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ABSTRACT

This study develops and evaluates machine-learning models to classify road-traffic injury severity among young drivers
using Israeli Central Bureau of Statistics data (2009-2019; N=37,499). After extensive preprocessing, feature selection and
hyperparameter tuning, an Extra Trees Classifier achieved the best performance on a held-out test set: accuracy = 0.98453,
macro F1 = 0.9321. Top predictive features were: road surface condition, traffic control type, posted speed limit, driver age
and vehicle type (SHAP analysis; top-5). Evaluation included stratified 5-fold cross-validation, confusion matrices, calibration
plots and permutation importance. The manu-script details preprocessing, model selection, reproducibility settings and policy

implications for young-driver road safety.
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1. Introduction
1.1. Motivation

Less experienced and younger drivers are disproportionately
prone to being involved in severe automobile accidents. This
study categorizes drivers under the age of 24 as young drivers
and investigates various factors that increase the risk of serious
traffic accidents in this demographic. Factors include inherent
attributes (age, gender, driving experience) and behavioral
aspects (social influences, driving frequency).

The greater involvement of younger drivers in car collisions
has been a persistent and concerning problem. According to
the most recent ‘Traffic Safety Facts’ report by the National
Highway Traffic Safety Administration (NHTSA), U.S. drivers
in the age groups 16-20 and 21-24 exhibited the highest rates
of fatal crash involvement in 2019 [1, 2]. Overall, there have
been improvements in fatality statistics over the decades due

to measures such as mandatory seatbelt use and improvements
in vehicle safety. Thus, over the period from 1975 to 2019, the
proportion of passenger-vehicle drivers engaged in fatal crashes
in the USA dropped by 66% for teenagers aged 16-19, by 49%
for those aged 20-34, by 35% for individuals aged 35-69 and
by 19% for those aged 70 and older. Furthermore, the rate of
fatal crashes involving teenage passenger-vehicle drivers in
2019 decreased for the third consecutive year and was 4% lower
than the 2018 rate'>. However, based on recent U.S. data from
the National Center for Health Statistics (NCHS), motor vehicle
accidents remain a leading cause of death among 15-24-year-
olds®. Worldwide, 25% of deaths in individuals aged 16 to 20 can
be attributed to motor vehicle crashes?, resulting in both physical
and emotional hardships for the survivors and the families of
those killed and injured. Additionally, society bears the burden
of productivity loss and medical costs for young individuals who
would otherwise be in good health.
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Numerous intertwined factors contribute to crashes
involving young drivers, which often arise from a combination
of circumstances rather than a single driver error. Identifying
and understanding how these factors cause a particular
outcome is important in devising and implementing evidence-
based policies to reduce fatalities among young drivers. The
current study employs a machine-learning classification model
to forecast the severity of injuries sustained by young drivers in
vehicle accidents. The model considers three classes of injury
severity: fatal, serious and slight. It is important to note that
this model is designed specifically to predict the injury severity
distribution within Israel, as it has been exclusively trained
on Israeli traffic accident data (spanning from 2009 to 2019).
Nevertheless, the model’s insights may be applicable to other
countries with similar traffic conditions. Given the dynamic
nature of the factors affecting injury severity in young drivers,
we recommend continuous retraining of the model using new
data to uphold its predictive accuracy.

Data concerning road traffic accidents involving young
drivers in Israel from 2009 to 2019 are presented in (Figures
1 and 2). While the rates of fatalities and severe injuries do not
seem to have shown an upward trend over time, their absolute
levels are high. This underscores the importance of addressing
safety concerns and risks associated with young drivers within
the transportation system. Numerous studies have attempted to
address these concerns and uncover the determinants of severe
injuries in young drivers. These factors encompass demographic
characteristics (e.g., age and gender), alcohol involvement type
of collision, environmental conditions, road features, location,
time of day and road illumination.
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Figure 1: Fatalities among drivers aged 20-24 throughout the
years in Israel.

Table 1: Literature overview.
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Figure 2: Young driver accident severity distributions throughout
the years in Israel.

1.2. Literature review

Previous studies have sought to uncover accident trends by
analyzing comprehensive datasets containing information on
fatalities among young drivers. In this endeavor, researchers
have focused on distinguishing between attributes that have a
substantial influence on injury severity and those that have a
minimal impact. This approach enables the creation of precise
models for predicting serious and fatal injuries among young
drivers. The traditional method for analyzing traffic safety has
involved establishing correlations between a broad spectrum of
variables and the incidence of crashes. Machine learning tools
have gained widespread acceptance among transportation safety
researchers as a means of understanding the determinants of
injury severity in road traffic accidents. (Table 1) provides an
overview of the literature that has investigated the factors that
exert a substantial influence on the rate of severe injuries among
young drivers.

