
Enhance the Application Performance by Customizing Kubernetes Scheduling

Pallavi Priya Patharlagadda*

Citation: Patharlagadda PP. Gorm DB Deep Dive and Techniques to Update Default Values to DB. J Artif Intell Mach Learn & 
Data Sci 2023, 1(4), 995-998. DOI: doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/236

Received: 03 December, 2023; Accepted: 28 December, 2023; Published: 30 December, 2023

*Corresponding author: Pallavi Priya Patharlagadda, USA, E-mail: Pallavipriya527.p@gmail.com

Copyright: © 2023 Patharlagadda PP., This is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

1

Research ArticleVol: 1 & Iss: 4

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/236

 A B S T R A C T 
Kubernetes is a powerful container orchestration platform that provides a way to automate the deployment, scaling, and 

management of containerized applications. One of the most important aspects of Kubernetes cluster management is pod 
assignment to nodes. Although the default procedure may seem overly general, you may modify it by utilizing sophisticated 
features such as node affinity. Node selector, node affinity and anti-affinity, and pod affinity are among the fundamental 
Kubernetes scheduling principles covered in this article. It also provides an example of how you may increase the availability and 
fault tolerance of your workload by combining automation and node affinity.

1. Introduction
The Kubernetes scheduler’s method of allocating pods among 

worker nodes affects resources and performance, which in turn 
affects how much you spend. Then, knowing how the process 
operates and how to maintain it is crucial. By default, Kubernetes 
distributes pods haphazardly among the cluster’s accessible 
nodes. Nonetheless, there are numerous situations in which you 
might have to manage where your pods are placed on particular 
nodes. For instance, you might want to avoid putting pods on 
nodes that are handling other crucial workloads or only install 
pods that require particular hardware resources (like GPUs) on 
nodes that have those resources available. Many capabilities are 
available in Kubernetes for managing the placement of pods, 
such as node selectors, affinity and anti-affinity rules, taints, 
and tolerances. In the subsequent sections, we will go over the 
various methods for advanced pod scheduling in Kubernetes and 
give examples of how to apply them to address typical use cases.

Applications of Kubernetes Pod-to-Node Scheduling:

Often, in a Kubernetes system, the scheduling of pods to 
nodes needs to be customized. The following are some of the 
most typical situations in which advanced pod scheduling proves 
advantageous:

Pods running on nodes equipped with specialized hardware: 
Certain Kubernetes applications can need particular hardware. 
Elasticsearch pods may function better on SSDs than HDDs, 
while pods executing machine learning tasks might need high-
performance GPUs rather than CPUs. Therefore, assigning pods 
to nodes with the right hardware are the recommended practice 
for any resource-aware Kubernetes cluster management strategy.

Pod colocation and codependency: To enhance speed, 
minimize network latency, and avoid connection failures, 
it could be essential to co-locate specific pods on the same 
server in a microservices environment or a tightly connected 
application stack. One common recommendation is to run a web 
server alongside an in-memory caching service or database on 
the same system.

Data locality: Requirements for data locality in data-intensive 
applications could be comparable to those in the use case before 
it. It may be necessary for these applications to have the databases 
installed on the same system as the customer-facing application 
to guarantee quicker reads and improved write performance.

 High availability and fault tolerance: Running pods on nodes 
deployed in different availability zones is a smart strategy to 
make application deployments extremely available and fault-
tolerant.

https://doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/236
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/236


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Patharlagadda PP.,

2

Node Taints and Pods Tolerations:

In a Kubernetes cluster, taints and tolerations offer a potent 
method for managing pod distribution among certain nodes. The 
idea is straightforward but powerful: A toleration permits a pod 
to withstand the effects of taints and be scheduled on particular 
nodes, whereas a taint restricts a node by determining which 
pods can or cannot be scheduled on it.

Taints: A taint is a pair of keys that indicate a node condition 
and its consequence. NoSchedule or PreferNoSchedule are the 
possible outcomes. NoSchedule taints prohibit the scheduling 
of any pod on the node that does not have a corresponding 
toleration. While not stopping it, a PreferNoSchedule taint 
instructs the scheduler to steer clear of scheduling pods on the 
node.

You can use the kubectl taint command to taint the nodes.

kubectl taint nodes <node-name> <key>=<value>:<taint-
effect> 

Tolerations: A toleration is a pair of keys and values that 
define a node condition and its consequence. NoExecute or 
Effect are the two possible outcomes. A node with a matching 
taint protects a pod from eviction under NoExecute toleration. 
Even in cases when a pod lacks toleration for a particular taint, it 
is still possible to schedule it on a node that has a corresponding 
taint thanks to an effect tolerance.

There are 3 pre-defined effects as below:

•	 NoSchedule: Do not place the pods unless they can tolerate 
the taint

•	 PreferNoSchedule: Try to avoid scheduling the pods that 
cannot tolerate the taint. Not guaranteed.

•	 NoExecute: If the pods can’t handle the taint by the time 
it’s enabled on the nodes, they will be killed.

