ISSN: 2583-9888 (;)/URF PUBLISHERS

R
DOI: doi.org/10.51219/JAIMLD/anjan-gundaboina/629 = connect with research world

Journal of Artificial Intelligence, Machine Learning and Data Science

https://urfpublishers.com/journal/artificial-intelligence

Vol: 2 & Iss: 4 Research Article

DevSecOps in Healthcare: Building Secure and Compliant Patient Engagement
Applications

Anjan Gundaboina*

Senior DevsecOps and Cloud Architect, USA

Citation: Gundaboina A. DevSecOps in Healthcare: Building Secure and Compliant Patient Engagement Applications. J Artif
Intell Mach Learn & Data Sci 2024 2(4), 3052-3059. DOI: doi.org/10.51219/JAIMLD/anjan-gundaboina/629

Received: 02 November, 2024; Accepted: 18 November, 2024; Published: 20 November, 2024

*Corresponding author: Anjan Gundaboina, Senior DevsecOps and Cloud Architect, USA, E-mail: anjankumar.247@gmail.
com

Copyright: © 2024 Gundaboina A., This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

ABSTRACT

At present, the health- care industry is experiencing a dynamic shift mainly characterised by the use of modern technologies
in developing patients’ interaction. Nevertheless, the nature of all the accumulated data in healthcare is rather sensitive and
the demands of current legislation like HIPAA or GDPR require that the software be adequately secure and fully compliant.
DevSecOps, a practice incorporating security throughout the SDLC, offers a solution to the healthcare industry that DevOps
could not. The following work focuses on the effects of DevSecOps during patient engagement application development with
enhanced security and compliance. In this paper, such basic concepts as security automation, continuous compliance checking
and code security are explained in detail to outline a four-step methodology applicable to healthcare. The work includes case
studies, risk studies, implementation issues and comparing traditional DevOps and DevSecOps. Hence, there is a focus on
SAST tools, DAST tools, container security and IaC scanning. Last, it emerges that security should be imbued as a foundational
mindset and that development teams should be constantly trained. As the findings suggest, adopting DevSecOps also reduces
risks for the organization. It furthers compliance and proper security while at the same time improving the speed and stability of
software delivery, making this approach critical to the healthcare sector.

Keywords: DevSecOps, Healthcare Applications, Security Automation, Compliance, Patient Engagement, HIPAA, GDPR

focuses on software security during the software development
SDLC, is an innovative approach to overcoming these
challenges. When introduced at the initial stage and integrated
throughout the application development process, DevSecOps

1. Introduction
1.1. Importance of DevSecOps in healthcare

Several issues make application development challenging in

the healthcare industry, security and compliance included. These
are significant challenges due to the nature and importance of
patient information, which can only be exchanged, shared,
stored and analysed in compliance with the more stringent
norms like HIPAA and GDPR (Health Insurance Portability and
Accountability Act and General Data Protection Regulation,
respectively)'. Several challenges are associated with the
current approach in software development; DevSecOps, which

increases the chances of delivering secure and compliant
healthcare applications. Based on these factors, the following
are why DevSecOps is relevant in the healthcare sector (Figure

1).
* Protection of sensitive patient data: As in any other field,

patient information privacy is essential in the healthcare
system. Personal records, diagnosis, disease states and

https://doi.org/10.51219/JAIMLD/anjan-gundaboina/629
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/anjan-gundaboina/629

Gundaboina A.,

organizational financials are some of the heightened
information data that healthcare systems contain and
thus are vulnerable to psychopathic attacks. Traditional
security models of computing, which are achieved
through implementing a security layer at the end of system
development, are potential security threats. DevSecOps
means that security measures, such as encryption, accessing
control and vulnerability scanning, must be implemented
from the development side. These safeguards addressed in
this guide prevent data loss and privacy invasion, ensuring
patients’ confidentiality and confidence in healthcare
facilities.

Importance of DevSecOpsin rocicn of Sensitive
Healthcare Pationt Dala

B

Centinunus Menitaring preed Tima to —— ‘Comgliance with
ared Risi Bbtigation “;“' e Bogulatary Slandsrds
B Secufity

L
Sarenghening the

Synargies BEtWIOn B Ennhancieg Patisnt Tt

Cwrvlopment and the anad Gabalaction
Seowity Functions

Gast EMickency Through
Early Vulmerability
Detaction

Figure 1: Importance of DevSecOps in Healthcare.

Compliance with regulatory standards: In this emerging

sector, to address the needs of patients, technological
solutions and strict rules and requirements like HIPAA,
GDPR and PCI-DSS have to be followed. These regulations
require that healthcare providers keep patient information
and ensure that information management is open. They
are also punishable by fines, litigation and damage to the
company’s image. Through DevSecOps processes, it is easy
to incorporate security compliance while designing, coding,
testing and even deploying a particular software solution
since the latter flows relatively in a structured pipeline. Thus,
through compliance automation, DevSecOps optimizes
compliance throughout the SDLC, lowering the probability
of compliance issues on authorized healthcare applications
and improving the compliance assessment processes.