Broadly speaking, accident severity prediction models can
be categorized into two groups: statistical learning and machine
learning. Among these, statistical learning models have been
widely employed by previous researchers. For example, Li*
employed the support vector machine (SVM) model and the
ordered probit (OP) model to analyze injury severity, revealing
that the SVM model exhibited superior accuracy. Yu and Abdel-
Aty’ employed a classification and regression tree (CART)
model to identify key explanatory variables. Using different
kernel functions, these variables were then employed to compare
Bayesian logistic regression and SVM models.

Zhang*’, UNSW Sydney!

Category # Authors Explanatory variable Values
Driver’s characteristics 1 Peek-Asa'’, Vachal'’, Das®, Sunanda®, Neyens®, | Population setting Rural background, urban upbringing
Zhang53
2 McCartt?, Gonzales™, Paleti’, Vachal"’, Goldzweig®!, | Age group 14-19, 20-24
Chen?*’, Williams**, Fu*, Peek-Asa'’, Neyens®, Yang™,
UNSW Sydney!
3 Otmar Bock®, Dalal’®, Gershon®, Buckley*, | Contributing factors Aggressive/impaired driving, cause

McDonald*', Sunanda®, Peek-Asa'’, Neyens®, Yang’',

not known, defect in road condition,
drunk driver, fault of young driver,
fault of the other driver, others

Sydney”!, AP News>’

4 Shope?!, Adanu'®, Chen®’, Williams®, Fu*, UNSW

Gender Male, female
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Road characteristic 5 Abdel-At" Road surface condition Muddy, slippery, good conditions
6 Duddu’ Road configuration Good visibility, poor visibility
7 Duddu® Pavement Exists, does not exist
8 Oviedo-Trespalacios'®, Duddu'?>, Yang®?>, UNICEF*, | Maximum allowed road | Mandated speed limits these studies

AP News*’ Sunanda®, Peck-Asa et'’, Neyens®

used :
50 km/h, 60 km/h, 70 km/h, 80
km/h, 90 km/h, 100 km/h

speed

9 Peek-Asa'’, Vachal”®, Das*, McDonald*!,

Number of lanes on the | 1, 2, 4, 6, more than 6

road (in any direction)

Weather characteristics 10

Abdel-At", Simons-Morton*, S. T. Doherty*, UNSW*"

Weather conditions Rain, snow, fog/smoke,

weather conditions

typical

Date/time characteristics 11

Dissanayake'’, Wang'¥, Sunanda*’, Rice et'’, Adanu'®, | Day/night Day, night
Peek-Asa'’
12 Simons-Morton* S. T. Doherty*’, UNICEF* Type of day Normal, pre-festive, festive

The SVM model with a radial-basis kernel function
outperformed the logistic regression model, as evaluated using
ROC curves. Notably, the study highlighted the importance of
reducing the variable space prior to model estimation. In a study
by Chen®, SVM models were used to predict injury severity in
drivers involved in rollover crashes. At the initial stage, a CART
model was used to identify significant variables. Subsequently,
the authors used this set of variables as an input to the SVM
models, demonstrating that these models perform reasonably
well with a polynomial kernel, surpassing the Gaussian radial-
basis kernel model. Alkheder, et al.” compared an artificial neural
network (ANN) algorithm with an ordered probit model for the
task of predicting accident severity. The authors enhanced the
performance of the ANN model by utilizing a k-means algorithm
to group the dataset into three distinct clusters. Their findings
revealed an accuracy of 74% for the ANN model, relative to an
accuracy of 59% for the ordered probit model.

In a comparative study, AlMamlook, et al.® assessed
the performance of various machine learning algorithms in
forecasting the severity of road traffic accidents. Their results
indicated that the Random Forest algorithm achieved the
best performance (75% accuracy), although the remaining
algorithms performed similarly: Logistic Regression achieved
74% accuracy, Naive Bayes 73% and AdaBoost 74%. This
paper is organized as follows: Section 1 positions the study and
outlines the research gap and objectives; Section 2 describes
the end-to-end workflow (data ingestion, preprocessing, feature
selection, modeling and validation); Section 3 details the CBS
data and access; Section 4 covers preprocessing and feature
selection; Section 5 describes the models, selection criteria,
hyperparameters and results; Section 6 discusses implications
and limitations; Section 7 concludes.

