
DevOps at Scale: Automating Cloud Deployments with Ansible, AWX Tower and
Terraform

Santosh Pashikanti*

Citation: Pashikanti S. DevOps at Scale: Automating Cloud Deployments with Ansible, AWX Tower and Terraform. J Artif Intell
Mach Learn & Data Sci 2022, 1(1), 2041-2045. DOI: doi.org/10.51219/JAIMLD/santosh-pashikanti/449

Received: 02 July, 2022; Accepted: 18 July, 2022; Published: 20 July, 2022

*Corresponding author: Santosh Pashikanti, Independent Researcher, USA

Copyright: © 2022 Pashikanti S., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/santosh-pashikanti/449

 A B S T R A C T
DevOps practices have become essential for organizations seeking faster, more reliable software releases1. However, scaling

DevOps across diverse teams and complex infrastructure remains a significant challenge1,5. This white paper presents a framework
for achieving DevOps at scale using three key tools-Ansible, AWX Tower and Terraform-to automate cloud deployments. We
first discuss the architectural underpinnings of these tools and how they fit into the DevOps lifecycle. Next, we provide detailed
technical content on their interplay, including infrastructure as code (IaC), configuration management orchestration, pipeline
automation, security and advanced architectural considerations2,3. We then explore the common challenges organizations face
when adopting these tools at scale and outline solutions to help address performance, security and operational complexities4,6.
Finally, we review real-world implementation methodologies and best practices to help organizations accelerate their cloud
deployment workflows while maintaining compliance, security and scalability.

Keywords: DevOps, Infrastructure as Code (IaC), Cloud Deployment, Ansible, AWX Tower, Terraform, CI/CD, Automation,
Microservices

1. Introduction
In the era of digital transformation, enterprises require

rapid software deployments without compromising reliability
or security1,5. DevOps methodologies align development and
operations teams through practices like continuous integration
(CI) and continuous delivery (CD), enabling organizations to
build and release software faster, more consistently and with
fewer defects [5]. At scale, however, these practices demand
automated provisioning, configuration orchestration and delivery
pipelines to handle the complexities of large, distributed cloud
environments1,6.

This white paper explores how Ansible, AWX Tower
and Terraform synergize to address these scalability and
automation challenges2-4. Ansible is a widely adopted
configuration management and deployment tool, AWX Tower
is its enterprise-grade management console and Terraform
provides infrastructure-as-code provisioning across multiple

cloud providers3. By integrating these tools within a DevOps
pipeline organizations can achieve near-complete automation
of cloud environments-from provisioning virtual machines and
containers to configuring microservices and complex multi-tier
applications1. We also delve into common pitfalls in scaling
DevOps-such as environment sprawl, secrets management and
drift detection-and propose solutions based on industry best
practices.

2. High-Level Architecture
A typical DevOps pipeline comprises several stages: source

control management, build, test and deployment. At scale, these
stages become more intricate, involving multiple environments
(development, staging, production), modular applications and
distributed teams1. (Figure 1) illustrates a high-level architectural
diagram of how Ansible, AWX Tower and Terraform fit into a
multi-stage CI/CD pipeline in a cloud environment2,3.

https://doi.org/10.51219/JAIMLD/santosh-pashikanti/449
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/santosh-pashikanti/449

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Pashikanti S.,

2

•	 Core layer: Includes networking primitives such as VPCs,
subnets, security groups and route tables. These resources
form the foundation of all environments.

•	 Service layer: Contains higher-level resources such as load
balancers, container registries or database clusters.

•	 Application layer: Deploys application-specific resources
like EC2 instances, container orchestrators (ECS, EKS,
AKS) and serverless functions.

Key Terraform features include:

•	 Providers and modules: Terraform uses providers for
different cloud platforms (AWS, Azure, GCP, etc.). Modules
encapsulate resource definitions to promote code reuse3.

•	 Remote state management: Terraform stores the state file
in remote backends (e.g., AWS S3, HashiCorp Consul) to
enable collaborative workflows and avoid conflicts.

•	 State locking: Prevents concurrent operations that may
cause race conditions or inconsistent states.

•	 Immutable infrastructure: Encourages rebuilding entire
environments rather than performing in-place updates,
mitigating configuration drift5.

Example Terraform snippet for an AWS EC2
Instance
resource “aws_instance” “example” {
 ami = “ami-12345678”
 instance_type = “t2.micro”
 tags = {
 Name = “Terraform-Managed-Instance”
 }
}

3.2 Configuration management with ansible

Ansible uses YAML-based playbooks to define desired
configurations, software installations and system tasks2. Key
advantages include:

•	 Agentless architecture: Ansible connects via SSH or
WinRM to manage remote hosts, eliminating the need for
additional agent software2.

