
Efficient Data Management: Selecting, Designing and Optimizing Databases for 
Enhanced Performance
Akash Rakesh Sinha*

Citation: Sinha AR. Efficient Data Management: Selecting, Designing and Optimizing Databases for Enhanced Performance. J 
Artif Intell Mach Learn & Data Sci 2022, 1(1), 1605-1610. DOI: doi.org/10.51219/JAIMLD/akash-rakesh-sinha/360

Received: 02 February, 2022; Accepted: 26 February, 2022; Published: 28 February, 2022

*Corresponding author: Akash Rakesh Sinha, Software Engineer 2, J.P. Morgan Chase & Co., USA

Copyright: © 2022 Sinha AR., Postman for API Testing: A Comprehensive Guide for QA Testers., This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/akash-rakesh-sinha/360

 A B S T R A C T 

In today's data-driven world, efficient data management is paramount for the success of modern applications and businesses. 
The exponential growth of data volume and complexity has made it essential to choose the right database systems, design optimal 
data models and implement effective optimization strategies. This paper explores various types of databases, including relational 
and NoSQL systems and their respective storage models. We delve into the criteria for selecting the appropriate database based 
on specific use cases, emphasizing data modeling techniques, normalization and best practices in database administration. 
Furthermore, we discuss strategies for efficient data retrieval, storage, updates and deletion, including considerations between 
hard deletion and soft deletion. By examining query optimization techniques, indexing, caching strategies and performance 
metrics, we aim to provide a comprehensive guide to enhancing overall dashboard performance through effective data retrieval. 
Real-world examples across different industries illustrate the practical applications of these concepts, offering insights into 
optimizing databases for enhanced performance.

Keywords: Data Management, Database Selection, Data Modeling, Normalization, Database Administration, Query Optimization, 
NoSQL Databases, SQL Databases, Data Storage, Data Retrieval, Indexing Strategies, Caching, Dashboard Performance, Data 
Lifecycle Management, Database Security, Real-time Data Processing, Database Performance, Data Integrity

1. Introduction
The digital age has witnessed an unprecedented surge in data 

generation, driven by the proliferation of internet-connected 
devices, social media, e-commerce and the Internet of Things 
(IoT). Organizations are inundated with vast amounts of data, 
making efficient data management more critical than ever. 
Databases serve as the backbone for storing organizing and 
retrieving this data, directly impacting application performance, 
scalability and user satisfaction.

1.1. Importance of Efficient Data Management in Modern 
Applications

Efficient data management is not merely about storing 
data but about ensuring that data is accessible, reliable and 
usable when needed. Inadequate data management can lead 

to slow query responses, data inconsistencies and system 
downtimes, which can adversely affect business operations and 
competitiveness. With users expecting real-time responses and 
seamless experiences, applications must handle data efficiently 
to meet these demands.

1.2. Purpose and Scope of the Paper

This paper aims to provide a comprehensive exploration of 
efficient data management practices, focusing on the selection, 
design and optimization of databases to enhance performance. 
We will examine different database types and storage models, 
discuss criteria for choosing the right database and delve into 
data modeling techniques and best practices. Additionally, 
we will cover strategies for data management throughout its 
lifecycle, query optimization and performance enhancement 
techniques.

https://doi.org/10.51219/JAIMLD/akash-rakesh-sinha/360
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/akash-rakesh-sinha/360


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Sinha AR.,

2

Advantages:

• Faster write operations for entire rows.
• Efficient for applications with frequent read and write 

operations on individual records.

Use Cases: Online Transaction Processing (OLTP) systems, 
such as banking applications and order processing systems.

Column-Based Storage: In column-based storage, data is 
stored column by column. This model is optimized for read-
heavy operations involving aggregates over large datasets.

Advantages:

• Improved data compression due to similarity within 
columns.

• Faster read performance for analytical queries that access 
specific columns.

Use Cases: Online Analytical Processing (OLAP) systems, data 
warehousing, business intelligence applications.

2.3 Criteria for Choosing the Right Database
Selecting the appropriate database requires careful consideration 
of the application’s specific needs.
Use Cases and Examples

• E-commerce Platform: Requires handling large numbers 
of transactions, inventory updates and user sessions.

