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Introduction
Gliomas are life-threatening brain tumors that recur despite a 

lot of efforts to control and prevent their recurrence and spreading. 
To eliminate the glioma, one needs to understand the dynamics 
of how the glioma reacts to therapy and develop strategies to 
eradicate them. The behavior of the glioma is very complicated 
and nonlinear. This motivated researchers to perform theoretical 
work involving bifurcation analysis and dynamic optimization 
of Glioma models.

This work involves Mult objective nonlinear model predictive 
control (MNLMPC) calculations performed with bifurcation 
analysis on Glioma models. It is shown that the presence of 
limit bifurcation points is beneficial because they enable the 
MNLMPC calculations to converge to the Utopia point which is 
the best possible solution.

Bifurcation analysis and MNLMPC calculations are 
performed on two different Glioma models. The bifurcation 
analysis reveals the presence of limit points. The MNLMPC 
calculations are shown to converge to the Utopia solution.

Background
Swanson, et al1, used mathematical modeling to quantify 

glioma growth invasion. Farin, et al2, demonstrated that 
transplanted glioma cells migrate and proliferate on host brain 
vasculature using dynamic analysis. Hardie3 showed that 
AMP-activated/SNF1 protein kinases were guardians of cellular 
energy. Godlewski J, et al4, demonstrated that targeting the Bmi-1 
oncogene/stem cell renewal factor by microRNA-128 inhibits 
glioma proliferation and self-renewal. Kronik, et al5, used a 
simulation model to Improve alloreactive CTL immunotherapy 
for malignant gliomas. Kim, et al6, developed a mathematical 
model for the pattern formation of glioma cells outside the tumor 
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spheroid core. Lawler, et al7, discussed the emerging functions 
of microRNAs in glioblastoma.

Derr, et al8, discussed the association between hyperglycemia 
and survival in patients with newly diagnosed glioblastoma. 
Godlewski, et al9,10, showed that microRNA-451 regulates 
LKB1/AMPK signaling and allows adaptation to metabolic 
stress in glioma cells and microRNA-451: was a conditional 
switch controlling glioma cell proliferation and migration. 
Wesseling11, discussed the pathological diagnosis of diffuse 
gliomas in a multidisciplinary context.

Using a mathematical model, Kim Y, et al12, discovered 
the mutual antagonism of miR451 and AMPK in glioma cell 
migration and proliferation. Gerlee, et al13, discuss the impact 
of phenotypic switching on glioblastoma growth and invasion, 
Kim, et al14,15, developed a hybrid model for cell proliferation 
and migration in glioblastoma and discussed the regulation of 
cell proliferation and migration in glioblastoma: Song, et al16 
showed that MiR-18a regulates the proliferation, migration and 
invasion of human glioblastoma cell by targeting neogenin. Guo, 
et al17, demonstrated that miR-656 inhibits glioma tumorigenesis 
through repression of BMPR1A. Yang, et al18, showed that 
MicroRNA-16 inhibits glioma cell growth and invasion by 
suppressing BCL2 and the nuclear factor-kB1/MMP9 signaling 
pathway. Ma, et al19, showed that MiR-152 functions as a tumor 
suppressor in glioblastoma stem cells. Wang L, et al20, showed 
that MiR-143 acts as a tumor suppressor by targeting N-RAS and 
enhances temozolomide-induced apoptosis in glioma. Shi, et al21, 
showed that miR-145 inhibits migration and invasion of glioma 
stem cells by targeting ABCG2. De los Reyes, et al22, performed 
optimal control calculations eradicating invisible glioblastoma 
cells after conventional surgery. Khajanchi, et al23, explained 
the role of the immunotherapeutic drug T11 target structure in 
the progression of malignant gliomas. Khajanchi24, modeled the 
dynamics of glioma-immune surveillance. Khajanchi, et al25, 
performed the stability analysis of a Mathematical Model for 
Glioma-Immune interaction under optimal therapy.

Motivation and Objectives

All the optimal control work involving Glioma models 
involved single-objective optimal control. Bifurcation analysis 
involving the Glioma models, especially the work of De los 
Reyes, et al22 and Khajanchi, et al25, showed the existence of 
limit points that cause multiple steady-states. This work aims 
to perform multiobjective nonlinear model predictive control 
(MNLMPC) calculations in conjunction with bifurcation 
analysis and demonstrate that the presence of limit points is 
beneficial because they enable the MNLMPC calculations to 
converge to the Utopia point which is the best possible solution. 
This paper is organized as follows. The Glioma models of De los 
Reyes, et al22 and Khajanchi, et al25, are first described followed 
by the numerical procedures for the bifurcation analysis and the 
MNLMPC calculations. The results, discussion and conclusions 
are then presented.

Model Equations
Model 1

The model equations22 are 
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The glucose, miR-451, AMPK complex and drug activity 
are represented by G, M, A and D, respectively. The parameter 
values are.