Improved time to market with better security: The
healthcare industry is bearing the roller-coaster of change
in applications that can be implemented to enhance patient
experience, interaction and organisational effectiveness.
Albeit, the deployment time of these applications should
not be affected at the expense of a hazard-free environment.
DevSecOps involves all teams in development, security
and operations and ensures security becomes part of the
process incorporated from the word go. This speeds up
the development and shortens the time to market while
overshadowing some essential security measures within
the application. DevSecOps, therefore, enables quick
deployment of safe applications, rolling out better security
measures and, therefore, continual testing into the CI/CD
cycle.

Continuous monitoring and risk mitigation: The
healthcare industry is constantly developing new security
threats and methods of threats, which are getting more
frequent. One advantage of DevSecOps is that it monitors
and alerts constantly rather than acting merely as a final

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 4

safety net. By implementing security as code early in the
development life cycle, DevSecOps helps to identify and
mitigate security issues in operational environments. Tools
such as SAST and DAST scan codes for vulnerabilities
constantly, while runtime protection pinpoints threats in
runtime environments. This systematic approach helps
identify and act on threats before they become security
issues threatening to compromise data or physical assets.

* Strengthening the synergies between the development
and the security functions: DevSecOps creates a system
where development, operations and security are in sync. In
other words, no silos. In most healthcare-related projects,
the work is carried out by cross-functional teams and
the sense of ownership that everyone has is appropriate
to ensure that the security of the applications under
development is not considered an add-on or an incremental
factor but is encoded in the development lifecycle. It fosters
convergence and helps identify security problems and
embrace the finest security development processes much
earlier in the process. Therefore, security issues are resolved
and distributed because individuals usually do not consider
certain aspects of their weaknesses; they are overseen,
allowing for the implementation of a unified strategy for
healthcare application security.

* Enhancing patient trust and satisfaction: Healthcare
consumers provide their most personal details to healthcare
entities when seeking help. But when they use health care
apps, they expect their details to be protected. This often-
incurred trust can be betrayed and the implications can
be severe, including being sued or heavily penalized and
losing reputation and patients. That way, the concept of
DevSecOps was developed to implement security and
privacy consistently so that users could be trusted. With
operational and compliance tests performed automatically,
healthcare firms are dedicated to safeguarding patient
information and delivering safe digital care. This bolsters
the patient’s trust in the given system, which is crucial for
using digital health technologies.

e Cost efficiency through early vulnerability detection:
Traditional pre/post development security assessments FC
laughingstock security when issues are found in the post-
development phase must be remediated at a far higher cost
with increased time costs than corrections made during
the development cycle. Thus, DevSecOps presupposes
detecting the threat, including introducing the security
testing processes into the SDLC. This reduces the cost of
fixing vulnerabilities because problems can be solved at the
development stage, not at the deployment stage when many
problems must be patched. Moreover, generalising security
measures allows avoiding the build-up of technical debt
and entailing long-term cost-saving benefits for healthcare
constituents.

1.2. Need for DevSecOps in healthcare

Adopting a cultural approach, the conventional DevOps
practices dictate a faster rate in the SDLC to deliver a high-
quality solution in the shortest possible time>¢. Although this
has been quite efficient where enabling the fast release of
features is concerned, the downside is that security is more
frequently addressed as an afterthought, often implemented in
later development phases testing and audits. This is particularly

Gundaboina A.,

alarming because of the great concern in fields such as
healthcare, where the consequences of poor security are much
more severe. Nothing about a patient’s personal information,
whether the patient’s detailed health information or financial
records, is safe from hackers because of the increasing use of
healthcare applications. This can be disastrous since violating
the same can trigger legal consequences, harm the company or
the hospital’s reputation or even endanger a patient’s life. In the
traditional DevOps frameworks, security is an addendum, where
automated security scans or vulnerability fixes are implemented
in a fixed program version when in production. This reactive
approach allows significant threats to enter the application
perimeter, which could have been blocked earlier in the software
development life cycle. DevSecOps corrects this issue because
the usage of security extends throughout the development life
cycle, from design and coding to deployment and monitoring
processes. This approach integrates cybersecurity as a cross-
functional effort throughout the organization’s DevOps teams.
Security is effectively integrated into the DevSecOps process
through security automation across the entire DevOps pipeline,
with testing, compliance and monitoring in parallel to prioritize
identifying and addressing security issues. This proactive
approach also enhances overall security and completes the
mission to safeguard data and other sensitive information
that directly impacts a healthcare organization. Whenever a
proactive protection measure is found inadequate, fix it as per
the regulatory benchmark and build up the patient’s confidence
in an organization. In the same way, via DevSecOps practices,
healthcare organisations can produce secure, compliant and
quality applications within a timely fluency that does not
compromise the innovative aspects that accompany such
methodologies (Figure 2).

REGULATORY LANDSCAPE

Figure 2: Regulatory Landscape.
1.2. Regulatory landscape

e HIPAA compliance: HIPAA guidelines’ rules address the
privacy, security and availability of the electronic Protected
Health Information (ePHI) in the healthcare sector. HIPAA
states that many administrative, physical and technical
measures must be implemented in healthcare facilities to

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 4

protect patient information from disclosure, unauthorized
access or alteration. These measures include but are
not limited to the use of passwords, user log in details,
periodic checks and staff orientation to the policies and
standards of the University. In a DevSecOps context, these
safeguards become Imperative in the DevSecOps model.
Privacy and security considerations are integrated into the
software delivery pipeline and employed consistently from
development to production. HIPAA noncompliance can cost
organizations substantially through hefty fines and loss of
reputation, which is why its enforcement is critical in the
application development lifecycle.

