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Background 
Ramsey1, followed much later by Cass2 and Koopmans3, 

formulated the canonical model of optimal growth for an economy 
with exogenous ‘labor-augmenting’ technological progress. This 
model is commonly referred to as the Ramsey-Cass-Koopmans 
(RCK) model. The two commonly used forms of this model are 
the basic model (RCK model 1) without the logistic growth rate 
of Labor and the model that includes the logistic growth rate of 
Labor(RCK model 2). Much computational research has taken 
place using both forms of the RCK models.

Becker and Foias4, studied local bifurcation patterns of 
Ramsey equilibrium. Duczynski5, investigated the technological 
diffusion in the Ramsey model. Smith6, obtained a closed-
form solution to the Ramsey model. Accinelli and Brida7, 
formulated the Ramsey model of optimal growth with the 
Richards population growth law. Accinelli, Brida8 and Brida and 
Accinelli9, studied the Ramsey model with logistic population 

growth. Barnett and Duzhak10, studied non-robust dynamic 
inferences from macro econometric models, demonstrating 
the bifurcation of confidence regions. Ferrara and Gurrini11,12, 
investigated the Ramsey model with logistic population growth 
and Benthamite felicity function.

Barnett and Duzhak13, assessed bifurcation regions 
within new Keynesian models. Banerjee, et al14, performed a 
bifurcation analysis of Zellner’s Marshallian macroeconomic 
model. Guerrini15, discovered a Hopf bifurcation in a delayed 
Ramsey model with von Bertalanffy population law. Barnett and 
Eryilmaz16, conducted an analytical and numerical search for 
bifurcations in an open economy new Keynesian model. Asare, 
et al17, performed bifurcation analysis studies of the Ramsey-
Cass-Koopmans growth models.

This work aims to perform bifurcation analysis and Mult 
objective nonlinear model predictive control on the Ramsey-
Cass-Koopmans model (RCK model 1) without the logistic 

 A B S T R A C T 
Bifurcation analysis and Mult objective nonlinear model predictive control (MNLMPC) calculations are performed on two 

forms of the Ramsey-Cass-Koopmans (RCK) models. The MATLAB program MATCONT was used to perform the bifurcation 
analysis. The MNLMPC calculations were performed using the optimization language PYOMO in conjunction with the state-of-
the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed Hopf bifurcation points and branch 
points in the two models. The Hopf bifurcation points were eliminated using an activation factor involving the tanh function. 
The branch points were beneficial because they enabled the Mult objective nonlinear model predictive control calculations to 
converge to the Utopia point in both problems, which is the most beneficial solution. A combination of bifurcation analysis and 
Mult objective nonlinear model predictive control for Ramsey-Cass-Koopmans models is the main contribution of this paper.
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growth rate of labor and the model that includes the logistic 
growth rate of Labor (RCK model 2). The paper is organized as 
follows. First, the two RCK models are presented. The numerical 
procedures (bifurcation analysis and Mult objective nonlinear 
model predictive control (MNLMPC) are then described. This is 
followed by the results and discussion and conclusions.

RCK model without the logistic growth rate of Labor (RCK 
model 1)

The differential equations in this model are
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k is capital, c is the household consumption. The parameters 

are depreciation(δ  ), growth rate of labour(n), discount rate( ρ
), coefficient of relative risk aversion (θ ) , elasticity of capital 
in production (α ) and growth of technology(g).

RCK model with the logistic growth rate of Labor (RCK 
model 2)

The equations in this model are
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k is capital, c is the household consumption and L is labor. 
The parameters are depreciation(δ  ), growth rate of labour(n), 
discount rate( ρ  ), coefficient of relative risk aversion (
θ  ) , elasticity of capital in production (α  ) and growth of 
technology(g).

,θ ρ  are the bifurcation parameters and control values.

Bifurcation analysis

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. 
Hopf bifurcation points cause limit cycles. A commonly used 
MATLAB program that locates limit points, branch points and 
Hopf bifurcation points is MATCONT18,19. This program detects 
Limit points (LP), branch points (BP) and Hopf bifurcation 
points(H) for an ODE system.

( , )dx f x
dt

α=

nx R∈  Let the bifurcation parameter be α  Since the 
gradient is orthogonal to the tangent vector, 
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where /f x∂ ∂  is the Jacobian matrix. For both limit and 
branch points, the matrix [ / ]f x∂ ∂  must be singular. The n+1 

th component of the tangent vector 1nw +  = 0 for a limit point 

(LP)and for a branch point (BP) the matrix 
T
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 must be 
singular. At a Hopf bifurcation point,

det(2 ( , )@ ) 0x nf x Iα =
 @ indicates the BI alternate product while is the n-square 

identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult. More details can be found in Kuznetsov21,22.