1 2 3 44, 1, 1.6, 4, 1, 1, 0.2, 0.02, 0.5, 1.316k k k k sα β ε µ δ= = = = = = = = = =  

These parameters represent the miR-451 autocatalytic 
production rate, Hill-type coefficient, inhibition strength of 
miR-451 by the AMPK complex, signaling source of AMPK, 
scaling factor (slow-dynamics), glucose consumption rate and 
drug decay rate. 

1 2,u u  are both bifurcation parameters and 
control values. 

Model 2

The model equations25are 
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Here u(t) represents the number of glioma cells while v(t) and 
w(t) represent the number of macrophages and tumor-specific 
CD8+T cells. Uc is the control value and bifurcation parameter.

The parameter values are

1 1 2 1 2 3

2 1 3 1 4 4

0.4822, 0.069943, 2.74492, 0.90305, 0.3307, 0.0194,
0.030584, 0.1245, 2.8743, 0.0074, 0.01694, 0.378918

r k r
k k k

α α α
γ µ α

= = = = = =
= = = = = =

These parameters represent the proliferation rate of glioma 
cells, decay rate of gliomas due to macrophages, decay rate of 
gliomas due to CD8+T cells, steepness coefficient of glioma 
cells, growth rate of macrophages, loss of macrophages due 
to malignant gliomas, steepness coefficient of macrophages, 
recruitment of activated CD8+T cells by glioma cells, maximum 
recruitment of CD8+T cells by glioma cells, natural death rate of 
CD8+T cells, deactivation rate of CD8+T cells by glioma cells 
and the Michaelis-Menton constant.

Bifurcation Analysis
The existence of multiple steady-states and limit cycles in 

various processes has led to much research involving bifurcation 
analysis. Multiple steady states occur because of the existence 
of branch and limit points. Hopf bifurcation points cause limit 
cycles. One of the most commonly used software to locate 
limit points, branch points and Hopf bifurcation points is the 
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This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where (
0
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=∑  for all j) is obtained. The 

optimization package in Python, Pyomo32, where the differential 
equations are automatically converted to a Nonlinear Program 
(NLP) using the orthogonal collocation method will be used. 
The resulting nonlinear optimization problem was solved 
using the solvers IPOPT33 and confirmed as a global solution 
with BARON34. To summarize the steps of the algorithm are as 
follows 
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algebraic equations that govern the process using Pyomo 
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at various time intervals ti. The subscript i is the index for 
each time step. 
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differential and algebraic equations that govern the process 
using Pyomo with IPOPT and BARON. This will provide 
the control values for various times.

• Implement the first obtained control values and discard the 
remaining.

Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of 
the control variables or if the Utopia point is achieved. The 
Utopia point is when 
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MNLMPC calculations to converge to the Utopia solution when 
the bifurcation analysis revealed the presence of limit and branch 
points. This was done by imposing the singularity condition on 
the co-state equation36.

This is illustrated with a simple two-variable example. Let 
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1 1 2 2ˆ ˆ( ) ( )q q q q− + −  . The Mult objective optimal 

control problem is

MATLAB program MATCONT26,27. This software detects Limit 
points (LP), branch points (BP) and Hopf bifurcation points(H). 
Consider an ODE system.

( , )dx f x
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 (3)

nx R∈  Let the tangent plane at any point x be 

1 2 3 4 1[ , , , ,.... ]nw w w w w w +=  . The bifurcation parameter is 
α . Define matrix A as

[ / | / ]A f x f α= ∂ ∂ ∂ ∂   (4)

where /f x∂ ∂  is the Jacobian matrix. Since the gradient is 
orthogonal to the tangent vector, 

 0Aw =   (5)

For both limit and branch points the matrix [ / ]f x∂ ∂  must 
be singular. For a limit point (LP) the n+1 th component of the 

tangent vector 1nw +  = 0 and for a branch point (BP) the matrix 

T

A
w
 
 
 

 must be singular. At a Hopf bifurcation point, 

 det(2 ( , )@ ) 0x nf x Iα =    (6)

@ indicates the bialternate product while 
nI  is the n-square 

identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult. More details can be found in Kuznetsov28,29 
and Govaerts30.