* GDPR compliance: The GDPR is a set of EU regulations
on data protection, primarily concerning personal data
protection. GDPR emphasizes two core principles: A
concept of data protection by design and by default - this
basically means that privacy requirements must be built
into the solutions as a primary design step rather than be
afterthoughts. It also has a significant focus on consent
meaning that consumers have control over their personal
information, be collected, processed and stored. In the
case of healthcare, GDPR is in operation regardless of the
organisation’s location; that treats residents’ data of the
blocks of the European Union. In healthcare, this implies
that user data is protected effectively from unauthorized
access stored, used only where it is necessary and only used
by authorized staff. GDPR requirements can be applied and
maintained throughout the SDLC and DevSecOps practices
to satisfy these requirements, integrated into them and
implemented in the following manner; for example, Failure
to abide by these Data Protection laws attracts hefty fines,
thus the need to embrace security and privacy features in the
application of healthcare technology.

2. Literature Survey
2.1. Existing DevOps practices in healthcare

In healthcare industries, DevOps was implemented
mainly based on deployment speed, system reliability and
operational effectiveness”!!. These often include making speed
of development faster, timely integration of development
and operations processes and utilization of resources. Still,
a significant weakness exists: the lack of automatic security
checks and evaluation and the post-implementation assessment
of vulnerabilities. This reactionary approach to application
development only increases vulnerabilities as problems are
identified after live systems are implemented. Moreover, since
most applications in the healthcare domain are complex because
of data sensitivity and data regulatory concerns, the ability to
detect security vulnerabilities also faces delay consequences.

2.2. Evolution to DevSecOps

DevSecOps is an extension of DevOps that integrates
security end-to-end in the development and deployment process
of the software. This approach embeds security inherently
within CI/CD processes and builds security into applications and
development life cycle. It asks for proactive threat modelling,
where threats and risks are addressed as soon as they are found in
the development phase and real-time monitoring to discern new
emerging threats and vulnerabilities. Applying the principles of
DevSecOps is built on the idea of shifting security left so that

Gundaboina A.,

development, security and operations teams are involved right
from the beginning of the development process rather than being
considered an add-on.

2.3. Case studies

e Case study 1: Mayo Clinic: To fully implement DevSecOps
atthe Mayo Clinic, the utilization of SAST and DAST tools in
the CI/CD processes was employed. Such security measures
allowed the organization to mitigate risks before deploying
in the environment, thereby minimizing the number of
security incidents in the production environments. The
positive outcome was a 35% decrease in post-deployment
vulnerabilities, which led to the conclusion that the best way
to integrate security is at the beginning of the development
cycle.

* Case study 2: NHS Digital: During development, NHS
Digital integrated container scanning and compliance-
as-code solutions to keep the working environment safe
and consistent. Due to automated scanning of the images
and policy checks for conformity across multiple stages,
situational security was maintained throughout different
applications and services introduced by NHS Digital. This
approach increased scalability and ensured the security
of an organization’s update process and compliance with
healthcare regulations.

2.4. Gap analysis

The differences between DevOps and DevSecOps became
apparent mainly in treating security within the development life
cycle. Generally, security testing within traditional DevOps is ad
hoc and occurs sequentially at the end of the development phase.
This approach often conceals vulnerabilities and puts a wrench
in the system that prevents developers from being prepared and
able to fix it as soon as possible. On the other hand, DevSecOps
integrates and applies security testing throughout the SDLC to
identify and address threats early and automatically. In DevOps,
compliance checks are normally post-deployment; hence, when
there is a check, the organization experiences non-compliance
and more work. DevSecOps incorporates an immediate validation
of compliance, therefore preventing breaches of regulation.
However, there is limited engagement from developers in
terms of security activities in the classic DevOps approaches.
DevSecOps ensures that everyone has a security mentality,
making developers responsible for embedding security from the
development phase making software more secure.

3. Methodology
3.1. DevSecOps implementation framework

Planning & Requirements: The first is identifying security
requirements and functional and business goals. Data protection
requirements'>'>, compliance directives (for example, the Health
Insurance Portability and Accountability Act) and threat analysis
are addressed from the beginning. Integration of security into the
development and operations plan of a software system makes it
possible to avoid considering security as a ‘bolt-on’ system.

* Code commit & static analysis: Once coding is done,
security is implemented by code reviews and static
application security testing (SAST). Before the code is
checked into the main repository, these tools scan for
problems like hard-coded credentials, insecure methods

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 4

and data leakage. STS has to be incorporated at the commit
stage to allow identification of issues at the early levels,
hence attracting lesser costs and efforts than when it is done
at a later state.

DevSecOps Implementation Framework

1
PLANNING &
REQUIREMENTS
2
CODE COMMIT &
STATIC ANALYSIS
3
BUILD & DEPENDENCY
SCANNING
4
TEST & DYNAMIC
ANALYSIS
WITH INFRASTRUCTURE 5

AS CODE (IAC), AT LEAST
PARTIALLY

6
MONITOR &
INCIDENT RESPONSE

Figure 3: DevSecOps Implementation Framework.

3.2

Build & dependency scanning: In the build phase,
the compiled code, along with its specified software
dependencies in libraries and frameworks, is checked for
vulnerabilities by software composition analysis (SCA).
These scans detect old libraries, the violation of open-
source licensing agreements and open-source software
which contains common vulnerabilities and suspicions in
the license. With most of these checks running through the
CI/CD pipeline, the teams can ensure that code flagged for
vulnerabilities does not advance to other stages.