• Recommendation: Use a relational database like MySQL 
for transaction integrity, combined with a NoSQL database 
like Redis for session caching.

• Real-time Analytics: Demands rapid data ingestion and 
quick query responses.

• Recommendation: Employ a column-family store like 
Apache Cassandra for high write throughput and scalability.

• Content Management System: Needs flexibility to store 
diverse content types and structures.

• Recommendation: Use a document database like 
MongoDB for its flexible schema capabilities.

• Social Media Application: Involves complex relationships 
and interactions between users.

• Recommendation: Implement a graph database like Neo4j 
to efficiently handle and query relationships.

SQL vs. NoSQL Design Considerations

• Scalability: NoSQL databases are designed for horizontal 
scalability across commodity servers, whereas traditional 
SQL databases scale vertically but can be scaled horizontally 
with additional layers like sharding.

• Flexibility: NoSQL databases offer schema-less designs, 
allowing for rapid development and changes. SQL databases 
require predefined schemas, which can be restrictive but 
ensure data integrity.

• Performance: NoSQL databases often provide better 
performance for specific use cases like large-scale reads/
writes, but SQL databases excel in complex querying and 
transactional operations.

• Consistency: SQL databases prioritize consistency, 
ensuring that all users see the same data at the same time. 
NoSQL databases may offer eventual consistency for higher 
availability.

2. Database Types, Storage Models and Selection 
Criteria

Efficient data management begins with selecting the 
appropriate database system that aligns with the application’s 
requirements. Understanding the strengths and limitations of 
different database types and storage models is essential for 
making informed decisions.

2.1 Overview of Database Types

Relational Databases: Relational databases store data 
in structured tables consisting of rows and columns, with 
relationships defined between tables. They use Structured Query 
Language (SQL) for data manipulation and querying. Relational 
databases are known for their adherence to ACID properties, 
ensuring data integrity and consistency.

• Use Cases: Ideal for applications requiring complex queries 
and transactions, such as financial systems, enterprise 
resource planning (ERP) systems and customer relationship 
management (CRM) platforms.

• Examples: MySQL, PostgreSQL oracle Database, 
Microsoft SQL Server.

NoSQL Databases: NoSQL databases emerged to address the 
limitations of relational databases in handling large volumes of 
unstructured or semi-structured data and to provide horizontal 
scalability.

Key-Value Stores: Store data as a collection of key-value pairs, 
where the key is a unique identifier. They offer high performance 
and are simple to use.

• Use Cases: Caching, session management, user preference 
storage.

• Examples: Redis, Riak, Amazon DynamoDB.

Document Databases: Store data in documents (typically JSON 
or BSON format), allowing for flexible schemas.

• Use Cases: Content management systems, blogging 
platforms, applications requiring rapid development and 
frequent schema changes.

• Examples: MongoDB, CouchDB.

Column-Family Stores: Organize data into column families, 
enabling efficient storage and retrieval of large datasets.

• Use Cases: Real-time analytics, time-series data, large-
scale distributed data storage.

• Examples: Apache Cassandra, HBase.

Graph Databases: Focus on storing relationships between data 
entities, represented as nodes and edges.

• Use Cases: Social networks, recommendation engines, 
fraud detection systems.

• Examples: Neo4j, Amazon Neptune.

2.2 Storage Models

The choice of storage model affects how data is physically 
stored and accessed, influencing performance and suitability for 
specific tasks.

Row-Based Storage: In row-based storage, data is stored row 
by row. This model is efficient for transactional systems where 
operations often involve entire records.



3

Sinha AR., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

SMALLINT instead of INT when values are within a smaller 
range.)

Indexing: Creating indexes on frequently queried columns 
speeds up data retrieval.

• Avoid over-indexing, which can slow down write operations.
• Use composite indexes for queries involving multiple 

columns.

Avoiding Nulls: Design schemas to minimize NULL values, as 
they can complicate queries and indexing.

3.4 Database Administration: Best Practices and Tools

Proper database administration ensures the system remains 
reliable and efficient.

Routine Maintenance:

• Backup and Recovery: Regular backups protect against 
data loss. Implement point-in-time recovery strategies.