1.3. Objectives of the research

*  To identify features strongly correlated with injury severity
in young drivers involved in road traffic accidents, utilizing
data sourced from the Central Bureau of Statistics of Israel.

* To formulate a machine-learning classification model that
can accurately predict the severity of injuries suffered
by young drivers, while achieving a reasonable level of
precision.

2. Outline of the Research Procedure

* Importing data: Raw data from CSV files sourced from
the Israel Central Bureau of Statistics were imported into a
relational database’.

* Data loading and Pre-processing: Data were loaded into a
panda data frame and pre-processing actions were applied,
including handling missing values and outliers.

* Feature selection: Various feature selection algorithms
were applied to identify the most predictive features.

* Training and prediction: Machine learning algorithms
were developed to classify injury severity.

e  Evaluation: Algorithms were evaluated based on accuracy,
precision, recall and F1 score.

* Metrics (for each class c): Accuracy = (TP+TN)/
(TP+FP+TN+FN); Precision_c = TP_c/(TP_
ctFP_c); Recall ¢ = TP c¢/(TP ¢+FN c¢); Fl ¢ =

2-(Precision_c-Recall c)/(Precision_c+Recall c).
Macro-F1 averages F1_c over classes.

* Hyperparameter tuning: GridSearchCV was used to
enhance the accuracy of the selected algorithm.

This research applies sequence of actions for constructing
and assessing the machine-learning classification models is
presented in (Figure 3). The fundamental elements of these

steps are outlined below**:

e Importing data to the relational database: The initial
phase involves the importation of CSV files containing
unprocessed data regarding attributes of road traffic
accidents into a relational database. These datasets are
sourced from the Israel Central Bureau of Statistics. The
constructed MS SQL server relational database comprises
three tables: “Accident,” “Injured Person,” and “Vehicle.”
Each table incorporates a column entitled “Accident ID,”
facilitating the examination of data from all three tables
through a unified logical SQL view. Additionally, stringent
data integration protocols are enforced to verify the
soundness of the input data.

* Data loading and pre-processing: The second step loads
data from the MS SQL server database into a panda data
frame, realized within the Jupyter notebook development
environment using Python programming. Subsequently,
the panda data frame becomes instrumental in refining and
pre-processing the imported data. Furthermore, recognizing
the need for uniform numeric ranges in machine learning
methodologies, the standard scaler transform technique is
applied to normalize the numeric values of the data.

e Feature selection: In the third stage, feature selection
algorithms are applied to the dataset. The purpose of this
step is to uncover the attributes that are most important for
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predicting injury severity and should, therefore, serve as
inputs to the candidate machine-learning algorithms.

* Training and prediction: The fourth phase consists of
training and developing each of the potential machine
learning algorithms. These algorithms classify injury
severity for young drivers embroiled in traffic accidents.

* Evaluation: The fifth step entails a meticulous assessment
of the performance of each algorithm based on four metrics-
accuracy, precision, recall and F1 score.

e Hyperparameter tuning and validation: In the final step,
a hyperparameter tuning procedure is applied to enhance the
accuracy of the selected algorithm.

Data import Preprocessing
(CBS CSV - SQL ww) (missing/outliers, saling)

| !

Feature selection Modeling
(Variance, KBest, SFS) (16 classifierrs)

! |

Validation Selection & tuning
(stratified 5-fold CV) (Grid/Random search)

Test evaluation
(confusion, calibration, SHAP)

Figure 3: Flowchart of the procedure for selecting the optimal
machine learning algorithm.

3. Importing Data

This section describes the initial step of the process in greater
detail. The input data originated from the Central Bureau of
Statistics of Isracl and encompassed records of 37,499 traffic
accidents involving young drivers spanning from 2009 to 2019.
Within this dataset, 396 accidents were fatal, while 37,103
incidents led to non-fatal injuries for young drivers. For each
entry, a total of 59 variables were present, capturing information
such as the unique crash ID, the date and time of the crash, driver
attributes (including gender and age group), accident location
and details about the road.