Test & dynamic analysis: In this stage, the application is
tested in the runtime environment using dynamic application
security testing (DAST) & interactive application security
testing (IAST). These work like replicas of real-world
conditions to check vulnerabilities such as injection, broken
authentication and improper configurations. Incorporation
of security testing into functional and regression testing
would have a way of exposing the vulnerabilities before
deployment.

With Infrastructure as Code (IaC), at least partially:
The deployment practice is used to provision and configure
environments through Infrastructure as Code securely
and non-equivocally. Secrets management, security of the
network configurations and compliance as code policies are
incorporated within the IaC templates. Open-source tools
like Terraform or Ansible also highlight that all security
patterns are versioned and applied consistently across
environments.

Monitor & incident response: The system is continually
monitored with security information and event management
(SIEM), intrusion detection systems (IDS) and behavior
analytics after deployment. Alerts, threat intelligence and
response orchestration are ways of dishing out incidents
quickly. The monitoring programs generate feedback
incorporated into the planning of the subsequent steps taken
under the DevSecOps process.

Security automation tools

SAST tools: SonarQube, fortify: White box testing method

Gundaboina A.,

known as Static Application Security Testing (SAST) tools
such as SonarQube and Fortify check source codes in the
early phase of the Software Development Life Cycle (SDLC
without running the code. These tools assist developers in
determining coding problems, application security threats
and coding poor patterns, including SQL injections, buffer
overflows and code smells. SonarQube is readily integrated
into the CI/CD and flexible for multiple languages, while
Fortify penetrates the corporation level with profound static
analysis and immigrant resolution instruction.

* DAST tools: OWASP ZAP, burp suite: DAST tools like
OWASP ZAP and Burp Suite interact with applications in
a running state and mimic real-world scenarios to exploit
aspects of XSS, broken authentication, insecure redirects,
etc. OWASP ZAP is an excellent Python framework for
automated assessments, being developed collaboratively. At
the same time, Burp Suite is considered a robust, licensed
tool for extensive manual testing with modularity extension.

N

Security
Automation
Tools

SAST Tools:
o1) SonarQube, Fortify

Figure 4: Security Automation Tools.

* Dependency scanners: Snyk, White Source: Software
Composition Analysis or Dependency tools like Snyk and
White Source analyse the set project dependencies to find out
if any of them contain known open-source vulnerabilities.
Snyk naturally fits into developers’ toolchains and offers
on-the-spot remediation advice, whereas White Source
is more tailored for vulnerability remediation and license
management. This article is important as it outlines and
explains these tools for minimizing the risk of using insecure
third-party components.

e JaC scanners: Checkov, tfsec: Tools like Checkov
and tfsec target [aC templates, including Terraform and
CloudFormation, to identify misconfiguration and security
vulnerabilities that can be deployed. Checkov uses an
extensively customizable policy engine running the policy
as source code. At the same time, tfsec works as a detailed
check of the Terraform code to identify risks such as open
ports, weak encryption and relaxed permissions. These tools
contribute to constructing a security perimeter and enforcing
compliance from day one in any cloud environment.

3.3. Continuous compliance

The modern IT world requires continuous compliance
to maintain regulated scenarios and secure standards which
smoothly integrates into the DevSecOps frameworks to utilize in
the application and infrastructure. In contrast to the compliance
initiative as a check-the-box exercise during or after delivery,
compliance is done with CI/CD processes. Incorporating this
proactive approach into development and operations'®'?, it
is possible to flag compliance issues early on in the process
and avoid extensive refactoring and compliance penalties
that might be incurred after the deployment phase. It is also

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 4

one of the primary approaches to the continuous compliance
implementation methodology, where compliance rules are
integrated into the purpose-built paths. This means integrating
security and compliance rules like encryption, access rights,
log monitoring and security standard settings to be tested for
compliance when code is checked in/checked out, built or
deployable. For instance, pipelines can include checks to
verify that all provisioned resources adhere to some specified
security guidelines; it may also check if all the data storage uses
encryption at rest and in transit. One of the great enablers of this
process is using tools that deal with policies as codes, such as
Open Policy Agent or OPA. Specifically, through OPA, specific
controls, policies and their versions can be defined programme
-wide across a multistakeholder environment that includes
various systems and technologies. It is possible to integrate OPA
and have it generated policies written in its Rego language to
check infrastructures, configurations, deployment manifests and
patterns of applications in real-time, allowing for the rejection
of non-compliant builds. This not only strengthens security and
compliance on an ongoing basis but also records who has done
what, where and when, which enhances the security decision
making transparency and accountability. Moving compliance
left and making it continuously reduces overhead caused by
compliance checks, shortens development cycles and guarantees
compliance with security and regulations. It is especially
helpful in heavily regulated fields such as the healthcare sector,
the General Data Protection Regulation or the Payment Card
Industry Data Security Standard.