• Index Maintenance: Rebuild or reorganize fragmented 
indexes to maintain performance.

• Statistics Updates: Keep database statistics current for the 
query optimizer to make informed decisions.

Monitoring and Alerting:

• Use tools like SQL Server Management Studio oracle 
Enterprise Manager or open-source alternatives like 
pgAdmin.

• Set up alerts for critical metrics such as disk space, CPU 
usage and query response times.

Automation:

• Schedule regular maintenance tasks using scripts or 
database jobs.

• Automate backups and integrity checks.

3.5 Database Security, Access Control and Data Integrity 
Patterns

Securing the database is essential to protect sensitive data 
and comply with regulations.

Authentication Methods:

• Implement strong password policies.
• Use multi-factor authentication where possible.
• Integrate with directory services like LDAP or Active 

Directory.

Role-Based Access Control (RBAC):

• Assign permissions based on roles rather than individual 
users.

• Principle of Least Privilege: Users have only the permissions 
necessary to perform their duties.

Encryption:

• Data at Rest: Use Transparent Data Encryption (TDE) to 
encrypt database files.

• Data in Transit: Implement SSL/TLS encryption for 
connections between applications and the database.

Data Integrity Constraints:

• Use primary keys to uniquely identify records.

Understanding these factors helps in aligning the database 
choice with performance expectations, development speed and 
scalability requirements.

3. Data Modeling, Storage and Security Best Practices
Effective data management extends beyond database 

selection to include how data is structured, stored and secured.

3.1 Data Modeling Techniques

Data modeling involves defining how data is connected, 
processed and stored within the system.

Entity-Relationship (ER) Modeling: Visual representation 
of entities (tables) and their relationships. ER models help in 
understanding data requirements and designing logical schemas.

Unified Modeling Language (UML): Provides a standardized 
way to visualize system architecture, including class diagrams 
for database design.

Importance:

• Ensures data consistency and integrity.
• Facilitates communication among stakeholders.
• Provides a blueprint for database implementation.

3.2 Normalization Techniques and Schema Design

Normalization organizes data to minimize redundancy and 
dependency, which enhances data integrity.

• First Normal Form (1NF): Eliminate repeating groups by 
ensuring that each column contains atomic values.

• Second Normal Form (2NF): Remove partial dependencies; 
all non-key attributes must depend on the entire primary 
key.

• Third Normal Form (3NF): Eliminate transitive 
dependencies; non-key attributes depend only on the 
primary key.

• Boyce-Codd Normal Form (BCNF): A stricter version of 
3NF, addressing certain anomalies not covered by 3NF.

Benefits:

• Reduces data redundancy.
• Improves data integrity and consistency.
• Simplifies maintenance and updates.

Considerations:

Over-normalization can lead to complex queries and reduced 
performance. In such cases, denormalization might be used 
strategically.

3.3 Best Practices for Data Storage

Implementing efficient data storage strategies enhances 
performance and scalability.

Data Partitioning: Divides large tables into smaller, more 
manageable pieces, improving query performance and 
maintenance.

• Horizontal Partitioning: Splitting data by rows.

• Vertical Partitioning: Splitting data by columns

Efficient Data Types: Selecting appropriate data types conserves 
storage space and improves performance. (Example: Using 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Sinha AR.,

4

• Enforce foreign key constraints to maintain referential 
integrity.

• Apply unique and check constraints to enforce business 
rules.

Auditing and Logging:

• Enable auditing to track access and changes to sensitive 
data.

• Maintain logs for compliance with regulations like GDPR 
and HIPAA.

4. Data Management Strategies and Lifecycle
Managing data effectively throughout its lifecycle ensures it 

remains valuable and compliant with policies and regulations.

4.1 Data Storage Strategies

Data Archiving:

• Move inactive data to archive storage to reduce the load on 
the primary database.

• Use slower, cost-effective storage solutions for archived 
data.

Compression:

• Apply data compression to reduce storage costs and improve 
I/O performance.

• Consider trade-offs between CPU usage and storage savings.