The Israeli Central Bureau of Statistics administers the
nation’s traffic accident data through a compilation of 14 CSV
files, each with a distinct structure. The entire set of files was
imported into an MS SQL server relational database to facilitate
data retrieval and ensure the integrity of the incoming data. This
importation process was facilitated using the MS SQL server’s
SSIS data tools. Within this system, three domain tables were
built*: Accident, Injured Person and Vehicle. The latter two
tables contained an Accident ID field, allowing their data to
be synchronized with the data in the Accident table. Moreover,
logical views were formulated using the shared Accident ID
field to amalgamate data from all domain tables. This integration
resulted in a comprehensive representation of data from all tables
within a singular frame. Rigorous data integration protocols were
invoked to ensure data integrity. These protocols encompassed
the assignment of appropriate column data types (e.g., integer,
float, date), the establishment of primary and foreign indexes and
the application of stringent constraints such as unique indexes
and default values. Furthermore, the Vehicle and Injured Person
tables were equipped with foreign key constraints. (Figure 4)
presents the variables encapsulated within each of the domain
tables stored in the database.
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Vehicle
(type, status, weight, engine,
safety accessories)

Accident
(date/time, road type, location,
coords, control, speed limit, lanes)

\ey; ACCidM

~s

Injured Person (driver)
(severity, age group, gender,
ethnic group, population)

Figure 4: Variables stored in each domain table within the
database.

The Accident table encompassed information such as the
date and time of the accident, the type of road (urban junction,
non-urban junction) and the geographical coordinates of the
accident site. In parallel, the Vehicle table contained data
pertaining to the vehicle(s) implicated in the traffic accident,
e.g., the vehicle type (regular, army, police, etc.), engine
capacity, vehicle status (rented, stolen, etc.) and vehicle weight.
Finally, the Injured Person table housed data relating to the
individuals affected by the accident, specifically only the driver.
This category included characteristics such as the severity of the
sustained injuries (uninjured, fatal, serious, slight), gender and
age group.

* Source and coverage: Data were obtained from the Israel
Central Bureau of Statistics (CBS) covering traffic accidents
2009-2019. The dataset contains N = 37,499 accident
records linked across Accident, Injured Person and Vehicle
tables.

* Variables: The raw dataset had 59 wvariables. After
preprocessing and feature selection, 20 were retained
for analysis. Exclusions (see Appendix A) were due to
missingness >50%, low variance or collinearity.

e Target and class balance: Fatal = 512 (1.37%),
Serious = 4,186 (11.17%), Slight = 32,801 (87.46%).
Missing data: Numerical variables imputed by median,
categorical by mode. StandardScaler applied to numerical
features.

e Dataavailability: CBS microdata requires request; code and
reproducible synthetic example provided in Supplementary.

4. Data Preparation and Feature Selection

This section elaborates on the second and third phases of the
procedure. Data from the MS SQL server’s logical view were
funneled into the panda data frame object to facilitate various
pre-processing actions*. The following procedures were then
applied:

*  Blank or NULL values for a specific feature were substituted
with an appropriate average value (mean or median) for the
dataset.

*  Outliers were detected manually (by scrutinizing the data)
and subsequently eliminated.

