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Background 
Buzaid1, developed strategies for combining chemotherapy 

and biotherapy in melanoma. De Pillis and Radunskaya2, 
developed a mathematical tumor model with immune resistance 
and drug therapy. Jackson3, discussed vascular tumor growth and 
treatment and the consequences of polyclonality, competition and 
dynamic vascular support. Liu et al4, investigated cell-mediated 
immunotherapy which is a new approach to the treatment of 
malignant glioma. Chaplain5, discussed several mathematical 
models in cancer research.

De Pillis and Radunskaya6, investigated the Immune response 
to tumor invasion. Schirrmacher, et al7, discussed several 
models for immunotherapy and Cancer Vaccines. Arciero, 
et al8, developed a mathematical model of tumor-immune 
evasion and siRNA treatment. Burden, et al9, applied optimal 

control techniques to immunotherapy, Chao, et al10, developed 
a stochastic model of cytotoxic T cell responses. Matzavinos, 
Chaplain11, performed a travelling-wave analysis of a model of 
the immune response to cancer.

Matzavinos, et al12, developed mathematical models of the 
spatiotemporal response of cytotoxic T-lymphocytes to a solid 
tumor. Garbelli, et al13, discussed the Melanocyte-specific, 
cytotoxic T cell responses in vitiligo studying the effective 
variant of melanoma immunity. Wheeler, et al14, investigated 
the Clinical responsiveness of glioblastoma multiforme to 
chemotherapy after vaccination. Li, et al15, researched the 
generation of PRL-3- and PRL-1-specific monoclonal antibodies 
as potential diagnostic markers for cancer metastases.

Qu, et al16, investigated the Development of humanized 
antibodies as cancer therapeutics. De Pillis, et al17, theoretically 

 A B S T R A C T 
Chemoimmunotherapy is chemotherapy combined with immunotherapy. Chemotherapy uses different drugs to kill or slow 

the growth of cancer cells; immunotherapy uses treatments to stimulate or restore the ability of the immune system to fight 
cancer. Both chemotherapy and immunotherapy are highly nonlinear processes that several factors affect. The two treatments 
together would be very highly nonlinear. It is necessary to understand and control this combined treatment. Bifurcation analysis 
is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be considered 
and multiple objectives must be met simultaneously. Bifurcation analysis and Mult objective nonlinear model predictive control 
(MNLMPC) calculations are performed on two chemoimmunotherapy models. The MATLAB program MATCONT was used 
to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO in 
conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed branch 
and limit points in the two models. The branch and limit points were beneficial because they enabled the Mult objective nonlinear 
model predictive control calculations to converge to the Utopia point in both the problems, which is the best solution.
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investigated the mixed immunotherapy and chemotherapy of 
tumors. Malleta and De Pillis18, developed a cellular automata 
model of tumor–immune system interactions. De Pillis, et 
al19, performed a theoretical investigation of chemotherapy for 
tumors and Isaeva, et al20, discussed the different strategies for 
cancer treatment. Ledzewicz, et al21, developed optimal controls 
for a mathematical model of tumor-immune interactions under 
targeted chemotherapy with immune boost.

Eladdadi, et al22, developed mathematical models of tumor-
immune system dynamics. Wang, et al23, performed optimal 
control for a mathematical model for cancer chemotherapy 
under tumor heterogeneity. Abdel-Wahab, et al24, discussed the 
adverse events in cancer immunotherapy. Lai and Friedman25, 
discussed the combination therapy of cancer with cancer vaccine 
and immune checkpoint inhibitors. Ratajczyk, et al26, performed 
optimal control for a mathematical model of glioma treatment 
with oncolytic therapy and TNF-α inhibitors. Guti´errez-Diez and 
Russo27, disussed the design of personalized cancer treatments by 
use of optimal control for the case of chronic myeloid leukemia. 
Khajanchi28, investigated the impact of immunotherapy on a 
glioma immune interaction model. Takacs, et al29, demonstrated 
that the modulation of the chemokine/chemokine receptor axis 
was a novel approach for glioma therapy.

Liu, et al30, performed a dynamics analysis of a tumor-
immune system with chemotherapy. Anderson, et al31, showed 
that global stability and parameter analysis reinforce therapeutic 
targets of PD-L1-PD-1 and MDSCs for glioblastoma. Cherraf, 
et al32. mathematically modelled the tumor–immune system 
with time delay and diffusion. Luo, et al33, discussed the optimal 
treatment strategy for cancer based on mathematical modeling 
and impulse control theory. Anderson, et al34, performed optimal 
control of combination immunotherapy for a virtual murine 
cohort in a glioblastoma-immune dynamics model.