Tiered Storage Solutions:

• Implement storage tiers based on data access frequency.
• Use high-performance storage for frequently accessed data 

and economical options for less critical data.

4.2 Data Update and Deletion Practices

Efficient Updates:

• Use bulk operations for large updates to minimize 
transaction overhead.

• Optimize update statements to affect only necessary records.

Data Deletion Policies:

Hard Deletion:

• Physically removes data from the database.
• Necessary when compliance requires complete erasure.
• Risks losing historical data and potential audit trails.

Soft Deletion:

• Marks records as inactive (e.g., setting an is_deleted flag).
• Preserves data for historical analysis and auditing.
• Requires queries to exclude soft-deleted records.

Considerations:

• Balance between regulatory compliance, performance and 
data retention needs.

• Implement purging strategies to remove soft-deleted records 
periodically if necessary.

4.3 Data Lifecycle Management

Data Creation:

• Ensure data quality by validating inputs at the application 
level.

• Use default values and constraints to enforce data standards.

Data Maintenance:

• Regularly clean data to correct errors and remove duplicates.
• Implement data governance policies to maintain data 

accuracy.

Data Retention Policies:

• Define how long different types of data should be retained.

• Consider legal requirements and business needs.

Data Disposal:

• Securely delete data when it is no longer needed.
• Use methods like shredding or cryptographic erasure to 

prevent data recovery.

Compliance:

• Stay informed about regulations like GDPR, HIPAA and 
others that affect data handling.

• Implement processes to comply with data subject rights, 
such as the right to access or delete personal data.

5. Query Optimization and Performance Enhancement
Optimizing queries and database performance is crucial for 

responsive applications and efficient resource utilization.

5.1 Efficient Query Writing

Query Design Patterns for Data Retrieval:

• Select Only Needed Columns: Avoid SELECT *; specify 
only the columns required.

• Use Proper Joins: Choose the appropriate join type (INNER, 
LEFT, RIGHT) to avoid unnecessary data processing.

• Filter Early: Apply WHERE clauses as early as possible to 
reduce the data set.

Avoiding Common Pitfalls:

• Function Usage: Avoid using functions on indexed columns 
in WHERE clauses, as this can prevent index usage.

• Wildcard Searches: Place wildcards appropriately in LIKE 
statements to enable index usage.

5.2 Query Optimization Techniques

Indexing Strategies:

• Assess Query Patterns: Analyze which queries are run 
most frequently and index accordingly.

• Maintain Indexes: Regularly rebuild or reorganize indexes 
to prevent fragmentation.

• Use Index Covering: Create indexes that include all 
columns needed for a query to eliminate table lookups.

Caching Strategies for Performance:

• In-Memory Databases: Use databases like Redis for 
caching frequently accessed data.

• Application-Level Caching: Implement caching 
mechanisms within the application to store results of 
expensive queries.



5

Sinha AR., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

5.3 Database Partitioning and Sharding

Horizontal Partitioning (Sharding):

• Distributes data across multiple nodes based on a shard key.
• Improves write performance and allows for linear scalability.

Vertical Partitioning:

• Separates data into different tables or databases based on 
columns.

• Useful for isolating sensitive data or frequently accessed 
columns.

Considerations:

• Requires careful design to ensure data consistency and 
query efficiency.

• Increases complexity in data retrieval and management.

5.4 Performance Metrics, Monitoring and Optimization for 
Databases

Key Metrics:

• Query Latency: Time taken to execute queries.
• Throughput: Number of transactions processed per second.
• Resource Utilization: CPU, memory, disk I/O usage.

Monitoring Tools:

• Use built-in database monitoring features or third-party 
tools to collect and analyze performance data.

• Set up alerts for abnormal metrics indicating potential 
issues.

5.5 Tools and Technologies for Database Optimization and 
Query Performance Analysis

Execution Plans:

• Analyze execution plans to understand how queries are 
executed.

• Identify bottlenecks like full table scans or missing indexes.

Profiling Tools:

• Use tools like MySQL’s EXPLAIN, SQL Server’s Query 
Analyzer or Oracle’s SQL Trace.

• Profile queries to find slow-running statements.

Automated Tuning:

• Some databases offer automated tuning advisors that 
suggest indexes or query modifications.