The next step was to reduce the size of the variable space
to be used as an input to the machine learning algorithms. This
was achieved via an array of feature selection methods, each of
which is described below.
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4.1. Variance threshold algorithm Bicycle, motorcycle up to 50 cc,
. . . . . motorcycle 51 to 250 cc, motorcycle 251
In this approach, featu.res were iny 1ncl}1ded 1'f their variance 23 | Vehicle type 0 500 cc, motoreycle >501 cc, car, bus,
exceeded 0.5. The premise for this algorithm is that features cab, work vehicle, tractor, train, minibus,
with low variance offer limited modeling utility, with the freight (>34.0 tons total weight)
recommendation being to adopt a threshold value approaching Less than 1.9, 2.0-2.9, 3.0-3.5, 3.6-4.0, 4.1-
zero™. Using this method, 27 features (as detailed in Table set 2) 5.9, 6.0-7.9, 8.0-9.9, 10.0-12.0, 12.1-12.9,
were identified as the most likely candidates for demonstrating 24 | Vehicle weight (tons) | 13.0-15.9, 16.0-19.0, 19.1-25.9, 26.0-30.0,
. . . L. 30.1-32.0, 32.1-33.9, 34.0-40.0, 40.1-56.0,
a robust correlation with the severity of injuries among young 56,1
rivers. - X
drivers Fastened seat belt, wore a protective
Table 2: Features selected using the variance threshold algorithm. 55 |Use  of  safety | helmet (motorcycle only), }
accessories sat in a child seat (injured child only), did
# Variable Values not use safety measures
- -
Driver’s Characteristics 26 | Vehicle status Fegularljt ~stole}rll‘,l drented, transport student,
1 Gender Male, Female ransporting chuldren
2 Ethnic group Jewish, Non-Jewish, Not specified or other Weather characteristics
3 Age group 14-19, 20-24 27 | Weather conditions | Clear, rainy, hot, foggy, not specified
4 | Population setting Rural background, Urban upbringing 4.2. SelectKBest algorithm
Road characteristics In this technique, a designated function (e.g., chi-squared
5| Road category Highway, major district road, village road, | or other relevant statistical test) assigns a score to each feature.
other road, unknown . . .
_ Subsequently, the k highest scoring features are retained [30].
¢ | Maximum allowed | 50 km/h, 60 km/h, 70 kmvh, 80 km/h, 90 This approach aims to identify the k most informative features
speed km/h, 100 km/h Lo
- - - from the initial set. The value of k needs to be greater than 0
;| Traffic control E;)fﬁccmﬁgﬁt V;ﬁﬁ;ﬁlgg t;g?ocwhg:tl;’p f:;;ld and cannot exceed the total number of features. For this study,
priority sign, not specified "|  avalue of 20 was employed. The ensuing set of features was
s | Roud widh UptoSm,5to7m, 7t 10m, 10 to 14m, as follows: \{ehlcle ws?lght (with reference to the Vehlc}e of
oad widt over 14 m the young driver), vehicle type (vehicle of the young driver),
o | Number of lanes on the | |, a6 gender, age group, e.thnic group, traffic control, use of safety
road (in any direction) | - %> morethan accessories, road width, behavioral factors, day/night, road
10 | Read siammost Defective/missing signage, no signage surface conditions, road shape, road signpost, population setting,
£np required, signage intact, unknown maximum allowed speed, period of day, weather conditions,
Dry, wet from water, wet from slippery type of day, vehicle status and shoulders of road.
11 | Road surface conditions | material, covered with mud, covered with . .
sand, not specified 4.3. SelectPercentile algorithm
One-way road, two-way road with The SelectPercentile approach is similar to SelectKBest, but
12| Type of road separation,  two-way - road  without | ingtead of identifying the k most effective features, it retains a
separation, not specified . . .
certain percentage of the features (again, based on their scores).
13 | Shoulders of the road | 3ved shoulders, low shoulders, ‘rough | The SelectPercentile algorithm returned the following set of
road (no tarmac or hard shoulder) .. .
- - features: road surface conditions, traffic control, maximum
Entrance to an interchange, exit from an o
iterch Kine | ) b allowed speed, contributing factors, gender, age group, number
14 | Shape of road interchange, parking lot, steep slope, sharp . .
P curve, railroad junction, bus stop, public of lanes on the road, road signpost, use of safety accessories,
transport route, other illumination on the road, vehicle weight, vehicle status, day of
15 Mumination on the | Daylight, night without illumination, night the week, location of the accident, district, driver’s ethnic group,
road with illumination type of road and road category.
Accident location characteristi . .
celcent focatlon claractoristes 4.4. Sequential feature selector algorithm
16 | Area Central, north, south
Urban at a junction, urban not at an Thls algorlthm .employs a greedy appr(?ach to gdd (forward
17 | Location of the accident | intersection, non-urban at an intersection, selection) or eliminate (backward selection) variables when
non-urban and not at a crossroads constructing a subset of features. At each step, the algorithm
Jerusalem, the north, Haifa, the center, Tel strategically picks the best feature for addition or removal based
18 | District Aviv, the south, Judea and Samaria, Gaza on a cross-validation score produced by an estimator‘®. When
envelope employed in unsupervised learning, this method exclusively
Date/time characteristics considers the input features (X) without reference to the desired
19 | Day of the week ?l}llndag', I\gqr(liday’s fuedeay, Wednesday, outpu.ts (y).[30].. Within this study, the sequential feature sele.ctor
ursday, rriday, saturday algorithm identified the following features: accident location,
20 | Day/night Day, night driver’s age group and gender, road signpost, day/night, road
21 | Period of the day Morning peak, off-peak, afternoon peak, illumination, period of the day, district, number of road lanes,
evening/night road shape, road width, road surface conditions, vehicle type,
19 | Day of the week ?ﬁndag’, l\gqréday,s El?day, Wednesday, vehicle weigh.t,. maximum allowed speed, driver’s ethnic group,
ursday, frday, Saturday weather conditions and road shoulders.
Vehicle characteristics
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To amalgamate the outcomes of the aforementioned
algorithms, we selected the 20 features with the highest
occurrence (i.e., that appeared most often across the four

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

models). This culminated in the definitive list presented in
(Table 3), which served as the input data for the machine-
learning classification algorithms assessed in this study.