Mult objective Nonlinear Model Predictive Control
The Mult objective nonlinear model predictive control 

(MNLMPC) method31 used in these calculations is rigorous and 
does not involve weighting functions or additional constraints. 
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ft  being the final time value and n the total number of 
objective variables. u is the control parameter. The MNLMPC 
method first solves the single objective optimal control problem 
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J Petro Chem Eng  | Vol: 1 & Iss: 1Sridhar LN.,

4

* 2 * 2
1 1 2 2ˆ ˆmin ( ) ( ) ( , )dxq q q q subject to f x u

dt
− + − =

 (9)

Simple differentiation shows that
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The Utopia point requires that both 
*
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The optimal control co-state equation (Upreti; 2013)[36] is
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iλ  is the Lagrangian multiplier. ft  is the final time. The first 
term in this equation is 0 and hence 
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At a limit or a branch point, for the set of ODES 

( , )dx f x u
dt

=  xf  is singular. Hence there are two different 

vectors-values for [ ]iλ  where ( ) 0i
d
dt
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. In between there is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This 

coupled with the boundary condition ( ) 0i ftλ =  will lead to 

[ ] 0iλ =  This makes the problem an unconstrained optimization 
problem and the only solution is the Utopia solution. 

Results and Discussion
For the bifurcation analysis, in Model 1 (De los Reyes et 

al 2015)[22], u1 and u2 were individually used as bifurcation 
parameters. Each of them revealed 2 limit points. The co-ordinates 
of the limit points when u1 was used as the bifurcation parameter 
were 

[G,M.A,D, u1 ]= ( 0.575313 1.285863 1.707475 0.007599 
0.287656 ) and 
[G,M.A,D, u1 ]=( 0.391657 2.517528 0.745112 0.007599 
0.195828 ).

Both these limit points are shown in (Figure 1).

The co-ordinates of the limit points when 
u2 was used as the bifurcation parameter were  
[G,M.A,D, u2 ]= (0.100000 0.770733 2.709363 0.861295 
1.133465) and 

[G,M.A,D, u2 ]=(0.100000 2.457335 0.768303 0.304074 
0.400161). 

Both these limit points are shown in (Figure 2).
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Figure 1: Limit points for model 1 when u1 was used as the 
bifurcation parameter.
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Figure 2: Limit points for model 1 when u2 was used as the 
bifurcation parameter.

For the MNLMPC calculations in this model
0

( )
i f

i

t t

i
t

M t
=

=

∑  and 

0

( )
i f

i

t t

i
t

D t
=

=

∑  was maximized and resulted in a value of 10 each. 

0

1( )
i f

i

t t

i
t

u t
=

=

∑  and 
0

2 ( )
i f

i

t t

i
t

u t
=

=

∑  were minimized individually and 
resulted in a value of 0 each. The overall minimization that was 
done for the multiobjective calculation was done by minimizing 
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. The first obtained control value was implemented and the 
remaing were discarded. This procedure was repeated until the 
first obtained and implemented control values were the same. 
The resulting MNLMPC control values of u1 and u2 were 
0.30028 and 0.529579 respectively. The resulting minimized 
objective function value was 0 (the Utopia point) confirming the 
theorem in Sridhar (2024). The MNLMPC profiles for GMAD 
are shown in (Figure 3). The obtained control profiles of u1 
and u2 exhibited noise (Figure 4). This was remedied using the 
Savitzky-Golay Filter. The smoothed-out version of this profile 
is shown in (Figure 5).
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Figure 3: GMAD MNLMPC profiles (model 1).

Figure 4: Noisy u1 and u2 MNLMPC profiles (model 1).

Figure 5: u1 and u2 MNLMPC profiles (model 1) with noise 
removed with Savitsky Golay Filter.

In Model 225, the bifurcation and control parameter was uc. 
The bifurcation analysis revealed a limit point at [u,v,w,uc]= 
(0.014656 0.980995 0.133854 0.000990). This is shown in (Figure 

6). For the MNLMPC calculations in this model
0
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minimized and resulted in a value of 0. To minimize control 

costs, 
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+∑ ∑  was maximized and resulted in 

a value of 16.0002. The overall minimization that was done 
for the multiobjective calculation was done by minimizing 
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procedure was repeated until the first obtained and implemented 
control values were the same. The resulting MNLMPC control 
value of uc was 0.005496. The resulting minimized objective 
function value was 0 (the Utopia point) confirming the theorem 
in Sridhar35. The MNLMPC profiles for u v w are shown in 
(Figure 7). The obtained control profiles of uc exhibited noise 
(Figure 8). This was remedied using the Savitzky-Golay Filter. 
The smoothed-out version of this profile is shown in (Figure 9).
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uc 10 -4

0.94

0.95

0.96

0.97

0.98

0.99

1
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Figure 6: Bifurcation analysis for Model 2.

Figure 7: u,v,w MNLMPC profiles for Model 2.

Figure 8: Noisy uc MNLMPC profiles (model 2).

Figure 9: uc MNLMPC profiles (model 2) with noise removed 
with Savitsky Golay Filter.

Conclusion
Rigorous bifurcation analysis and Mult objective nonlinear 

model predictive control calculations were performed on models 
for glioma treatment. The bifurcation analysis revealed limit 
points which were beneficial because they allowed the Mult 
objective nonlinear model predictive control calculations to 
converge to the Utopia point which is the best solution.
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