•	 Idempotency: Ansible playbooks can be safely rerun,
ensuring configurations converge to the desired state2.

•	 Dynamic inventory: Ansible can dynamically fetch host
information from cloud providers, eliminating the need for
static inventories in elastic environments.

•	 Extensibility: Ansible Galaxy provides a vast collection of
community roles and plugins for quick onboarding of new
functionalities2,4.

An ansible playbook typically consists of:

•	 Hosts: Define the target inventory (e.g., web servers,
database servers).

•	 Tasks: Define the actions to be executed (e.g., installing
packages, creating files).

•	 Handlers: Trigger actions upon condition changes (e.g.,
restarting a service if a configuration file changes).

- name: Configure Web Server
 hosts: webservers
 become: yes

 +------------------------+
 | Source Code Repos |
 | (Git, SVN, etc.) |
 +----------+-------------+
 |
 | Trigger
 v
 +------------------------+
 | CI/CD Tool (Jenkins, |
 | GitLab CI, etc.) |
 +----------+-------------+
 |
 | (1) Plan &
 | Provision
 v
 +------------------------+
 | Terraform |
 | (Infrastructure as |
 | Code) |
 +----------+-------------+
 |
 | (2) Orchestrate
 v
 +------------------------+
 | Ansible & AWX Tower |
 | (Configuration Mgmt |
 | & Orchestration) |
 +----------+-------------+
 |
 | (3) Deploy
 v
 +------------------------+
 | Cloud Environments |
 | (AWS, Azure, GCP, etc.)|
 +------------------------+
Figure 1: High-level architecture showing integration of
Terraform, Ansible and AWX Tower in a CI/CD pipeline.

•	 Source code management (SCM): Application and
infrastructure code reside in repositories (e.g., Git).

•	 Continuous integration (CI) Stage: A CI tool (e.g., Jenkins,
GitLab CI) automatically builds and tests the application.

•	 Terraform plan and provision: Terraform provisions
infrastructure resources in the target cloud environment
based on IaC3.

•	 Configuration and orchestration with ansible and AWX
tower: After infrastructure provisioning, Ansible applies
configurations and AWX Tower orchestrates the playbooks
at scale2,4.

•	 Deployment: The final step consists of delivering the
application binaries or container images to the newly
provisioned and configured infrastructure.

3. Deeper Technical Architecture and Methodologies
3.1. Multi-layered architecture with terraform

Terraform is a declarative, cloud-agnostic tool that allows
infrastructure to be defined as code3. In complex environments,
Terraform often employs a multi-layered or multi-workspace
approach to manage separation of concerns:

3

Pashikanti S., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

 tasks:
 - name: Install Nginx
 apt:
 name: nginx
 state: present

 - name: Start Nginx
 service:
 name: nginx
 state: started
 enabled: true

3.3. AWX tower for enterprise orchestration

AWX Tower (or Ansible Tower in its commercial form) acts as
an enterprise control plane for Ansible, enabling:

•	 Role-based access control (RBAC): Administrators can
define permissions and roles for different teams4.

•	 Workflow automation: Complex deployment workflows
can be created, allowing conditional job executions and
approvals4.

•	 Logging and auditing: Detailed logs and audit trails of job
executions are captured4.

•	 Secret management integration: AWX Tower can integrate
with external vaults (e.g., HashiCorp Vault, CyberArk) to
securely fetch secrets6.

Typical AWX Tower workflows include:

•	 Job templates: Define which Ansible playbook to run, on
which inventory and with which credentials.

•	 Schedules: Automate recurring tasks such as nightly
backups or routine patching4.

•	 Notifications: Integrate with Slack, email or other channels
to notify relevant stakeholders of job status6.

•	 Workflow templates: Chain multiple job templates with
conditional logic (e.g., run database migration only if the
application deployment succeeded).

3.4. CI/CD Integration

To integrate Terraform, Ansible and AWX Tower into a CI/CD
pipeline1,5,6:

•	 Version control: Infrastructure definitions (Terraform files)
and Ansible playbooks are stored in a Git repository5.

•	 Pipeline definition: The CI/CD tool (e.g., Jenkins, GitLab
CI) triggers Terraform plan and apply steps. If successful, it
moves on to AWX Tower to run Ansible playbooks against
the newly provisioned infrastructure3.

•	 Automated testing and validation: Perform unit tests
(for code quality), integration tests (for application or
microservices integration) and security scans (for container
or VM images).

•	 Feedback loop: Pipeline stages provide immediate
feedback. If any step fails, the pipeline halts, alerting
developers and operators5.

•	 Approval gates: For production deployments, AWX Tower
can enforce manual or automated approval gates, ensuring
compliance and reducing risk4.

4. Deep Architectural Considerations
•	 Network segmentation and isolation

°° Approach: Use Terraform modules to create multiple
subnets (public, private, database) for each environment
(dev, staging, prod).