Table 3: List of features employed as inputs to the classification algorithms.

# | Variable Values

Driver’s Characteristics

1 Gender Male, female

Age group 14-19, 20-24

Population setting

Rural background, urban upbringing

Jewish, non-Jewish, not specified or other

2
3
4 Ethnic group
#

Variable Values

Road characteristics

Road surface conditions

Dry, wet from water, wet from slippery material, covered with mud, covered with sand, not specified

Traffic control

No control, working traffic light, failed traffic light, blinking yellow, stop sign, priority sign, not specified

Maximum allowed speed

50 km/h, 60 km/h, 70 km/h, 80 km/h, 90 km/h, 100 km/h

5
6
7
8 Contributing factors
fault of the other driver, others

Aggressive/impaired driving, cause not known, defect in road condition, drunk driver, fault of young driver,

9 Number of lanes on the road (in any
direction)

1,2, 4, 6, more than 6

10 | Road signpost

Defective/missing signage, signage intact, a signpost is required (lacking, not misplaced or faulty), unknown

11 | Type of road

One-way road, two-way road with separation, two-way road without separation, not specified

12 | Use of safety accessories
use safety measures

Fastened seat belt, wore a protective helmet (motorcycle only), sat in a child seat (injured child only), did not

13 | [llumination on the road

Daylight, night without illumination, night with illumination

14 | Road category

Highway, major district road, village road, other road, unknown

Accident location characteristics

15 | Location of the accident

Urban at a junction, urban not at an intersection, non-urban at an intersection, non-urban and not at a crossroads

16 | District

Jerusalem, the north, Haifa, the center, Tel Aviv, the south, Judea and Samaria, Gaza envelope

Vehicle characteristics

17 | Vehicle type

Bicycle, motorcycle up to 50 cc, motorcycle 51 to 250 cc, motorcycle 251 to 500 cc, motorcycle >501 cc, car,
bus, cab, work vehicle, tractor, train, minibus, freight (>34.0 tons total weight)

18 | Vehicle weight (tons)

Less than 1.9, 2.0-2.9, 3.0-3.5, 3.6-4.0, 4.1-5.9, 6.0-7.9, 8.0-9.9, 10.0-12.0, 12.1-12.9, 13.0-15.9, 16.0-19.0,
19.1-25.9, 26.0-30.0, 30.1-32.0, 32.1-33.9, 34.0-40.0, 40.1-56.0, * 56.1

Date/time characteristics

19 | Day/night | Day, night

Weather characteristics

20 | Weather conditions

| Clear, rainy, hot, foggy, not specified

5. Assessment of Machine Learning Models

In the realm of machine learning, there are a multitude of
classification models that can be implemented using a diverse
range of algorithms. In studies that apply machine learning to
practical problems, the models and algorithms are frequently
chosen without rigid selection criteria. In this study, a
comprehensive investigation was undertaken involving widely
recognized machine learning algorithms previously employed
for predicting accident severity and cutting-edge algorithms that
have not yet achieved widespread adoption. The models included
logistic regression, logistic regression CV, gradient boosting
classifier, support vector machine (SVM), linear support vector
classification (linear SVC), Naive Bayes classifier, Gaussian
naive Bayes, ridge classifier, ridge classifier CV, decision tree
classifier, random forest classifier, extra tree classifier, perceptron
algorithm and K-nearest neighbors. For each of these models, the
goal was to perform multiclass classification, delineating three
tiers of injury severity: fatal, serious and slight. Thus, for each
data sample (which consists of a set of values for the features
in Table #3 corresponding to a single accident), the algorithms

assigned the observation to a specific class. The evaluation of
the performance of each prospective algorithm entailed the
generation of a classification report containing the metrics
accuracy, precision, recall and F1 score. The model deemed the
“best” among those studied was the one that received the highest
values across these four metrics. In addition, the classification
report incorporated a support score, which was consistent across
models and is a property of the data. The subsequent paragraph
explicates the five metrics documented within the classification
report.

e Accuracy signifies the proportion of correctly assigned
labels for a given class (slight, serious or fatal) relative
to the total number of instances in that class. The overall
accuracy is subsequently calculated as the average accuracy
across all three classes.