All optimal control work involving chemoimmunotherapy 
models involve single-objective optimal control. The main 
objective of this paper is to perform Mult objective nonlinear 
model predictive control (MNLMPC) in conjunction with 
bifurcation analysis for two chemoimmunotherapy models. The 
two models that will be used are those described in Anderson, 
et al34 and the scaled model in Isaeva, et al20. This paper is 
organized as follows. First the model equations are presented. 
The numerical procedures (bifurcation analysis and Mult 
objective nonlinear model predictive control (MNLMPC) are 
then described. This is followed by the results and discussion 
and conclusions.

Chemoimmunotherapy Models
The two models that are presented in Anderson, et al34 and the 

scaled model in Isaeva, et al20, will be used for the calculations. 
These models will be briefly described in this section.

Model 134

The model equations are
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, ,val val valc t m  represent the tumor cells, activated T cells 
and myeloid-derived suppressor cells (MDSCs).
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For the bifurcation calculations Cλ  was the bifurcation 
parameter while 1 20; 0.u u= =  For the MNLMPC calculations, 

0.25cλ =  while 1 2;u u  are the control variables.
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, , 2 , ,val val val val valt l I c I  represent the dimensionless tumor 
cells, Cytotoxic T Lymphocytes, Interleukin-2, chemotherapeutic 
drug (C) and Interferon-alpha.

The scaled model parameters are

1 2 3 4 5 6 7

8 9 1 2 5 7

0.3939 , 0.0909,  1.5000,   0.2458 ,  0.6061,  3.6364 ,  1.0091,
 6.3636,   0.0300,  2.7273,  1.8182,    19.3939,    5.1515.
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3 4 6, ,m m m  were taken as individual bifurcation parameters 
(one at a time, with the other two being 0) and collectively as 
control parameters for the MNLMPC calculations.

Numerical Procedures
Bifurcation analysis

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. 
Hopf bifurcation points cause limit cycles. A commonly used 
MATLAB program that locates limit points, branch points and 
Hopf bifurcation points is MATCONT35,36. This program detects 
Limit points (LP), branch points (BP) and Hopf bifurcation 
points(H) for an ODE system.

( , )dx f x
dt

α=

nx R∈  Let the bifurcation parameter be α  Since the 
gradient is orthogonal to the tangent vector, 

The tangent plane at any point 1 2 3 4 1[ , , , ,.... ]nw w w w w w +=  
must satisfy 
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Sridhar44, proved that the MNLMPC calculations to converge 
to the Utopia solution when the bifurcation analysis revealed the 
presence of limit and branch points. This was done by imposing 
the singularity condition on the co-state equation45. If the 
minimization of 1q  lead to the value 

*
1q  and the minimization 

of 2q  lead to the value 
*
2q  The MNLPMC calculations will 

minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + −  . The Mult 
objective optimal control problem is
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the optimal control co-state equation (Upreti; 2013) is 
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iλ  is the Lagrangian multiplier. ft  is the final time. The 
first term in this equation is 0 and hence 
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where /f x∂ ∂  is the Jacobian matrix. For both limit and 
branch points, the matrix [ / ]f x∂ ∂  must be singular. The 
n+1 th component of the tangent vector 1nw +  = 0 for a limit 

point (LP)and for a branch point (BP) the matrix 
T

A
w
 
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 must be 
singular. At a Hopf bifurcation point, 

det(2 ( , )@ ) 0x nf x Iα =

@ indicates the bialternate product while nI  is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult. More details can be found in Kuznetsov37,38 
and Govaerts39.

Mult objective nonlinear model predictive control 
(MNLMPC)

Flores Tlacuahuaz, et al40, developed a Mult objective 
nonlinear model predictive control (MNLMPC) method 
that is rigorous and does not involve weighting functions or 
additional constraints. This procedure is used for performing the 

MNLMPC calculations Here 
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This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j) is obtained.

Pyomo41, is used for these calculations. Here, the differential 
equations are converted to a Nonlinear Program (NLP) using the 
orthogonal collocation method The NLP is solved using IPOPT42 
and confirmed as a global solution with BARON43.

The steps of the algorithm are as follows 
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an unconstrained optimization problem and the only solution is 
the Utopia solution.

Hopf bifurcations cause unwanted oscillatory behavior and 
limit cycles. The tanh activation function (where a control value 
u is replaced by) ( tanh / )u u ε  is commonly used in neural 
nets46-48 and optimal control problems49, to eliminate spikes in the 
optimal control profile. Hopf bifurcation points cause oscillatory 
behavior. Oscillations are similar to spikes and the results in 
Sridhar demonstrate that the tanh factor also eliminates the 
Hopf bifurcation by preventing the occurrence of oscillations. 
Sridhar50, explained with several examples how the activation 
factor involving the tanh function successfully eliminates the 
limit cycle causing Hopf bifurcation points. This was because 
the tanh function increases the time period of the oscillatory 
behavior, which occurs in the form of a limit cycle caused by 
Hopf bifurcations. 

