frequency masking, omitting the time domain to isolate 
the effects of frequency-based augmentation. The log-mel 
spectrogram is divided into segments along the vertical axis 
(frequency/mel-bins) and masks are applied randomly. In 
this study, six masks are applied to the mel-bins, with mask 
dimensions selected randomly. Each mask coveres between 6% 
and 9% of the total mel-bins, effectively obscuring portions of 
the frequency spectrum. By excluding time domain masking, 
this approach highlights the unique effects of frequency-based 
transformations on model performance. To further augment the 
training data, SA in the time domain features is also employed11. 
This technique involves masking random sections of the audio 
along the time axis of the log-mel spectrogram, effectively 
creating gaps in the temporal dimension. In this study, 20times 
masks are applied across the log-mel spectrogram, with mask 
sizes ranging from 2% to 3% of the total time frames. This 
approach helps the model learn to be invariant to missing or 
corrupted sections of the input audio, enhancing robustness and 
generalization capability. By focusing on the time domain, this 
augmentation avoids altering the frequency content, ensuring 
the integrity of the audio’s spectral characteristics. Finally 
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we apply the standard SA technique, which involves masking 
random sections of the log-mel spectrogram across both time 
frames and mel-bins. To adapt the original SA method11, the 
log-mel spectrogram is divided into distinct segments along the 
horizontal (time) and vertical (frequency) axes. In this study, 
20 masks are placed across the time frames and six masks 
are applied to the mel-bins. The dimensions of the masks are 
randomly selected, with the time masks covering 2% to 3% of 
the total time frames and the mel-bin masks covering 6% to 9% 
of the mel-bins.

MS12 involves combining spectrograms from different 
speech samples along with their corresponding labels. In this 
method, two samples are merged by overlaying the spectrogram 
of one sample onto another while preserving the original labels. 
Due to the complexity of incorporating label mixing into the 
sequence-to-sequence ASR model, label mixing is avoided 
before training to prevent ambiguity in the model. The log-mel 
spectrograms of both samples are obtained using the Whisper 
Feature Extractor5 (WFE). The spectrograms are combined by 
applying an opacity value of 0.8 to the base sample and 0.2 to the 
random sample, ensuring precision in the merged spectrograms.

C. Combining Augmentation Techniques: A Sequential 
Strategy

In this approach, combined augmentations are applied to 
enhance the diversity of the training data by utilizing multiple 
methods sequentioaly. The combinations are structured as 
follows: AbA with SA, AbA with MS and MS with SA. 
Each combination uses consistent hyperparameters to ensure 
uniformity throughout the augmentation process.

In AbA+SA combination, AbAs are applied first to the 
raw audio samples. Afterward, SA (using frequency and time 
masking) is applied to the generated log-mel spectrograms to 
introduce additional variability. By applying the audio-based 
transformations first, we ensure that any variations in the raw 
audio are propagated through the spectrogram, allowing SA to 
operate on a richer set of features. For AbA+MS combination, 
AbAs are again applied first to modify the raw audio samples. 
Following this, MS is applied, mixing multiple samples together 
to simulate overlapping speech scenarios. This combination 
helps create more challenging training conditions for the 
ASR model, improving its ability to handle real-world audio 
situations. Finally in the MS+SA combination, MS is applied 
first, combining multiple samples to create overlapping speech. 
Afterward, SA (with both frequency and time masking) is 
applied to the generated mixed log-mel spectrogram.

3. Experimental Setup
A. Dataset

The Common Voice 17 dataset13 is selected for this study 
due to its open-source availability, multilingual composition 
and diverse characteristics. This dataset contains audio samples 
paired with corresponding transcripts, with durations ranging 
from 1 to 15 seconds. The data quality varies significantly, 
featuring both clear, high-quality recordings and samples with 
substantial background noise, making it an ideal choice for 
training robust ASR models across diverse conditions.

For this study, four languages are utilized: German (DE), 
Russian (RU), Farsi (FA) and Arabic (AR). A filtering process 
is applied using the Whisper tokenizer to exclude any samples 

from the original dataset where the token indices sequence 
length exceeded the model’s maximum limit of 1024, as defined 
for the Whisper small model. After filtering, a subset of 100,000 
paired audio-transcript samples for each language is selected for 
training. Additionally, 10% of the training sample size for each 
language is allocated for the validation set and another 10% for 
the test set. The data splitting approach followed the guidelines 
outlined in Joseph et al.14. The entire test set is subsequently used 
to assess the model’s performance during the final evaluation.