3.4. Secure coding practices

Adhering to secure coding standards is the bedrock of
an application and assists in striking out upcoming general
weaknesses easily exploited by wrongdoers. These practices
involve the use of code that is not only effective but also safe
since it is coded securely. Implementing proper input validation,
the principle of least privilege and data encryption are the three
basic paradigms that can help to reduce risks from attackers and
protect data. It checks data received from users, APIs or any third-
party source for accuracy, format and security before further
processing. This technique helps avoid data injection attacks, for
example, SQL injection, vulnerable cross-site scripting attacks
(XSS) and command injection whereby damaging data is viewed
as actual codes. Therefore, a big security threat can be reduced if
developers begin to validate data on the client and server sides,
thereby discarding any extra or unexpected inputs. Strictly
speaking, the principle of least privilege (PoLP) states that users,
services and applications should have only the minimum levels
of access or permissions needed to do their jobs. This lowers
the risk exposure in the event of a break-in or systems failure
and or misconfiguration. For instance, an application component
only required to access a database should not possess read/write
or administrator access. Implementing some level of PoLP in
code, APIs, system roles and infrastructures reduces threats and
enhances their control. Another component of secure coding is
data encryption, in other words, encryption of data kept on the
machine and during transfer from one host to another. Encryption
ensures that the information cannot be understood even when
confidential information is leaked or otherwise obtained by
the wrong individuals. Passwords should be protected by the
following cryptographic measures: the encryption method must
not be less than TLS 1.2 and the AES-256 encryption must be
utilized. Password, personal and financial data and other personal

Gundaboina A.,

information must always be protected and encrypted through
the software life cycle. For these and other secure coding best
practices to make the intended positive difference, practising
them regularly, in equal measure and early enough is prudent
for organizations.

3.5. Threat modelling

Threat modelling is simply the way of understanding how an
attacker approaches an application or system to master the various
opportunities that will help the attacker exploit it. Security by
design extends through tackling questions such as how could
a hostile party try to subvert a system, which vulnerabilities
could be exploited and what the repercussions would be. One
formula forms the basis of threat modelling: Risk, as defined by
the formula, is calculated as follows.

Risk = Threat x Vulnerability x Impact.

As shown in this formula, the level of security risk is
defined as a combination of a threat (for example, a hacker or
malware), a vulnerability (such as insecure input handling or
poor authentication) and the consequence if a threat exploits a
vulnerability, for instance, data loss, system outage or violation
of regulation. Part of threat modelling is to define assets or
to identify parts of a system, its data and trust perimeters or
pathways that change from one security domain to another
(e.g., from a user device to a cloud server). In this way, the
identified areas allow teams to find authentication, data storage
and/or communications vulnerabilities. An easy-to-use tool, one
such is Microsoft’s STRIDE model, which includes Spoofing,
Tampering, Repudiation, Information disclosure, Denial of
service and Elevation of privilege. Another widely used method,
PASTA (Process for Attack Simulation and Threat Analysis),
connects threat modelling with business goals and appreciated
risk levels. As a result, threat modelling is not a waterfall
activity but a constant activity in the DevSecOps model and is
continuously adjusted during the evolution of the application.
This makes it possible to revisit systems developed and check
for new features and changes in the system architecture. At the
same time, when teams apply the formula and evaluate parts
of a system with higher risk scores, it is possible to decide on
the allocation of security measures. Threat modelling allows
developers to understand how a threat actor would approach a
system and address these problems before they become real-
world issues.

4. Results and Discussion
4.1. Evaluation metrics

* Time to deployment: Throughput is calculated as the
period between when a commit is made and when a change
is deployed to the production environment. In context to the
DevSecOps paradigm, this metric measures the impact that
the incorporation of Auto-Sec and compliance- checks exert
on the top-line explicit aspects of the deployment process.
Even better, by including security right from the design
phases and posing many of these steps to be manually
carried out later during deployment in an organizational
environment, the time which has previously been required
to be spent on post-deployment security review and audit
can be significantly lowered. Due to a short period to what
seems to be the deployment of the final iteration/ release,
the development process is more flexible, which is a

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 4

valuable aspect for sustaining competitive advantage and
for addressing the customers’ needs and wants in today’s
ever-evolving and technological epoch.

* Number of vulnerabilities detected pre-deployment:
This metric measures the number of program flaws and their
characteristics when they were still at the developmental
stage before the launch in the production environment. Static
Application Security Testing, Dynamic Application Security
Testing and various security tools within the CI/CD pipeline
minimize the chance of opening up vulnerabilities. Reducing
threats and susceptibilities pre-deployment is essential for
avoiding exploitation in production surroundings. They also
give insight into the extent of implementation of security
control measures within the DevSecOps cycle, if any
firm has effectively acted on the security breaches before
reaching the consumer.

* Compliance violations: Compliance Violations represent
the degree of compliance conformity established by
the assessed application and infrastructure with the
administrative and security policies. To name but a few
examples, compliance with HIPAA, GDPR or PCI DSS
becomes necessary for industries ranging from healthcare
and finance to government. DevSecOps Automation
prescribes that before any code composed or deployment to
production occurs, policy-as-code reviews the compliance
status of the code. This metric measures how compliance
is improving due to automation across the various stages of
the software development process, revealing an increased
ability to control risk and adhere to security standards and
regulations.

* Developer productivity: Developer Productivity measures
the performance of each development team in terms of
code production rates, the time required to fix bugs and
the time needed to address security problems. In the latest
practices of DevSecOps, the aim is to increase productivity
by minimizing interactions with security or compliance
incidents to let the core development effort happen instead
of having to repeat relentless repairs. This metric is about
how automation, improved use of security tools and a
DevSecOps approach led to a faster development process.
In general, increased developer productivity will result in
faster delivery and make the software more comprehensively
tested.

