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Introduction
Glioblastoma multiforme (GBM) is a deadly type of type of 

brain cancer that results in death within 1.5 years of diagnosis. 
There has been a lot of theoretical work that deal with optimal 
strategies to control this devastating disease. Many models have 
been developed describing the dynamic interactions between 
the cancer cells and the various treatments used to destroy 
the cancerous cells. The dynamics of this interaction is highly 
complex and nonlinear. Bifurcation analysis has been used by 
several workers to understand this complexity. Additionally, 
rigorous optimal control procedures have been used to maximize 
the elimination of the cancer cells while minimizing the costs 
involved. The aim of this work is to perform multiobjective 
nonlinear model predictive control in conjunction with 
bifurcation analysis on full and truncated models with and 
without the various protein complexes that are involved.

Background
Xu and co-workers1 developed a novel strategy to overcome 

drug resistance associated with mitochondrial respiratory 
defect and hypoxia. Kaufman, et al.2 demonstrated the 
Glioma expansion in collagen matrices: analyzing collagen 
concentration-dependent growth and motility patterns. Farin, 
et al.3 developed a dynamic analysis showing that transplanted 
glioma cells migrate and proliferate on host brain vasculature: a 
dynamic analysis.

Furnari, et al.4 discussed genetics, biology and paths to 
treatment for malignant astrocytic glioma. Stein and co-workers5 
developed a mathematical model of glioblastoma tumor 
spheroid invasion in a three-dimensional in vitro experiment. 
Beadle and co-workers6 discussed the role of myosin II in 
glioma invasion of the brain. Godlewski, et al7 showed that 
targeting of the BMI-1 oncogene/stem cell renewal factor by 
microRNA-128 inhibits glioma proliferation and self-renewal. 
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Kim, et al.8 demonstrated that epidermal growth factor-induced 
enhancement of glioblastoma cell migration in 3D arises 
from an intrinsic increase in speed but an extrinsic matrix and 
proteolysis-dependent increase in persistence.

Sen, et al.9 discussed isoform-specific contributions of 
a-cctinin to glioma cell mechanobiology. Kim and co-workers10 
developed a mathematical model of Brain tumor: pattern 
formation of glioma cells outside the tumor spheroid core. 
Godlewski and co-workers11 developed a conditional switch 
controlling glioma cell proliferation and migration. Godlewski, 
et al.12 showed that mircroRNA-451 regulates LKB1/AMPK 
signaling and allows glioma cells to adapt to metabolic stress. 
Kim, et al.13 developed a mathematical model describing miR451 
and AMPK Mutual Antagonism in Glioma Cell Migration and 
Proliferation.

Wesseling, et al.14 discuss the pathological diagnosis of 
diffuse gliomas: towards a smart synthesis of microscopic and 
molecular information in a multidisciplinary context. Kim15 
described the regulation of cells considering proliferation and 
migration in Glioblastoma using a therapeutic strategy. Kim and 
Roh16 developed a hybrid model describing cell proliferation 
and migration in glioblastoma. Dhruv, et al.17 showed that 
the reciprocal activation of transcription factors underlies the 
dichotomy between the proliferation and invasion of glioma 
cells. Pyonteck, et al.18 concluded that the inhibition alters 
macrophage polarization and blocks glioma progression. Xie, 
et al.19 provided an overview of proliferation and invasion 
targeting adaptive glioblastoma. Lamszus, et al.20 discussed 
links between cellular function, glucose metabolism and the 
glioma microenvironment. Kim, et al.21 developed strategies 
for eradicating Glioma Cells using a Multi-Scale Mathematical 
Model with miR-451-AMPK-mTOR control.

De los Reyes, et al.22 developed optimal control strategies 
of eradicating invisible glioblastoma cells after conventional 
surgery. Han, et al.23 investigated TGF-beta signaling and its 
targeting for glioma treatment. Goodwin and co-workers24 
researched Extra neural Glioblastoma Multiforme Vertebral 
Metastasis. Duzgun, et al.25 discussed the role of mTOR in 
glioblastoma while Lee, et al.26 studied the role of myosin II 
in glioma invasion. Rajesh and co-workers27 studied glioma 
progression through the prism of heat shock protein mediated 
extracellular matrix epithelial to mesenchymal transition. 
Kim, et al.28 investigated the role of extracellular matrix 
and microenvironment in regulation of tumor growth and 
LAR-mediated invasion in glioblastoma. Esmaeili, et al.29 the 
Direction of Tumor Growth in Glioblastoma Patients. Krol, et 
al.30 was able to detect circulating tumor cell clusters in human 
glioblastoma. Jung, et al.31 developed strategies in regulating 
glioblastoma signaling pathways and anti-invasion therapy.