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC)

Flores Tlacuahuaz, et al23, developed a multiobjective 
nonlinear model predictive control (MNLMPC) method that is 
rigorous and does not involve weighting functions or additional 
constraints. This procedure is used for performing the MNLMPC 

calculations Here 
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problem involving a set of ODE.
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ft  being the final time value and n the total number 
of objective variables and. u the control parameter. This 
MNLMPC procedure first solves the single objective optimal 
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This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0
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q t q
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=∑  for all j) is obtained.
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xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0
dt

 . In between there 

is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem and 
the only solution is the Utopia solution.

Hopf bifurcations cause unwanted oscillatory behavior and 
limit cycles. The tanh activation function (where a control value 
u is replaced by) ( tanh / )u u ε  is commonly used in neural 
nets29-31 and optimal control problems32 to eliminate spikes in the 
optimal control profile. Hopf bifurcation points cause oscillatory 
behavior. Oscillations are similar to spikes and the results in 
Sridhar, demonstrate that the tanh factor also eliminates the 
Hopf bifurcation by preventing the occurrence of oscillations. 
Sridhar33, explained with several examples how the activation 
factor involving the tanh function successfully eliminates the 
limit cycle causing Hopf bifurcation points. This was because 
the tanh function increases the time period of the oscillatory 
behavior, which occurs in the form of a limit cycle caused by 
Hopf bifurcations.

Results and Discussion
When bifurcation analysis was performed in the RCK model 

1 with θ  as the bifurcation parameter, a Hopf bifurcation point 
and a branch point were found at ( , , )k c θ  values of (7.163779 
1.263690 -2.055001) and (40.004765 -0.000000 -4.701000). 
This is shown in (Figure 1a). The limit cycle caused by the 
Hopf bifurcation point is shown in (Figure 1b). When θ  was 
modified to tanh( )θ θ  the Hopf bifurcation point disappears 
(Figure 1c) confirming the analysis of Sridhar33. When ρ  is 
the bifurcation parameter, a branch point appears at ( , , )k c ρ  
values of (40.004765 0.000000 -0.067320) (Figure 1d).

Figure 1a: (Branch point and Hopf for RCK model 1 is 
bifurcation parameter).
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Figure 1b: (limit cycle in RCK Model 1).

Pyomo24, is used for these calculations. Here, the differential 
equations are converted to a Nonlinear Program (NLP) using the 
orthogonal collocation method The NLP is solved using IPOPT25 
and confirmed as a global solution with BARON26.

The steps of the algorithm are as follows

Optimize 
0
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for various times.

Implement the first obtained control values.

Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 

point is when 
0

*( )
i f

i
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Sridhar27, proved that the MNLMPC calculations to converge 
to the Utopia solution when the bifurcation analysis revealed the 
presence of limit and branch points. This was done by imposing 
the singularity condition on the co-state equation28. If the 

minimization of 1q  lead to the value 
*
1q  and the minimization 

of 2q  lead to the value 
*
2q  The MNLPMC calculations 

will minimize the function 
* 2 * 2
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multiobjective optimal control problem is
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first term in this equation is 0 and hence 

( ) ; ( ) 0i x i i f
d f t
dt

λ λ λ= − =

At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  



J Petro Chem Eng  | Vol: 3 & Iss: 2Sridhar LN.,

4

Figure 1c: (Hopf bifurcation point disappears when tanh 
activation factor is used in RCK model 1)

Figure 1d: (Branch point in RCK model 1 when   is bifurcation 
parameter).

When bifurcation analysis was performed in the RCK 
model 2 with θ  as the bifurcation parameter, a branch point 
was found at ( , , , )k c L θ  values of ( 36.898975 0.000000 
-0.000000 -4.635000 ) (Figure 2a) and a Hopf bifurcation 
point was found at ( , , , )k c L θ  values of ( 6.607615 1.233421 
-0.000000 -1.835001 ) (Figure 2b). The limit cycle caused by 
the Hopf bifurcation point is shown in (Figure 2c). When θ  
was modified to tanh( ) /100θ θ  the Hopf bifurcation point 
disappears (Figure 2d) confirming the analysis of Sridhar(2024b) 
. When ρ  is the bifurcation parameter, a branch point appears 
at ( , , , )k c L ρ  values of BP (36.898975 0.000000 -0.000000 
-0.066000) (Figure 2e).

Figure 2a: (Branch point for RCK model 2    is bifurcation 
parameter).

Figure 2b: (Hopf bifurcation point for RCK model 2 is 
bifurcation parameter).
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Figure 2c: (limit cycle in RCK Model 2).

Figure 2d: Hopf bifurcation point disappears when tanh 
activation factor is used in RCK model 1.

Figure 2e: Branch point in RCK model 2 when   is bifurcation 
parameter.