4.2. Results from pilot implementation

Table 1: Comparison of Metrics Pre- and Post-DevSecOps.

Metric Improvement
Time to Deployment 33%
Vulnerabilities 64%
Compliance Violations 86%
Developer Productivity 20%

* Time to deployment: 33%: The promises of DevSecOps
became evident in that we could deploy an application 33%
faster, from twelve to eight days. That is mostly because of
the increased adoption of security checks and compliance
assessments in a CI/CD pipeline. When security problems
are identified in the early stages of a project, most delays
attributed to getting a security check or having a patch
installed afterwards are eliminated. In other words, it allows
developers to code security as an add-on while building

Gundaboina A.,

business functionality which catapults the rate of release of
features into the market.

100%
S0%

80%
70% 64%

86%

60%
50%
40% 33%

30 20%
20%
10%
0%

Time to Deployment Vulnerahilities Compliance Violations Developer Productivity

Im provement

Figure 5: Graph representing Comparison of Metrics Pre- and
Post-DevSecOps.

* Vulnerabilities: 64%: Deploying both SAST and DAST
security tools helped reduce the number of vulnerabilities
identified pre-deployment by 64 percent. For the test,
vulnerabilities were reduced from 42 to just 15, suggesting
that a preemptive security scan is highly effective. Looking
at security not as an add-on to the development cycle but as
an integrated part, many problems were repeatedly spotted
at the development stage before reaching the production
environment. This cuts down on the vulnerabilities present
in the final software, resulting in decreased possibilities
of data break-ins or terrible breaches when the software is
already released for use.

e Compliance violations: 86%: Originally, there were seven
compliance violations, but later decreased to only one when
they implemented DevSecOps to its fullest extent, hence
amounting to an 86 percent boost. This drastic decrease
is achieved by incorporating policy scans and compliance
as code that runs at the CI/CD pipeline continuously. The
compliance tools allow for any build and deployment to
automatically check for and follow, regulatory compliance,
for instance, the HIPAA or GDPR. The following approach
promotes conformity and checks the organization against
hefty fines or damaged reputation from non-compliance,
strengthening the organisation, especially in a highly
regulated setting.

* Developer productivity: +20%: In the case of developers,
velocity demonstrated a 20% improvement, implying
that they could deliver more value with features, bug
fixes and updates in less time. Security and compliance
considerations were optimized and controlled as much
and as soon as possible in the pipeline, freeing developers
from frequently dealing with security issues or compliance
findings that could have been weeks, maybe months, out
of the pipeline. This rapid feedback loop that DevSecOps
offered also decreased the time spent tracking down and
resolving problems and increased efficiency. Consequently,
there was the ability to deliver new functionality and fix
bugs faster than the output process of the team.

4.3. Discussion

When utilizing and applying DevSecOps within the scope
of the pilot, the numerous benefits in terms of performance
and security proved that security must be integrated into

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 4

the real SDLC process. Major improvements were made to
the measure Time to Deployment, where the first release to
deployment experienced a first-time 33 percent improvement.
This was especially true on security checks and compliance
verifications, painful processes traditionally performed
manually that were heavily causing bottlenecks. Security was
implemented at the beginning of the CI/CD process so teams
could identify and rectify future problems before they arose in
the live environments. The 64% decrease in vulnerability was
another gain made. This reduction showed that it is effective
to apply many kinds of security measures, including static and
dynamic code analysis, as earlier in the development phase.
Some security instruments were integrated with immediate
feedback information so that the developers could correct
weak points at the moment of their exploitation, contrary to
using post-deployment diagnostics or assessment. This made
applications more secure and minimised the chances of common
threats that prevail in Endeavour when launched, transforming
them into costly breaches or data loss. Moreover, compliance
violations were reduced by 86%, demonstrating the policy-as-
code approach’s effectiveness in enacting policy and procedural
compliance. Ongoing surveillance and automated compliance
checking and adjustment reduced the possibilities of human
interference. They kept the system in check for compliance
with the legal and industrial requirements of the application
throughout its life cycle. This proved especially beneficial for
IT sectors that are heavily regulated due to compliance issues,
particularly regarding healthcare and finance.

Nevertheless, it was not smooth sailing as organisations
shifted to DevSecOps for better security outcomes. Due to the
relative maturity of security tool adoption, strategies aimed
at incorporating them into CI/CD frameworks took time
and skills to implement. Also, it was necessary to change the
practice of employing developers and train them to become
security-oriented and get acquainted with newly emerging tools.
Nonetheless, the long-term advantage of faster deployment,
better security and compliance were good reasons he deemed
the shift to DevSecOps a worthy investment for the firm.

5. Conclusion

DevSecOps is a relatively new way of ensuring organization
sophistication and software development, especially in critical
areas such as the healthcare platform. DevSecOps hinges its
security approach on embedding security practices throughout
the SDLC, from concept through to code, integration, testing
and operations, to ensure that risks are identified and addressed
before becoming major issues. This is particularly important in
the healthcare section since data, especially that of the patients, is
rather sensitive. Integrating DevSecOps into patient engagement
applications benefits the development process by minimizing the
attack surface and avoiding additional expenses required to fix
those defects and handle security incidents or non-compliance
issues. Incorporating security throughout the development and
operations cycle makes it seamless rather than shift-based,
creating greater security and continuous improvement processes.
With this approach organizations can improve the pace at which
they provide new features and updates and guarantee shored-up
security and compliance. In this conversation, using DevSecOps
in healthcare is beneficial in creating effective safe, fully
functional apps compliant with regulatory requirements and
friendly for patients.