In this work, the model described in Jung, et al.31 is used and 
multiobjective nonlinear model predictive control in conjunction 
with bifurcation analysis on full and truncated models with and 
without the various protein complexes. The model equations 
are first described. Then the numerical strategies for bifurcation 
analysis and multiobjective nonlinear model predictive control 
procedures are presented followed by the results and discussion 
and conclusions.

Model Equations
The model equations Jung, et al.31 are

                                                  (1)

Gval represents the glucose that regulates Mval, the miR-451 
(M). Aval represents AMPK and Rval is the mTOR with the 
signaling pathway to cell cycle dynamics. Dval represents the 
drug that suppresses the inhibition of mTOR by AMPK. CyCB 
and Cdh1 represent the Cyclin B complex and the APC-Cadherin 
1 complex.

 The active form of the p55cdc-Anaphase-promoting complex 
is represented by [p55cdcA] and the total p55cdc-Anaphase-
promoting complex is [p55cdcT]. The active form of Polo-like 
kinase 1 protein is [Plk1] and the cell mass is represented by 
[mass]. [masss] is the pseudo mass given by 
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These parameters represent glucose consumption rate, drug 
decay rate, miR-451 autocatalytic production rate, Hill-type 
coefficient AMPK autocatalytic production rate,  Hill-type 
coefficient, AMPK autocatalytic production rate, Hill-type 
coefficient, inhibition strength of miR-451 by AMPK complex,  
inhibition strength of AMPK complex by miR-451, signalling 
source of AMPK, signalling source of mTOR, scaling factor 
(slow dynamics) of AMPK complex, scaling factor (slow 
dynamics) of mTOR, inhibition strength of AMPK complex by 
miR-451 , production rate of [CycB] , the degradation rate of 
[CycB], the degradation rate of [CycB] by [Cdh1] inhibitory 
effect of p21 or p27 genes, oxygen concentration threshold, 
activation rate of [Cdh1], the activation rate of [Cdh1] by 
[p55cdcA], inactivation rate of [Cdh1] by [CycB], Michaelis-
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minimized/maximized simultaneously for a problem  involving 
a set of ODE 

( , )dx F x u
dt

=

ft  being the final time value and n the total number of 
objective variables. u is the control parameter. The MNLMPC 
method first solves the single objective optimal control problem 

independently optimizing each of the variables 
0

( )
i f

i

t t
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This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j) is obtained. The 

optimization package in Python, Pyomo38, where the differential 
equations are automatically converted to a Nonlinear Program 
(NLP) using the orthogonal collocation method  will be used. 
The resulting nonlinear optimization problem was solved 
using the solvers IPOPT39 and confirmed as a global solution 
with BARON40. To summarize the steps of the algorithm are as 
follows

Optimize 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  subject to the differential and 

algebraic equations that govern the process using Pyomo with 

IPOPT and BARON. This will lead to the value *
jq  at various 

time intervals ti. The subscript i is the index for each time step. 

Minimize 
0

* 2

1
( ( ( ) ))

i f

i
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j i j
j t

q t q
=

=

=

−∑ ∑ subject to the differential 

and algebraic equations that govern the process using Pyomo 
with IPOPT and BARON. This will provide the control values 
for various times.

Implement the first obtained control values and discard the 
remaining.

Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 

point is when 
0

*( )
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i

t t

j i j
t

q t q
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=∑  or for all j. This implies that 

Menten activation constant, Michaelis-Menten inactivation 
constant, production rate of [p55cdcT] transcription rate of 
[p55cdcT] by [CycB], the degradation rate of [p55cdcT], the 
dissociation constant of [p55cdcT], Hill coefficient, activation 
rate of [p55cdcA], inactivation rate of [p55cdcA], Michaelis-
Menten activation constant, Michaelis-Menten inactivation 
constant, spindle checkpoint genes concentration, the activation 
rate of [Plk1] by [CycB], the degradation rate of [Plk1], specific 
growth rate, maximum size to which a cell may grow, cell cycle 
heterogeneity growth rate parameter, Hill-type parameter, Hill-
type parameter, Hill-type parameter, Hill-type parameter, Hill-
type parameter, Hill-type parameter  and the Hypoxia-inducible 
factor.