Results and Discussion

In model 1, for the bifurcation calculations Cλ  was the 
bifurcation parameter and a branch point BP was found at 

[ , , , ]val val val cc t m λ  == (14500000, 0, 2624334.6, 0). Figure 1a 
shows the bifurcation diagram with this branch point. For the 
MNLMPC calculation, with u1 and u2 as the control variables. 
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0

( )
i f

i

t t

j i
t

cval t
=

=

∑  was minimized also resulting in a value of 0. The 

overall optimal control problem will involve the minimization 

of 
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i f i f

i i

t t t t

j i j i
t t

mval t cval t
= =

= =

− + −∑ ∑  subject to the ODE 

describing Model 1. This minimization resulted in the Utopia 
point (0) confirming the analysis of Sridhar34, which showed 
that the presence of a branch point enables the MNLMPC 
calculations to reach the best possible (Utopia) solution. The 
first of the control variables is implemented and the rest are 
discarded. The process is repeated until the difference between 
the first and second values of the control variables are the same. 
This MNLMPC control values of u1 and u2 were 4.824e-07 and 
0.4878. The various MNLMPC profiles are shown in (Figure 
1a and 1c). The obtained control profile of s exhibited noise 
(Figure 1d). This was remedied using the Savitzky-Golay Filter. 
The smoothed-out version of this profile is shown in (Figure 
1e).

Figure 1a: Bifurcation Diagram for model 1.

Figure 1b: tval vs t (MNLMPC model 1).

Figure 1c: cval, mval vs t (MNLMPC model 1).

Figure 1d: u1, u2 vs t (MNLMPC model 1) some noise is 
observed.

Figure 1e: u1, u2 vs t (MNLMPC model 1) with Savitsky Golay 
filter

In model 2, 3 4 6, ,m m m  each, when used as a bifurcation 
parameter, revealed the existence of a limit point. The coordinates 
for these ( , , 2 , , , )val val val val val jt l I c I m  limit points j = 3,4,6 
is (0.8622, 0.4240, 0.6935, 0.0, 0.0, 0.588); (0.5895, 0.3931, 
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0.8341, 0.047, 0.0, 0.9116) and (0.7542, 0.4139, 0.6703, 0.0, 
0.1156, 0.5957). (Figure 2a, 2b and 2c) show the bifurcation 
diagrams for model 2.

For the MNLMPC calculation, with m3 m4 and m6 

s the control variables 
0
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i f

i

t t
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tval t
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∑  was minimized, 

leading to a value of 3.45e-05 and 
0
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i f

i

t t

j i
t
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=

∑  was 

maximized resulting in a value of 10.951. The overall 
optimal control problem will involve the minimization of 

0 0
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i f i f

i i

t t t t

j i j i
t t

tval t e lval t
= =

= =

− − + −∑ ∑  subject 

to the ODE describing Model 2. This minimization resulted 
in the Utopia point (0), confirming the analysis of Sridhar34, 
which showed that the presence of a branch point enables the 
MNLMPC calculations to reach the best possible (Utopia) 
solution. The first of the control variables is implemented and 
the rest are discarded. The process is repeated until the difference 
between the first and second values of the control variables are 
the same. This MNLMPC control values of m3 m4 and m6 were 
0.3491, 2.99977, 7.27841e-06. The various MNLMPC profiles 
are shown in (Figure 2d and 2e). The obtained control profile 
of s exhibited noise (Figure 2f). This was remedied using the 
Savitzky-Golay Filter. The smoothed-out version of this profile 
is shown in (Figure 2g).
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Figure 2a: Bifurcation Diagram for model 2 (m3 as bifurcation 
parameter).
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Figure 2b: Bifurcation Diagram for model 2 (m4 as bifurcation 
parameter)

0 0.1 0.2 0.3 0.4 0.5 0.6

m6

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

tva
l

LP

Figure 2c: Bifurcation Diagram for model 2 (m6 as bifurcation 
parameter).

Figure 2d: tval, lval, i2val vs t (MNLMPC model 2).

Figure 2e: cval, ival vs t (MNLMPC model 2).

Figure 2f: m3 m4 m6 vs t (MNLMPC model 1) some noise is 
observed.
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Figure 2g: m3, m4, m6 vs t (MNLMPC model 2) with Savitsky-
Golay filter.

Conclusion
Multiobjective nonlinear model predictive control 

calculations were performed along with bifurcation analysis 
on two chemoimmunotherapy models. The bifurcation analysis 
revealed the existence of limit and branch points that produced 
multiple steady-state solutions originating from a singular point. 
The limit and branch points are very beneficial as they caused 
the multiojective nonlinear model predictive calculations to 
converge to the Utopia point (the best possible solution) in both 
models.
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