Gundaboina A.,

5.1. Future work

Even though DevSecOps has been shown to enhance
organizational efficiency in fulfilling security requirements,
there are further research and improvement areas in this
sphere. One of them is the application of artificial intelligence
for automation and improving security analysis. Big data and
the adaptive computational power of Al and machine learning
can help discover patterns in threats, forecast future security
openings, solve problems and even address certain problems
automatically in real-time. The technology could be used in
increasing the speed and accuracy of detecting threats without
requiring several interventions to do so thus making new security
threats be addressed much earlier. Another topic that will need
more attention is zero-trust architecture integration. A zero-
trust model presupposes that risks can appear from the external
world and within the network, so all users, devices and systems
must be validated. Applying zero-trust principles to DevSecOps
would help improve the security of healthcare applications even
more because today, companies are moving to cloud services
and adopting remote work solutions. Taken together, it is clear
that there is a great deal of potential for greater use of patient
feedback within the context of secure design to which future
work should turn. To grasp patient perceptions of privacy, data
security and how their information is being used, the results can
help determine how acceptable security measures are or where
they may be lacking. Formal feedback from these might be
incorporated directly into the design and security testing phases
to ensure that patient applications are secure and trusted. These
research areas have the great potential to advance the field of
DevSecOps even further, as well as the methodology of secure
application development within the healthcare industry where
information security is truly critical.

6. References

1. Fitzgerald B, Stol KJ. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software,
2017;123: 176-189.

2. Kim G, Humble J, Debois P, et al. The DevOps handbook: How
to create world-class agility, reliability, & security in technology
organizations. It Revolution, 2021.

3. Boda VVR. Faster Healthcare Apps with DevOps: Reducing
Time to Market. International Journal of Artificial Intelligence,
Data Science and Machine Learning, 2022;3: 55-64.

4. Akbar MA, Smolander K, Mahmood S, et al. Toward successful
DevSecOps in software development organizations: A decision-
making framework. Information and Software Technology,
2022;147: 106894.

5. Ramaj X, Sanchez-Gordén M, Chockalingam S, et al. Unveiling
the safety aspects of DevSecOps: evolution, gaps and trends.
Recent Advances in Computer Science and Communications
(Formerly: Recent Patents on Computer Science), 2023;16:
61-69.

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 4

Boda VVR. Al Meets DevOps in Healthcare: Transforming How
We Operate. Advances in Computer Sciences, 2023;6.

Akinola OA, Oyerinde O, Akinola A. Implementation of DevOps
in healthcare systems. Journal of Artificial Intelligence General
Science (JAIGS), 2024;2: 217-227.

Yarlagadda RT. Implementation of DevOps in healthcare
systems. Implementing DevOps in Healthcare Systems,
International Journal of Emerging Technologies and Innovative
Res, 2017.

Rajapakse RN, Zahedi M, Babar MA, et al. Challenges and
solutions when adopting DevSecOps: A systematic review.
Information and software technology, 2022;141: 106700.

Lombardi F, Fanton A. From DevOps to DevSecOps is not
enough. CyberDevOps: an extreme shifting-left architecture
to bring cybersecurity within the software security lifecycle
pipeline. Software Quality Journal, 2023;31: 619-654.

Ramaj X, Colomo-Palacios R, Sanchez-Gordon M, et al.
Towards a DevSecOps-enabled framework for risk management
of critical infrastructures. In European Conference on Software
Process Improvement, 2023: 47-58.

Appari A, Johnson ME, Anthony DL. HIPAA compliance: an
institutional theory perspective, 2009.

Fu M, Pasuksmit J, Tantithamthavorn C. Ai for develops: A
landscape and future opportunities. ACM Transactions on
Software Engineering and Methodology, 2024.

Reddy P, Onitskansky E, Singhal S, et al. Why the evolving
healthcare services and technology market matters. McKinsey
& Company, 2018;12.

Barad M. Linking cyber security improvement actions in
healthcare systems to their strategic improvement needs.
Procedia Manufacturing, 2019;39: 279-286.

Chu-Weininger MYL, Balkrishnan R. Consumer satisfaction with
primary care provider choice and associated trust. BMC health
services research, 2006;6: 1-13.

Sokolowski D. Infrastructure as code for dynamic deployments.
In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, 2022: 1775-1779.

Akinola O, Oyerinde O, Akinola A. Evaluating the Impact of
DevOps Practice in the US Health Care Systems. Journal of
Knowledge Learning and Science Technology, 2023;2: 158-162.

Rajapakse RN, Zahedi M, Babar MA. Collaborative application
security testing for devsecops: An empirical analysis of
challenges, best practices and tool support, 2022.