B. Adjustment of Data Augmentation Methods

The adjustment process begins with the pre-processing stage, 
which involves standardizing the audio samples to a consistent 
sampling rate of 16,000 Hz, the required input format for the 
Whisper model. After resampling, non-essential labels are 
removed, leaving only the necessary transcription data. Next, 
WFE5 is employed to compute log-mel spectrogram features 
for each audio sample. Since the Whisper model expects input 
segments of 30 seconds, all audio samples are either padded 
or truncated to this length to maintain consistency. Similarly, 
padding is applied to the transcription labels to ensure they 
match the padded audio samples.

Data augmentation methods are then applied to enhance the 
diversity of the training dataset. AbA techniques are randomly 
selected for each sample, with one of seven available methods 
chosen to avoid overwhelming the model with simultaneous 
augmentations that could hinder learning. These augmentations 
are applied directly to the audio samples before feeding them 
into the WFE. After computing the log-mel spectrograms using 
WFE module, spectrogram-based augmentations are applied. 
The augmented data is subsequently used for the training split, 
while the validation set remains unaltered to ensure a consistent 
evaluation of the model’s performance.

C. Training Procedure

OpenAI’s Whisper models are available in various sizes, 
ranging from tiny to large. For this investigation, Whisper model 
in the small multilingual configuration is used5. This model is 
selected due to its moderate capacity, providing a balance 
between computational efficiency and performance, as well as 
its proven effectiveness in prior research5. Its ability to handle 
multiple languages made it particularly suitable for expanding 
research beyond the English-centric scope typical in many ASR 
studies15. The training process begin by establishing the baseline 
model, trained on the labeled dataset without any augmentation. 
This baseline served as a reference point to evaluate the impact 
of different augmentation techniques on the model performance, 
identifying which strategies provided the most significant 
improvement.

The training configuration is optimized as follows: All 
models are trained with weight decay of 0.1 and learning rate 
of 1e-5 using standard Adam optimizer16 for up to 50,000 steps, 
which is approximately equivalent to 10 epochs. Additionally, 
gradient accumulation is implemented to simulate larger batch 
training, with an effective batch size of2. This setup provides 
a structured framework for evaluating the impact of different 
augmentation strategies on the performance of the Whisper 
small multilingual model.

D. ASR Performance Evaluation Across Languages

The Word Error Rate (WER)17 is the standard metric used to 
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evaluate the performance of ASR models across low-resource 
languages, including German (DE), Arabic without diacritics 
(AR_ND), Arabic with diacritics (AR), Farsi (FA) and Russian 
(RU). This metric measures transcription accuracy by calculating 
the number of substitutions, deletions and insertions required 
to match the model’s output to a reference transcript. This 
provides a comprehensive assessment of transcription quality by 
capturing various types of errors. 

For Arabic, two separate evaluations are performed: one with 
diacritics preserved and another with diacritics removed from 
both transcripts and predictions. This distinction is important 
because some transcripts in the dataset lack diacritics, which 
could unfairly penalize models that predict with diacritics. By 
removing diacritics in one test set, we ensured a more balanced 
and fair evaluation of model performance.

4. Results
Figure 1 Presents our experimentation results on the test 

set. In this figure, the performance comparison of different 
augmentation strategies compared to the baseline reveals several 
important trends in the WER17 across low-resource languages.

 The AbA demonstrates exceptional performance, leading 
to the improvements across all languages. Notably, it is the 
top-performing method, achieving the most significant WER 
reductions compared to competing augmentation approaches, 
with relative improvements of 2.14%/18.21%/14.05% over the 
baseline in DE/AR_N/RU. Additionally, AbA shows relative 
improvements of 8.06% and 21.32% for AR and FA, respectively. 
Among spectrogram-based approaches, MS outperforms SA, 
showing improvements over the baseline for all languages except 
DE. However, it generally lags behind AbA in AR_ND and RU. 
FA and AR, on the other hand, benefit significantly from MS 
compared to the other languages, with relative improvements 
of 22.28% and 8.47%, respectively. This indicates that MS is 
particularly effective for FA, while its benefits for other languages 
are more modest. The SA technique is evaluated using three 
different masking approaches, as explained in Section 3. The 
best performance comes from SA utilized freqauncy masking 
(SA_Freq), which, although outperforming the baseline for all 
languages except DE, its impact is less pronounced than AbA 
and MS augmentations.

Figure1: Performance comparison of the baseline and models 
using different augmentation techniques in terms of WER% 
across four languages on the test set.