1 2,u u  are both bifurcation parameters and control values.

Bifurcation Analysis
The existence of multiple steady-states and limit cycles in 

various processes has led to much research involving bifurcation 
analysis. Multiple steady states occur because of the existence 
of branch and limit points. Hopf bifurcation points cause limit 
cycles. One of the most commonly used software to locate 
limit points, branch points and Hopf bifurcation points is the 
MATLAB program MATCONT32,33. This software detects Limit 
points (LP), branch points (BP) and Hopf bifurcation points(H). 
Consider an ODE system

	
( , )dx f x

dt
α=                       		  (3)

nx R∈  Let the tangent plane at any point x be 

1 2 3 4 1[ , , , ,.... ]nw w w w w w += . The bifurcation parameter is α
. Define matrix A as

[ / | / ]A f x f α= ∂ ∂ ∂ ∂                                                                (4)

where /f x∂ ∂  is the Jacobian matrix. Since the gradient is 
orthogonal to the tangent vector,

0Aw =                                                                              (5)

For both limit and branch point the matrix [ / ]f x∂ ∂  must 
be singular. For a limit point (LP) the n+1 th component of the 

tangent vector 1nw +  = 0 and for a branch point (BP) the matrix 

T

A
w
 
 
 

 must be singular. At a Hopf bifurcation point, 

det(2 ( , )@ ) 0x nf x Iα =                       (6)

@ indicates the bialternate product while 
nI  is the n-square 

identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult. More details can be found in Kuznetsov34,35 
and Govaerts36.

Multiobjective Nonlinear Model Predictive Control
The multiobjective nonlinear model predictive control 

(MNLMPC) method37 used in these calculations is rigorous and 
does not involve weighting functions or additional constraints. 

Let 
0
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(j=12..n) be the variables that need to be 
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− =∑ ∑ . Sridhar41 proved that the MNLMPC 

calculations to converge to the Utopia solution when the 
bifurcation analysis revealed the presence of limit and branch 
points. This was done by imposing the singularity condition on 
the co-state equation42.

This is illustrated with a simple two-variable example. Let 
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the value 
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2q  The MNLPMC calculations will minimize the 

function 
* 2 * 2

1 1 2 2ˆ ˆ( ) ( )q q q q− + −  . The multiobjective optimal 
control problem is
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The Utopia point requires that both 
*

1 1ˆ( )q q−  and 
*

2 2ˆ( )q q−  
are zero. Hence
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The optimal control co-state equation36 is 
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iλ  is the Lagrangian multiplier. ft  is the final time. The 
first term in this equation is 0 and hence 

( ) ; ( ) 0i x i i f
d f t
dt

λ λ λ= − =

At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  

xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0i
d
dt

λ <  . In between there 

is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem and 
the only solution is the Utopia solution.

Results and Discussion
The original model has eleven ordinary differential equations 

(Eq. 1). Since the first 5 equations of this model were self-
sufficient (the other variables are not present in the first five 
equations) the truncated model was first considered. The effects 
of the chemical protein comlexes were not considered. The 
model equations for the truncated model are
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1 2,u u  are used as the bifurcation parameters individually. 
For the truncated model (Eq. 14) two limit points were found for 
each of the bifurcation parameters 

1 2,u u .

 When u1 was used as the bifurcation parameter the two limit 
points for the co-ordinates of 1( , , , , , )Gval Mval Aval Rval Dval u  
were label = LP, x = ( 0.575313, 1.285868, 1.707468, 2.227386, 
0.007599, 0.287656 ) and ( 0.391657, 2.517522, 0.745114, 
3.778995, 0.007599, 0.195828 ). This is shown in (Figure 1).

0 0.5 1 1.5 2 2.5

u1

1

1.5

2

2.5

3

3.5

4

4.5

5

R
V

A
L
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Figure 1: Bifurcation (truncated model u1 vs Rval).