5.6 Real-time Data Processing Patterns

Event Streaming Platforms:

• Use technologies like Apache Kafka for real-time data 
ingestion.

• Enable applications to process data streams efficiently.

Stream Processing Frameworks:

• Implement Apache Flink or Spark Streaming for processing 
and analyzing data in motion.

• Support complex event processing and windowing 
operations.

5.7 Optimizing Dashboard Performance through Effective 
Data Retrieval

Materialized Views:

• Precompute and store complex query results.
• Refresh views periodically or upon data changes.

Incremental Updates:

• Update dashboards with only new or changed data.
• Reduces processing time and resource consumption.

Data Aggregation and Summarization:

• Aggregate data at the database level to minimize data 
transfer.

• Use summary tables for frequently accessed aggregated 
data.

5.8 Database Monitoring and Maintenance

Proactive Monitoring:

• Continuously monitor database health and performance.
• Use tools to visualize trends and detect anomalies.

Scheduled Maintenance:

• Plan maintenance activities during off-peak hours.
• Communicate downtime to stakeholders to minimize 

disruption.

Continuous Improvement:

• Regularly review performance metrics.
• Adjust configurations, indexes and queries based on 

insights.

6. Real-world Implementation Examples
Understanding how these concepts apply in real-world 

scenarios helps solidify their importance and practicality.

6.1 Transaction-Heavy Financial Systems

Financial systems require the utmost reliability and integrity.

• Use of Relational Databases: Systems like Oracle or 
PostgreSQL are used for their strong ACID compliance.

• High Availability: Implementing clustering and replication 
ensures the system remains operational even during failures.

• Security Measures: Advanced encryption and strict access 
controls protect sensitive financial data.

6.2 Real-time Analytics Platforms

Companies rely on real-time insights for decision-making.

• Columnar Databases: Use of databases like Amazon 
Redshift enables fast querying of large datasets.

• Distributed Processing: Tools like Apache Spark process 
data in-memory for rapid analysis.

• Data Ingestion Pipelines: Implementing Kafka streams 
data into analytics systems in real-time.

6.3 Content Management Systems

Flexibility is key due to varying content types.

• Document Databases: MongoDB allows for dynamic 
schemas, accommodating different content structures.



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Sinha AR.,

6

• Scalability: Sharding and replication support growing user 
bases and content volumes.

• Performance Optimization: Indexing and caching improve 
content retrieval speeds.

6.4 E-commerce Platforms

Handling high traffic and ensuring a seamless user experience 
is critical.

• Sharding Strategies: Data is partitioned across servers to 
balance load.

• Caching Layers: Implementing Redis caches product data 
and user sessions.

• Microservices Architecture: Decomposes the application 
into smaller services for better scalability and maintainability.

6.5 Social Media Applications

High user engagement requires robust and scalable systems.

• Graph Databases: Neo4j efficiently manages and queries 
complex user relationships.

• Real-time Processing: Event-driven architectures handle 
live feeds and notifications.

• Scalable Storage: Use of cloud storage solutions to handle 
vast amounts of user-generated content.

7. Conclusion
Summary of Key Points: Efficient data management is a 
multifaceted challenge that involves careful selection of database 
systems, thoughtful data modeling and diligent optimization 
efforts. By understanding the strengths and limitations of 
different databases and storage models organizations can 
tailor their data management strategies to their specific needs. 
Implementing best practices in data modeling, normalization 
and security ensures data integrity and compliance. Query 
optimization and performance enhancement techniques are 
essential for maintaining responsive applications and satisfying 
user expectations.

Final Thoughts on Efficient Data Management: In an 
era where data is a critical asset, mastering efficient data 
management is not optional but essential. It requires continuous 
learning, adaptation and a proactive approach to emerging 
technologies and methodologies. Organizations that prioritize 
data management are better positioned to innovate, scale and 
maintain a competitive edge.

Future Directions: The future of data management is poised 
to be influenced by advancements in artificial intelligence 
and machine learning, which can automate optimization tasks 
and predict performance issues. Developments in distributed 
ledger technologies and quantum computing may also redefine 
data storage and processing paradigms. Ongoing research and 
innovation will be crucial in addressing the challenges posed by 
ever-growing data volumes and complexity.