One way to do this would be to design a situation in which 
a specific node can only host pods that have essential services, 
like controllers. Taints and tolerations are easy to implement. 
To begin with, taint a node that requires the application of 
non-standard scheduling behavior. As an illustration:

kubectl taint nodes node01 critical=true: NoSchedule

node “node01” tainted

The configuration process does not end with the creation of a 
taint. We must include the following toleration to schedule pods 
on a compromised node:

apiVersion: v1
metadata:
 name: taint-toleration
spec:
 containers:
 - name: taint-toleration
 image: nginx
 resources:
 requests:
 cpu: 0.8
 memory: 4Gi
 limits:
 cpu: 3.0
 memory: 22Gi
 tolerations:

 - key: “example”
 operator: “Exists”
 effect: “NoSchedule”

In this case, I used the “Exists” operator to apply the 
tolerance for the aforementioned taint. Alternatively, I might 
apply tolerance to any node that matches the taint’s key by using 
the “EQUAL” operator. But the value need to be specified. It’s 
crucial to keep in mind that toleration does not ensure that the pod 
will only be positioned in the contaminated node. It is possible 
to insert the aforementioned pod into the uncontaminated 
nodes and allow them to receive any pods if the other nodes are 
uncontaminated.

Selecting a Node by a Pod: nodeName, nodeSelector, and 
nodeAffinity

An alternative method involves setting up a Pod so that “it” 
chooses the Node it will operate on.
For this, we have nodeName, nodeSelector, nodeAffinity, and 
nodeAntiAffinity.
nodeName: The easiest method. Takes precedence over 
everything else:

apiVersion: v1
kind: Pod
metadata:
 name: nginx
spec:
 containers:
 - name: sample-nginx
image: nginx: latest
nodeName: node01

NodeSelector is essentially a label-based pod-to-node 
scheduling technique in which users tag nodes with specific 
labels and ensure that the nodeSelector field reflects those labels. 
To illustrate the kind of storage on the node, let’s say that one of 
the node labels is “storage=ssd.”

kubectl describe node “node01”
Name: node01
Roles: node
Labels: critical=true,

I’ll designate the nodeSelector field in the Pod manifest with 
that label to schedule pods onto the node with that label.

apiVersion: v1
kind: Pod
metadata:
name: nginx
labels:
 env: dev
spec:
containers:
– name: my-nginx
 image: nginx:latest
 imagePullPolicy: IfNotPresent
nodeSelector:
critical: true

The most basic kind of advanced pod scheduling is node 
selectors. They are not particularly helpful, though, when 
additional guidelines and requirements need to be taken into 
account while scheduling pods.



3

Patharlagadda PP., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:4

nodeAffinity and nodeAntiAffinity: nodeAffinity and 
nodeAntiAffinityoperate in the same way as thenodeSelector, 
but have more flexible capabilities.

You can, for instance, establish hard or soft launch limitations. 
In the event of a soft limit, the scheduler will attempt to launch 
a Pod on the relevant Node and, failing that will launch it on a 
different Node. As a result, the Pod will stay in Pending status if 
you specify a hard limit and the scheduler is unable to start it on 
the chosen Node.

The hard limit is set in the field .spec.affinity.nodeAffinity 
with the requiredDuringSchedulingIgnoredDuringExecution, 
and the soft limit is set with the preferredDuringSchedulingIgno
redDuringExecution.

We deploy pods on nodes in particular availability zones 
using node affinity in the example below. Let’s examine the 
manifest that is below:

apiVersion: v1
kind: Pod
metadata:
name: node-affinity
spec:
affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/zone
 operator: In
 values:
 - Westcoast-1a
 - Westcoast-1b
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: another-node-key
 operator: In
 values:
 - another-node-value
containers:
– name: node-affinity
 image: app

The nodeAffinity part of the pod manifest contains the 
“required during scheduling ignored during execution” element, 
which specifies “hard” affinity restrictions. Using kubernetes.io/
zone as the example key and values Westcoast-1a or Westcoast-
1b for the label, I instructed the scheduler to only place the pod 
on nodes with that label.

We filtered the array of existing label values using the In 
logical operator to accomplish this. I may also use the operations 
NotIn, Exists, DoesNotExist, Gt, and Lt.

The “preferred during scheduling ignored during execution” 
element in the specification contains the details of the “soft” 
rule. This example indicates that I want to use nodes with a label 
that has a key named “custom-key” and a value named “custom-
value” out of the nodes that satisfy the “hard” condition. I have 
no problem scheduling pods for other candidates if they match 
the “hard” requirements, though, if there are no such nodes.

Creating node affinity rules that combine “hard” and “soft” 
restrictions is a recommended practice. Deployment scheduling 
becomes more flexible and predictable by using this “best-
effort” method, which is to use some option if possible but not 
reject scheduling if the option is not accessible.

podAffinity and podAntiAffinity:

You can modify Pod Affinity based on the labels that Pods 
that are now executing on the Node will have, much like you 
would when choosing a Node using hard and soft restrictions. 
Refer to anti-affinity and inter-pod affinity. Similar definitions 
apply to node and inter-pod affinity. But in this instance, I’ll take 
advantage of the pod spec’s podAffinity parameter.

apiVersion: v1
kind: Pod
metadata:
name: example-pod-affinity
spec:
affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S1
 topologyKey: kubernetes.io/zone
 containers:
– name: pod-affinity
 image: your-container

Pod affinity is compatible with logical operators and match 
expressions, just as node affinity. They are, however, used in 
this instance on the pods’ label selectors that are operating on 
a specific node. A new pod is collocated with the target pod on 
the same system if the given phrase matches the target pod’s pod 
label.