When u2 was used as the bifurcation parameter the two limit  
points for the co-ordinates of 2( , , , , , )Gval Mval Aval Rval Dval u  
were label = LP, x = ( 0.100000, 0.770732, 2.709366, 2.175070, 
0.861295, 1.133465 ) and ( 0.100000, 2.457341, 0.768301, 
3.986453, 0.304074, 0.400161 ). This is shown in (Figure 2).
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Figure 2: bifurcation truncated model (u2 vs Rval).

When the full model (Eq. 1) was considered for bifurcation 
analysis one limit point was  found for each of the bifurcation 
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parameters 1 2,u u  in the feasible region (where none of the 
variables were negative) . When u1 was used as the bifurcation 
parameter, for the full model, the  limit point for the co-ordinates of

1( , , , , ,[ ],[ 1],[ 55 ],[ 55 ],[ 1],[ ], )Gval Mval Aval Rval Dval CycB Cdh P Cdct P Cdca Plk mass u

1( , , , , ,[ ],[ 1],[ 55 ],[ 55 ],[ 1],[ ], )Gval Mval Aval Rval Dval CycB Cdh P Cdct P Cdca Plk mass u were (0.290144, 0.493394, 3.416887, 2.303891, 
1.492932, 0.078886, 0.099250, 0.050546, 0.000464, 0.161636, 
0.000000, 0.145072 ) (Figure 3).

Figure 3: Bifurcation (full model u1 CDH1 Rval).

When u2 was used as the bifurcation parameter for 
the full model, the  limit point for the co-ordinates of

2( , , , , ,[ ],[ 1],[ 55 ],[ 55 ],[ 1],[ ], )Gval Mval Aval Rval Dval CycB Cdh P Cdct P Cdca Plk mass u

2( , , , , ,[ ],[ 1],[ 55 ],[ 55 ],[ 1],[ ], )Gval Mval Aval Rval Dval CycB Cdh P Cdct P Cdca Plk mass u were (0.100000, 0.253415, 3.958625, 2.303891, 
1.787266, 0.078886, 0.099250, 0.050546, 0.000464, 0.161636, 
0.000000, 2.352042 ) (Figure 4).

Figure 4: Bifurcation (full model u2 CDH1 Rval).

For the MNLMPC 
0

( )( )
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i

t t

i
t
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=

=

∑  and

0

( )( )
i f

i

t t

i
t
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=

=

∑  were individually maximized, resulting 

in a value of 10 for the full and truncated problems. The 
Multiobjective problem involved the minimization of 

0 0

2 2( ( )( ) 10) ( ( )( ) 10)
i f i f

i i

t t t t

i i
t t

MVAL t RVAL t
= =

= =

− + −∑ ∑  and resulted 

in the utopia value of 0 for both the truncated and full problems 
(confirming the analysis of Sridhar, 2024). 1 2,u u  are used as the 
control values together. The first obtained values of 1 2,u u  were 
implemented and the rest were discarded. This procedure was 
repeated until there was an insignificant difference between the 
implemented and the first obtained value of the control variables. 
The obtained MNLMPC control values of 1 2,u u were 0.08966 
and 0.943536 in both the truncated and full problems.

For the MNLMPC calculations, both the truncated and full 
models gave identical answers for the Gval Mval Aval Rval Dval 
and 1 2,u u  This was because the Lagrangian multiplier was 0 in 
both cases since both the truncated and full models exhibit limit 
points, confirming the analysis of Srihdar41. All the MNLMPC 
profiles are shown in (Figures 5-10).

Figure 5: MNLMPC (Gval, Mval, Aval, Rval, Dval).

Figure 6: MNLMPC (U1 U2).

Figure 7: MNLMPC (u1 u2 with savitzky Golay filter).

Figure 8: MNLMPC (CYCB and CDH1).
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Figure 9: MNLMPC(p55cdct and p55cdca).

Figure 10: MNLMPC (PLk1 and mass).

Conclusions
Multiobjective nonlinear model predictive control in 

conjunction with bifurcation analysis on the truncated and 
full models without and with various protein complexes. The 
bifurcation analysis reveals the existence of limit points. 
These limit points cause the Lagrangian multipliers in the 
multiobjective nonlinear model predictive control calculations 
to go to 0 yielding the utopia solution. Additionally, for the 
MNLMPC calculations, both the truncated and full models gave 
identical answers confirming that the Lagrangian multipliers 
were 0 for both the models.
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