°° Security: Associate subnets with Network Access Control
Lists (NACLs) and attach Security Groups following least-
privilege principles.

•	 Microservices and container orchestration

°° Approach: Provision Kubernetes clusters (EKS, AKS,
GKE) or container orchestrators.

°° Automation: Use Ansible roles to deploy microservices or
Helm charts automatically.

°° Scaling: Leverage AWS Auto Scaling groups or Kubernetes
Horizontal Pod Autoscalers (HPA) triggered by metrics
from CloudWatch or Prometheus.

•	 Hybrid or multi-cloud deployments

°° Approach: Use Terraform’s cloud-agnostic design to
manage resources across AWS, Azure and GCP from a
single codebase.

°° Inventory Management: AWX Tower’s dynamic inventory
can dynamically discover hosts and services across multi-
cloud environments.

•	 Stateful workloads

°° Challenges: Databases, messaging queues and stateful
workloads require careful planning around data persistence,
backups and high availability.

°° Solution: Combine Terraform’s provisioning of storage
volumes with Ansible roles for consistent configuration and
AWX Tower workflows for scheduled backups.

•	 Observability and logging

°° Approach: Integrate CloudWatch, ELK (Elasticsearch,
Logstash, Kibana) or Prometheus and Grafana for logs and
metrics.

°° Automation: Use AWX Tower tasks to deploy or update
logging agents (e.g., Fluentd) across nodes.

5. Implementation Approach
5.1. Pre-requisites

•	 Infrastructure code repositories: Create separate
repositories for Terraform and Ansible5.

•	 Credential management: Store sensitive data (API keys,
SSH keys) in a secure vault (e.g., HashiCorp Vault)6.
Integrate AWX Tower with these vaults for seamless
credential retrieval.

•	 Network and security configuration: Ensure AWX Tower
and CI/CD tools have network access to target environments.
Apply IP-based or VPC-based whitelisting6.

5.2 Step-by-step guide

•	 Set up terraform environments

°° Create base Terraform modules for commonly used
infrastructure components (VPC, subnets, security groups,
etc.)3.

°° Define environment-specific variables (e.g., development,
staging, production) in separate. tfvars files.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Pashikanti S.,

4

°° Configure a remote backend (S3, Consul) for Terraform
state to enable collaborative workflow.

•	 Configure AWX tower

°° Install AWX Tower on a reliable control node or container
platform (e.g., Kubernetes)4.

°° Import Ansible projects from Git.

°° Set up inventories for various environments; configure
dynamic inventory if needed (e.g., AWS EC2 plugin).

°° Configure credentials for cloud providers (AWS Access
Keys, Azure Service Principals, etc.).

•	 Develop ansible playbooks and roles

°° Write reusable roles for application servers, databases, load
balancers and other common components2,4.

°° Follow best practices by separating variables (default, host,
group vars) and using Ansible Galaxy or an internal artifact
repository for role versioning.

•	 Pipeline orchestration in CI/CD

°° Configure a multistage Jenkinsfile (or analogous
configuration in GitLab CI) that runs:

»» Terraform Init & Plan

»» Terraform Apply

»» AWX Tower Job Launch (i.e., executing specific Ansible
playbooks)

»» Integration Tests or acceptance tests

»» Security Scans (e.g., static code analysis, container image
scanning)

°° Configure notifications (Slack, MS Teams, email) to ensure
immediate feedback [6].

•	 Monitoring and logging:

°° Integrate cloud-native logging and monitoring solutions
(e.g., AWS CloudWatch, ELK stack) to capture telemetry.

°° Store job logs in AWX Tower for auditing and debugging4.

•	 Scalability and load balancing:

°° Utilize Terraform modules to dynamically scale compute
resources3.

°° Use Ansible roles to register new servers or container
instances with the load balancer or service discovery
mechanism (e.g., AWS ALB, Consul)2.

6. Benefits and Best Practices
•	 Consistency and reliability: Automating infrastructure

provisioning and configuration reduces manual errors,
providing consistent environments across dev, staging and
production1.

•	 Scalability: As resource requirements grow, terraform
modules and Ansible playbooks can be scaled to spin up
additional instances or containers quickly3.

•	 Security and compliance: Centralized credential
management and RBAC in AWX Tower ensure secure,
compliant operations at enterprise scale4,6.

•	 Faster Time-to-market: Automated pipelines allow for
frequent deployments, enabling quick feedback loops and
shorter release cycles1,5.

•	 Observability: Detailed logs, audit trails and monitoring
solutions provide full visibility across the software delivery
lifecycle4,6.

•	 Best Practices:

•	 Modular infrastructure: Break down Terraform
configurations into reusable modules, enforcing standard
architectures3.