Ivanova E, Stakhanova N, Sistany B. Adversarial Analysis
of Software Composition Analysis Tools. In International
Conference on Information Security, 2024: 161-182.

https://www.brian-fitzgerald.com/wp-content/uploads/2019/02/The-Journal-of-Systems-and-Software-2015-Continuous-software-engineering-A-roadmap-and-agenda.pdf
https://www.brian-fitzgerald.com/wp-content/uploads/2019/02/The-Journal-of-Systems-and-Software-2015-Continuous-software-engineering-A-roadmap-and-agenda.pdf
https://www.brian-fitzgerald.com/wp-content/uploads/2019/02/The-Journal-of-Systems-and-Software-2015-Continuous-software-engineering-A-roadmap-and-agenda.pdf
https://books.google.co.in/books/about/The_DevOps_Handbook.html?id=ui8hDgAAQBAJ&redir_esc=y
https://books.google.co.in/books/about/The_DevOps_Handbook.html?id=ui8hDgAAQBAJ&redir_esc=y
https://books.google.co.in/books/about/The_DevOps_Handbook.html?id=ui8hDgAAQBAJ&redir_esc=y
https://ijaidsml.org/index.php/ijaidsml/article/view/93
https://ijaidsml.org/index.php/ijaidsml/article/view/93
https://ijaidsml.org/index.php/ijaidsml/article/view/93
https://www.sciencedirect.com/science/article/pii/S0950584922000568
https://www.sciencedirect.com/science/article/pii/S0950584922000568
https://www.sciencedirect.com/science/article/pii/S0950584922000568
https://www.sciencedirect.com/science/article/pii/S0950584922000568
https://www.researchgate.net/publication/362483601_Unveiling_the_Safety_Aspects_of_DevSecOps_Evolution_Gaps_and_Trends
https://www.researchgate.net/publication/362483601_Unveiling_the_Safety_Aspects_of_DevSecOps_Evolution_Gaps_and_Trends
https://www.researchgate.net/publication/362483601_Unveiling_the_Safety_Aspects_of_DevSecOps_Evolution_Gaps_and_Trends
https://www.researchgate.net/publication/362483601_Unveiling_the_Safety_Aspects_of_DevSecOps_Evolution_Gaps_and_Trends
https://www.researchgate.net/publication/362483601_Unveiling_the_Safety_Aspects_of_DevSecOps_Evolution_Gaps_and_Trends
https://ijaidsml.org/index.php/ijaidsml/article/view/95
https://ijaidsml.org/index.php/ijaidsml/article/view/95
https://ojs.boulibrary.com/index.php/JAIGS/article/view/108
https://ojs.boulibrary.com/index.php/JAIGS/article/view/108
https://ojs.boulibrary.com/index.php/JAIGS/article/view/108
https://www.jetir.org/view?paper=JETIR1706100
https://www.jetir.org/view?paper=JETIR1706100
https://www.jetir.org/view?paper=JETIR1706100
https://www.jetir.org/view?paper=JETIR1706100
https://arxiv.org/abs/2103.08266
https://arxiv.org/abs/2103.08266
https://arxiv.org/abs/2103.08266
https://dl.acm.org/doi/abs/10.1007/s11219-023-09619-3
https://dl.acm.org/doi/abs/10.1007/s11219-023-09619-3
https://dl.acm.org/doi/abs/10.1007/s11219-023-09619-3
https://dl.acm.org/doi/abs/10.1007/s11219-023-09619-3
https://hiof.brage.unit.no/hiof-xmlui/bitstream/handle/11250/3171317/RamajOnDevSecOps2024.pdf?sequence=2&isAllowed=y
https://hiof.brage.unit.no/hiof-xmlui/bitstream/handle/11250/3171317/RamajOnDevSecOps2024.pdf?sequence=2&isAllowed=y
https://hiof.brage.unit.no/hiof-xmlui/bitstream/handle/11250/3171317/RamajOnDevSecOps2024.pdf?sequence=2&isAllowed=y
https://hiof.brage.unit.no/hiof-xmlui/bitstream/handle/11250/3171317/RamajOnDevSecOps2024.pdf?sequence=2&isAllowed=y
https://www.semanticscholar.org/paper/HIPAA-Compliance%3A-An-Institutional-Theory-Appari-Johnson/df1b78857e665bf7991afebfad4dc3893df45095
https://www.semanticscholar.org/paper/HIPAA-Compliance%3A-An-Institutional-Theory-Appari-Johnson/df1b78857e665bf7991afebfad4dc3893df45095
https://dl.acm.org/doi/10.1145/3712190
https://dl.acm.org/doi/10.1145/3712190
https://dl.acm.org/doi/10.1145/3712190
https://www.sciencedirect.com/science/article/pii/S2351978920304029
https://www.sciencedirect.com/science/article/pii/S2351978920304029
https://www.sciencedirect.com/science/article/pii/S2351978920304029
https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-6-139
https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-6-139
https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-6-139
https://dl.acm.org/doi/10.1145/3540250.3558912
https://dl.acm.org/doi/10.1145/3540250.3558912
https://dl.acm.org/doi/10.1145/3540250.3558912
https://dl.acm.org/doi/10.1145/3540250.3558912
https://arxiv.org/abs/2211.06953
https://arxiv.org/abs/2211.06953
https://arxiv.org/abs/2211.06953
https://dl.acm.org/doi/10.1007/978-3-031-75764-8_9
https://dl.acm.org/doi/10.1007/978-3-031-75764-8_9
https://dl.acm.org/doi/10.1007/978-3-031-75764-8_9