8. References

1. Elmasri R, Navathe SB. Fundamentals of Database Systems 
(7th ed.). Pearson, 2015.

2. Sadalage PJ, Fowler M. NoSQL distilled: a brief guide to the 
emerging world of polyglot persistence. Pearson Education, 
2013.

3. Hellerstein JM, Stonebraker M, Hamilton J. Architecture of 
a Database System. Foundations and Trends in Databases, 
2007;1(2):141-259.

4. Ramakrishnan R, Gehrke J. Database management systems. 
McGraw-Hill, Inc, 2002.

5. Chaudhary R, Aujla GS, Kumar N, Rodrigues JJ. Optimized big 
data management across multi-cloud data centers: Software-
defined-network-based analysis. IEEE Communications 
Magazine, 2018;56(2):118-126.

6. Ioannidis YE. Query optimization. ACM Computing Surveys 
(CSUR), 1996;28(1):121-123.

7. Sharma V, Dave M. Sql and nosql databases. International 
Journal of Advanced Research in Computer Science and 
Software Engineering, 2012;2(8).

8. Bertino E, Sandhu R. Database security-concepts, approaches 
and challenges. IEEE Transactions on Dependable and secure 
computing, 2005;2(1):2-19.

9. Kantardzic M. Data mining: concepts, models, methods and 
algorithms. John Wiley & Sons, 2011.

10. Schram A anderson KM. MySQL to NoSQL: data modeling 
challenges in supporting scalability. In Proceedings of the 3rd 
annual conference on Systems, programming and applications: 
software for humanity 2012;191-202.

https://www.amazon.in/Fundamentals-Database-System-Elmasri-Ramez/dp/933258270X
https://www.amazon.in/Fundamentals-Database-System-Elmasri-Ramez/dp/933258270X
https://www.amazon.in/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
https://www.amazon.in/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
https://www.amazon.in/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
https://www.amazon.in/Database-Management-Systems-Raghu-Ramakrishnan/dp/0072465638
https://www.amazon.in/Database-Management-Systems-Raghu-Ramakrishnan/dp/0072465638
https://www.researchgate.net/publication/323155399_Optimized_Big_Data_Management_across_Multi-Cloud_Data_Centers_Software-Defined-Network-Based_Analysis
https://www.researchgate.net/publication/323155399_Optimized_Big_Data_Management_across_Multi-Cloud_Data_Centers_Software-Defined-Network-Based_Analysis
https://www.researchgate.net/publication/323155399_Optimized_Big_Data_Management_across_Multi-Cloud_Data_Centers_Software-Defined-Network-Based_Analysis
https://www.researchgate.net/publication/323155399_Optimized_Big_Data_Management_across_Multi-Cloud_Data_Centers_Software-Defined-Network-Based_Analysis
https://dl.acm.org/doi/10.1145/234313.234367
https://dl.acm.org/doi/10.1145/234313.234367
https://www.academia.edu/6872983/SQL_and_NoSQL_Databases
https://www.academia.edu/6872983/SQL_and_NoSQL_Databases
https://www.academia.edu/6872983/SQL_and_NoSQL_Databases
https://www.researchgate.net/publication/3449351_Database_Security_-_Concepts_Approaches
https://www.researchgate.net/publication/3449351_Database_Security_-_Concepts_Approaches
https://www.researchgate.net/publication/3449351_Database_Security_-_Concepts_Approaches
https://www.wiley.com/en-se/Data+Mining%3A+Concepts%2C+Models%2C+Methods%2C+and+Algorithms%2C+3rd+Edition-p-9781119516040
https://www.wiley.com/en-se/Data+Mining%3A+Concepts%2C+Models%2C+Methods%2C+and+Algorithms%2C+3rd+Edition-p-9781119516040
https://dl.acm.org/doi/10.1145/2384716.2384773
https://dl.acm.org/doi/10.1145/2384716.2384773
https://dl.acm.org/doi/10.1145/2384716.2384773
https://dl.acm.org/doi/10.1145/2384716.2384773

	_GoBack