Figure 1 further examines the performance when combining 
augmentation methods as described in Section 2. The results 
from these combined strategies are substantial. Combining 
Top-2 augmentation techniques, i.e. AbA with MS shows the best 
performance within the combined augmentations, with relative 
improvement of 16.73%/5.51%/18.28% over the baseline for 
AR_N/AR/FA languages. However, the gains are less substantial 
than when AbA or MS are used alone, suggesting diminishing 
returns when both methods are applied simultaneously. AbA+SA 
combination yields moderate improvements in WER. While 

the benefits are clear for AR_N/FA languages with relative 
reduction of 2.02%/ 15.93% over the baseline, the results again 
indicate diminishing returns from the simultaneous application 
of both methods. This suggests that the masking effect of SA 
complements the noise introduction from AbA, but the combined 
impact may not be universally beneficial for all languages. For 
DE and RU, where SA alone failed to improve performance over 
the baseline, combining it with AbA does not yield any further 
gains. Finally MS+SA shows the worst performance among all 
standalone and combined augmentations, with no improvements 
in terms of WER for any language.

5. Augmentation Effects and Model Behavior
This paper presents a comparative analysis of various 

data augmentation methods used for ASR, evaluating their 
performance and generalization ability. In this section, we 
address the research questions stated in the introduction by 
assessing model behavior and performance on the validation set, 
as shown in (Figure 2 and Figure 3).

Figure 2: Learning curves of various baseline models across 
languages, measured on the validation set in terms of WER%.

The baseline performance in Figure 2, which serves as a 
reference point, indicates that the model performs better on FA 
and RU, with lower WER values compared to AR and DE, where 
the WER is particularly high for AR at 38.11%, suggesting the 
model initially struggles more with this language. In addition to 
the baseline, Figure 3 illustrates the impact of three different 
augmentation methods on both standalone (c.f. Figure 3(a)) and 
combined (c.f. Figure 3(b)) strategies. This comparison provides 
insights into the relative effectiveness and generalization ability 
of each technique. The general trend which clearly is obvious 
from the experiments is consistent improvement of all models 
throughout the training period, with a significant boost in 
performance around the regulated 10-epoch mark. Notably, the 
model fine-tuned using AbA achieved the highest validation 
performance across DE/AR/RU languages as depicted in Figure 
3(a). The strength of AbA lies in its ability to directly manipulate 
raw audio samples, ensuring that even subtle and nuanced sounds 
are accurately captured. This augmentation technique enhances 
the model’s robustness by improving its ability to generalize 
across varied and ambiguous audio data.

A key feature of AbA is its capacity to simulate real-world 
conditions, incorporating environmental noises such as traffic 
sounds. This helps the model to learn how to handle speech 
segments with low clarity or noise interference, similar to 
masking effects, where certain parts of speech are obscured. 
The augmentation can be represented by a transformation 
scale ranging from -1 to 1, where 0 represents clear speech, 1 
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represents unintelligible speech and values closer to -1 represent 
noise-dominated samples. Audio augmentation effectively shifts 
this spectrum towards intelligible speech, helping the model to 
perform better under noisy conditions. In conclusion, the results 
indicate that AbA proves to be the most effective technique 
overall with consistently outperforms the baseline across all 
languages. 

A. Regularization Affect

Data augmentation strategies play a vital role not only in 
improving model performance but also in preventing overfitting, 
acting as a form of regularization. Regularization refers to 
techniques that prevent models from memorizing training data, 
thereby enhancing their ability to generalize to unseen data. 
Different augmentation techniques exhibit varying degrees 
of regularization, which directly influences the WER across 
training steps.

B. Overfitting Indicators

With data augmentation, it is also possible to avoid 
overfitting by injecting various alterations into the training data. 
This prevents the model from learning the same data excessively 
and reduces the risk of overfitting18. Among the augmentation 
techniques tested, AbA demonstrated the greatest efficacy 
in preventing overfitting. As shown in the Figure 3 (a), this 
method consistently reduced WER across multiple languages 
and training steps. Even after extended training periods, models 
using AbA maintained stable and lower WER values compared 
to other methods, such as SA and MS. This suggests that AbA 
introduces a balanced variety of perturbations in the audio 
samples, preventing the model from overfitting to the specific 
training set.

AbA directly manipulates audio signals, which contributes 
to a more robust learning process by forcing the model to adapt 
to variations that mimic real-world conditions. This continuous 
introduction of variability prevents the model from over-relying 
on specific patterns, enhancing its ability to generalize to new 
and unseen audio inputs. The improvements in WER observed 
for languages like AR and FA further emphasize this point, with 
significant reductions in WER when compared to the baseline.