•	 Linting and code reviews: Use tools like TFLint, ansible-
lint and code reviews to enforce best practices3.

•	 Immutable builds: Rebuild and redeploy workloads using
Terraform to avoid configuration drift1.

•	 Idempotent playbooks: Ensure Ansible tasks yield
consistent results even when rerun multiple times2.

•	 Access control: Use AWX Tower’s RBAC features to
segregate duties among development, operations and
security teams4.

•	 GitOps mindset: Store all infrastructure and application
definitions in version control (Git). Changes should be
proposed via Merge Requests/Pull Requests for traceability.

7. Common Challenges and Proposed Solutions
Despite the clear benefits of combining Terraform, Ansible
and AWX Tower, teams can face a variety of challenges when
scaling these tools:

•	 Challenge: Environment sprawl

°° Problem: As teams grow and new environments spin up,
managing multiple configurations can lead to confusion and
duplication of code.

°° Solution: Adopt a multi-workspace or multi-folder
structure in Terraform. Use AWX Tower’s project and
inventory grouping features to systematically organize
resources for different environments.

•	 Challenge: Secret management and rotation

°° Problem: Storing API keys, SSH keys or database
passwords in plaintext or in code repositories is a major
security risk.

°° Solution: Integrate AWX Tower with external secret
management solutions (e.g., HashiCorp Vault, AWS Secrets
Manager). Regularly rotate secrets and credentials. Use
Vault dynamic secrets to minimize exposure6.

•	 Challenge: Drift detection

°° Problem: Manual changes in production environments
create configuration drift, causing Terraform state to become
inconsistent with reality.

°° Solution: Schedule AWX Tower or CI jobs to run terraform
plan in a non-destructive mode. Configure alerts if drift
is detected. Implement a strict GitOps policy where all
changes must go through code reviews.

•	 Challenge: Slow provisioning and pipeline delays

°° Problem: Large-scale Terraform runs or complicated

5

Pashikanti S., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

Ansible playbooks can significantly slow down the pipeline.

°° Solution: Break down Terraform runs into smaller modules.
Parallelize tasks using Ansible strategies. Use ephemeral test
environments and ephemeral containers to reduce overhead.

•	 Challenge: Ensuring compliance and auditability

°° Problem: Enterprises operating under regulatory constraints
(e.g., HIPAA, GDPR) require precise tracking of changes
and access.

°° Solution: Leverage AWX Tower’s audit logs for playbook
runs. Version-control all Terraform code. Maintain a pipeline
trail that logs who triggered changes, which version of code
was used and what modifications were applied4.

•	 Challenge: Cross-team collaboration

°° Problem: Dev, QA, Ops and Security teams have different
priorities, leading to friction or duplication in code and
processes.

°° Solution: Establish a Center of Excellence (CoE) that
defines and enforces common coding standards, naming
conventions and best practices. Use AWX Tower RBAC to
delegate responsibilities in a structured manner.

8. Conclusion
By combining Terraform for infrastructure as code, Ansible

for configuration management and AWX Tower for enterprise-
wide orchestration organizations can scale DevOps practices
efficiently across multiple environments1-4. These tools facilitate
streamlined, automated deployments that reduce human error,
enhance compliance and accelerate development cycles1,6. As
digital transformation continues to drive innovation, leveraging
a robust DevOps toolchain becomes crucial for enterprises
aiming to remain competitive in today’s fast-paced market5.
Addressing common challenges-such as secret management,
environment sprawl and drift detection-through best-practice
approaches ensures a sustainable, scalable and secure DevOps
framework for any modern enterprise.

9. References

1.	 ht tps: / /www.orei l ly.com/search/?query=Adopt ing%20
DevOps%20at%20Scale

2.	 https://www.informit.com/store/browse.aspx?st=61035

3.	 https://www.packtpub.com/

4.	 Abbas SM. “AWX Tower for Ansible: Enhancing Configuration
Management and Orchestration,” International Journal of
DevOps, 2021;12:45-52.

5.	 https://www.informit.com/store/continuous-delivery-reliable-
software-releases-9780321601919

6.	 h t t p s : / / i e e e x p l o r e . i e e e . o r g / X p l o r e / h o m e . j s p

https://www.oreilly.com/search/?query=Adopting%20DevOps%20at%20Scale
https://www.oreilly.com/search/?query=Adopting%20DevOps%20at%20Scale
https://www.informit.com/store/browse.aspx?st=61035
https://www.packtpub.com/
https://www.informit.com/store/continuous-delivery-reliable-software-releases-9780321601919
https://www.informit.com/store/continuous-delivery-reliable-software-releases-9780321601919
https://ieeexplore.ieee.org/Xplore/home.jsp

	_Hlk185542544
	_GoBack