When the MNLMPC calculations were performed for the 

RCK model 1, 
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− + −∑ ∑  was minimized 

subject to the equations governing the RCK model 1. This led 
to a value of zero (the Utopia solution. The Utopia point in the 
MNLMPC calculations confirms the analysis of Sridhar27, which 
demonstrates that the MNLMPC calculations result in the Utopia 
solution when the model exhibits a branch point. The first of 
the control variables is implemented and the rest are discarded. 
This confirms the analysis of Sridhar, when the model exhibits 
a branch point. The process is repeated until the difference 
between the first and second values of the control variables 
are the same. The MNLMPC control values of ;θ ρ  obtained 
were (0.118, 6.741). The various MNLMPC profiles are shown 
in (Figure 3a). The obtained control profiles exhibited noise 
(Figure 3b). This was remedied using the Savitzky-Golay Filter. 
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The smoothed-out version of this profile is shown in (Figure 
3c).

Figure 3a: k c MNLMPC profiles in RCK model 1.

Figure 3b: Noisy MNLMPC control profiles in RCK model 1.

Figure 3c: Smooth MNLMPC control profiles in RCK model 1 
with Savitzky Golay filter.

When the MNLMPC calculations were performed for the 

RCK model 2, 
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− + −∑ ∑  was minimized 

subject to the equations governing the RCK model 1. This led 
to a value of zero (the Utopia solution. The Utopia point in 
the MNLMPC calculations confirms the analysis of Sridhar27, 
which demonstrates that the MNLMPC calculations result in the 
Utopia solution when the model exhibits a branch point. The 
first of the control variables is implemented and the rest are 
discarded. The process is repeated until the difference between 
the first and second values of the control variables are the same. 
The MNLMPC control values of ;θ ρ  obtained were (0.118, 
6.741). The various MNLMPC profiles are shown in (Figures 3a 
and 3b). The obtained control profiles exhibited noise (Figure 
3b). This was remedied using the Savitzky-Golay Filter. The 
smoothed-out version of this profile is shown in (Figure 3c).

When the MNLMPC calculations were performed 

for the RCK model 2, 
0
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i
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t

k t
=
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leading to a value of 0. 
0
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t t

j i
t

c t
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∑ and 
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t t
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∑  was 

maximized leading to values of 20 and 200. The overall 
optimal control problem will involve the minimization of 

0 0 0
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i f i f i f

i i i

t t t t t t

j i j i j i
t t t

k t c t L t
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was minimized subject to the equations governing the RCK 
model 1. This led to a value of zero (the Utopia solution. The 
Utopia point in the MNLMPC calculations confirms the analysis 
of Sridhar, which demonstrates that the MNLMPC calculations 
result in the Utopia solution when the model exhibits a branch 
point. The first of the control variables is implemented and the 
rest are discarded. The process is repeated until the difference 
between the first and second values of the control variables are 
the same. The MNLMPC control values of ;θ ρ  obtained were 
(0.107, 6.742). The various MNLMPC profiles are shown in 
(Figures 4a and 4b). The obtained control profiles exhibited 
noise (Figure 4b). This was remedied using the Savitzky-Golay 
Filter. The smoothed-out version of this profile is shown in 
(Figure 4c).

Figure 4a: k c L MNLMPC profiles in RCK model 1.

Figure 4b: Noisy MNLMPC control profiles in RCK model 2.

Figure 4c: Smooth MNLMPC control profiles in RCK model 2 
with Savitzky Golay filter.
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In both cases, the MNLMPC calculations converged to the 
Utopia solution, Sridhar31, which showed that the presence of a 
limit or branch point enables the MNLMPC calculations to reach 
the best possible (Utopia) solution. Both problems exhibited limit 
cycles causing Hopf bifurcation points, which were successfully 
eliminated using an activation factor involving the tanh function, 
confirming the analysis of Sridhar37. Sridhar37, explained with 
several examples how the activation factor involving the tanh 
function successfully eliminates the limit cycle causing Hopf 
bifurcation points by increasing the period of the oscillatory 
behavior, which occurs in the form of a limit cycle.

Conclusion
Multiobjective nonlinear model predictive control 

calculations were performed along with bifurcation analysis 
on the Ramsey-Cass-Koopman without and with the logistic 
growth of labor equation. The bifurcation analysis revealed the 
existence of Hopf bifurcation points and branch points. The 
Hopf bifurcation points cause unwanted limit cycles and were 
eliminated using a tanh activation factor. The branch points 
(which produced multiple steady-state solutions originating 
from a singular point) are very beneficial as they caused the 
multiojective nonlinear model predictive calculations to converge 
to the Utopia point (the best possible solution) in both models. A 
combination of bifurcation analysis and multiobjective nonlinear 
model predictive control for the Ramsey-Cass-Koopman models 
is the main contribution of this paper.
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