C. Stability in Learning

Incorporating an effective regularization technique can 
significantly improve the overall effectiveness of the learning 
process17. The stability of AbA is reflected in its ability to 
produce consistent WER reductions throughout training. Unlike 
SA or MS, which demonstrated some variability across languages 
and epochs, as depicted in Figure 3(a), AbA maintained a steady 
performance across both lower and higher training steps. This 
stability indicates that the augmentation technique not only 
provides effective regularization but also allows the model to 
learn meaningful features from the data without overfitting.

Moreover, the combination of AbA particularly with MS (c.f. 
Figure 3(b)), continue to show improvements in generalization, 
though the individual performance of AbA stay out as the most 
effective. The ability of this technique to consistently reduce 
WER across a diverse set of languages demonstrates its superior 
regularization effect, particularly for challenging languages like 
AR.

Figure3: Learning curves of different augmentation methods 
across languages, measured on the validation set in terms 
of WER%. (a) Standalone augmentations, (b) Combined 
augmentation strategies.

D. Integrating Insights from Cross-Linguistic Data 
Augmentation for Deep Learning Models

Insights from data augmentation techniques, particularly in 
multilingual contexts, highlight the need for tailored strategies 
that accommodate cross-linguistic variations. Languages differ in 
phonetic structures, acoustic properties and script complexities, 
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which can impact how augmentation techniques influence model 
performance. Understanding these variations is key to designing 
augmentation strategies that generalize well across languages, as 
different methods yield different levels of success depending on 
the target language.

AbA indicates the most universally effective, particularly 
in languages with more complex phonological and acoustic 
variations, such as AR and FA. This method improved model 
performance by introducing variability in the acoustic features, 
simulating real-world conditions and enhancing robustness 
across diverse linguistic environments (see Figure 3). The 
improvement is especially pronounced for AR, where the WER 
dropped significantly, highlighting the role of augmentation in 
generalization. As shown in Figure 3(a), among spectogram-
based augmentation techniques, MS demonstrates greater 
generalization ability and better performance on validation set 
compared to SA. This method, which blends multiple audio 
streams, proves particularly effective for FA, where the WER 
continued to decline even in later epochs, achieving the relative 
improvement of 18.01% over the baseline. Across the other 
-AR, DE and RU-MS also enhances the model’s generalization 
ability, with relative reductions in WER of 7.23%, 0.61% and 
8%, respectively.

From these findings, it is clear that data augmentation 
techniques must be carefully adapted based on linguistic 
characteristics. For instance, AbA provides consistent 
improvements across languages, while SA and MS show varying 
results depending on the phonetic and acoustic properties of the 
target language. This suggests that cross-linguistic insights into 
data augmentation can inform more sophisticated deep learning 
models by adjusting augmentation strategies to suit specific 
language families. Furthermore, our findings reveal different 
behavior of these techniques not only on the learning process 
but also on model regularization and generalization. This insight 
is crucial for integrating these methods into more sophisticated 
deep learning-based augmentation approaches, particularly 
those using aligned data augmentation in conjunction with 
classic approaches, such as SA in On-the-Fly19 or where an AbA 
pipeline is used in parallel with text augmentation in TGSS20 
method.

6. Conclusion
This study undertook a comprehensive evaluation of various 

data augmentation techniques to improve the Whisper model’s 
performance for low-resource languages. The investigation 
revealed that augmentation methods, including time, frequency 
and time-frequency domain features, significantly impact the 
model’s generalization ability and representation improvement 
across different languages.

The findings indicate that AbA techniques, which manipulate 
audio samples directly, offer substantial benefits in enhancing 
the model’s adaptability to variable audio inputs. These 
techniques demonstrated notable effectiveness in improving 
model performance, particularly in languages with diverse 
acoustic characteristics. Such improvements align with previous 
research that emphasizes the efficacy of AbA in similar 
contexts4,19. Furthermore, the study highlighted that the effects 
of data augmentation techniques on learning behavior, model 
regularization and generalization vary across languages. This 
variation underscores the importance of tailoring augmentation 

strategies to specific linguistic contexts to optimize model 
performance. These insights are consistent with findings from 
other studies on the impact of augmentation on model behavior 
and performance20.

Insights from this research suggest that integrating advanced 
deep learning-based augmentation methods with traditional 
approaches could further enhance model efficiency and 
effectiveness. Such integration promises to generate diverse 
training samples, improve the cost-effectiveness of training 
larger models and offer greater flexibility in applying various 
augmentation techniques. Overall, these findings contribute 
valuable knowledge on leveraging data augmentation to address 
the challenges of low-resource language processing, paving the 
way for future advancements in ASR models.
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