The pod anti-affinity feature allows pods to resist one 
another. As previously stated, distributing pods among several 
availability zones helps prevent a single point of failure in 
Kubernetes. In the pod spec’s anti-affinity section, I can set up 
comparable behavior. To achieve pod anti-affinity, two pods are 
required:

The first pod:
apiVersion: v1
kind: Pod
metadata:
name: s1
labels:
 security: s1
spec:
containers:
– name: c1
 image: initial-img
Note that the first pod has the label “security: s1.”
apiVersion: v1
kind: Pod
metadata:
name: s2
spec:



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Patharlagadda PP.,

4

affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s1
 topologyKey: kubernetes.io/hostname
containers:
– name: pod-anti-affinity
 image: second-image

Referred to under the spec.affinity, the second pod is the 
label selector security:s1.podAntiAffinity. This means that the 
node that currently hosts any pods with the label “security:s1” 
will not have this pod scheduled to it.

topologySpreadConstraints:

Initially, visualize a group of twenty nodes. A workload that 
scales its replica count automatically is what you want to run. 
You want to run those replicas on as many different nodes as you 
can because it can scale from two to twenty Pods. This method 
lessens the possibility that a node failure may impact workload.

Next, consider an application that has five Pods on each of 
three nodes in the same Availability Zone, and fifteen replicas 
operating on those nodes. Though customers interacting with the 
workload come from three different zones, you have reduced the 
danger of a node failure. However, traffic crossing different AZs 
leads to greater network costs and delays.

By distributing Pods among nodes in various AZs and 
directing clients to the instances inside the appropriate zone, 
you can lower them. To further reduce the chance of a failure 
impacting your Pods, deploy the workload over many zones and 
numerous nodes.

Generally speaking, you would want to split up the 
effort equally among all failure domains. Using the spec.
topologySpreadConstraints field, you can set that up with pod 
topology constraints.

The operation of pod topology spread constraints

An illustration of a pod topology spread constraint is as follows:

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
spec:
 # Configure a topology spread constraint
 topologySpreadConstraints:
 - maxSkew: <integer>
 minDomains: <integer> # optional; 
 topologyKey: <string>
 whenUnsatisfiable: <string>
 labelSelector: <object>
 matchLabelKeys: <list> # optional; 
 nodeAffinityPolicy: [Honor|Ignore] # optional; 
 nodeTaintsPolicy: [Honor|Ignore] # optional;

Let’s just quickly review the required fields for the time 
being:

• maxSkew is the extent to which all of your zones can have 
an unequal distribution of your Pods. It can’t have a value 
of zero.

• The node labels’ key is topologyKey. Nodes in the same 
topology are those that have the same labels and values. The 
scheduler attempts to allocate a balanced number of pods to 
each topology instance, which is a domain.

• When a Pod doesn’t meet your spread requirement, 
whenUnsatisfiable gives you the option of what to do with 
it:

1. DoNotSchedule instructs the scheduler not to schedule it.

2. ScheduleAnyway tells the scheduler to schedule it and 
prioritize the nodes minimizing the skew.

• It is possible to find matching Pods with labelSelector. 
The Pods that match the label selector determine how 
many Pods are in the relevant topology domain.

2. Conclusion
One effective way to raise the performance, availability, 

and resilience of your containerized applications is to employ 
Kubernetes’ advanced pod scheduling feature. Through 
comprehension of the various functionalities offered and their 
utilization, you may manage the arrangement of your pods 
to suit the particular requirements of your application. For 
example, operational and maintenance pods can be scheduled on 
oam nodes and application pods can be scheduled on userplane 
node. So, the application traffic doesn’t impact the operational 
and maintanence pods traffic. This also helps us in separating the 
userplane and control plane traffic.

3. References

1. https://medium.com/@seifeddinerajhi/pod-scheduling-in-
kubernetes-control-the-placement-of-your-pods-%EF%B8%8F-
db5add6f2803

2. https://kubernetes.io/docs/concepts/scheduling-eviction/taint-
and-toleration/

3. https://cast.ai/blog/node-affinity-and-other-ways-to-control-
scheduler/

4. https://kubernetes.io/docs/concepts/scheduling-eviction/
assign-pod-node/

https://medium.com/@seifeddinerajhi/pod-scheduling-in-kubernetes-control-the-placement-of-your-pods-%EF%B8%8F-db5add6f2803
https://medium.com/@seifeddinerajhi/pod-scheduling-in-kubernetes-control-the-placement-of-your-pods-%EF%B8%8F-db5add6f2803
https://medium.com/@seifeddinerajhi/pod-scheduling-in-kubernetes-control-the-placement-of-your-pods-%EF%B8%8F-db5add6f2803

	_GoBack
	_GoBack
	_GoBack
	_GoBack