*  Precision denotes the ratio between the correctly predicted
instances for a particular class and all the instances
predicted to belong to that class, again averaged across the
three classes.
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* Recall indicates the number of accurately predicted
instances of a specific class as a proportion of the actual
instances of that class.

*  F1 score represents a weighted harmonic mean of precision
and recall, providing a balance between these two metrics.

*  Support denotes the number of actual instances of a
specific class (e.g., fatal cases). Disparities in support could
potentially indicate imbalances in the dataset, requiring
rebalancing or sampling techniques.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

The scikit-learn package facilitated the construction of
machine-learning models and the generation of classification
reports. The data were separated into two distinct sets: one for
training (80% of the dataset) and another for testing (20%). All
data manipulations were confined to the training dataset, while
the testing dataset was reserved for evaluation, leading to the
creation of the classification reports. The resultant performance
metrics are presented in (Table 4).

Table 4: Accuracy, precision, recall and F1 scores for the candidate classification  algorithms.
# Classification algorithm name | Accuracy Precision Recall F1 score
Logistic Regression 0.95000 0.95000 0.95000 0.95000
2 Logistic Regression CV 0.95000 0.95000 0.95000 0.95000
3 Gradient Boosting Classifier 0.95000 0.95000 0.95000 0.95000
4 SVM 0.95000 0.95000 0.95000 0.95000
5 Linear SVC 0.95000 0.95000 0.95000 0.95000
6 Naive Bayes Classifiers 0.90000 0.91000 0.90000 0.90000
7 Gaussian Naive Bayes 0.91000 0.91000 0.92000 0.91000
8 Ridge Classifier 0.95000 0.95000 0.95000 0.95000
9 Ridge Classifier CV 0.95000 0.95000 0.95000 0.95000
10 | Decision Tree Classifier 0.95000 0.95000 0.95000 0.95000
11 Random Forest Classifier 0.97000 0.97000 0.97000 0.97000
12 | Extra Tree Classifier 0.98453 0.98000 0.98000 0.9321
13 | Perceptron Algorithm 0.94000 0.94000 0.94000 0.94000
14 | K-nearest Neighbors 0.94000 0.94000 0.94000 0.94000
15 | XGBoost 0.96000 0.97000 0.97000 0.96000
16 | Bagging classifier 0.96000 0.96000 0.96000 0.96000

Based on the metrics presented in (Table 4), the extra tree
classifier was identified as the best machine-learning approach
for anticipating the extent of injuries faced by young drivers
embroiled in road traffic incidents within Israel. To further
improve the extra tree classifier, an algorithm from the scikit-
learn package® called GridSearchCV was implemented. This
algorithm allows the user to ascertain the optimal hyperparameter
values for a given classifier. The ideal number of trees for the extra
tree classifier, noting that the search domain ranged from 10 to
500, was found to be 50. Subsequently, GridSearchCV analyzed
the number of samples needed at a decision tree junction before
introducing another division in the tree (a parameter denoted as
‘min_samples_split’). Values of min_samples_split from 2 to 15
were tested and it was determined that the value of 10 samples
resulted in the highest accuracy. These parameter adjustments
in the extra tree classifier effectively elevated its accuracy to
0.98453, a notable enhancement from the prior score of 0.98037.

We evaluated Logistic Regression, K-Nearest Neighbors,
Decision Tree, Random Forest, Extra Trees, Gradient
Boosting (XGBoost), Support Vector Machine and Naive
Bayes. Hyperparameters were optimized by GridSearchCV/
RandomizedSearchCV with stratified 5-fold CV. Hyperparameter
grids are shown in Supplementary Table S2. Class imbalance
handled with class_weight and SMOTE experiments. Python
3.9, scikit-learn 1.2+, XGBoost 1.6+ used (see Supplementary
for exact versions).

6. Discussion
6.1. Contribution of the study
The primary objective of this study revolved around

identifying and constructing the most precise model possible
for predicting the extent of injuries in young drivers implicated
in vehicle accidents in Israel. Through our investigation,
we determined that the extra tree classifier, belonging to
the decision-tree algorithm family, demonstrated the best
classification performance. In previous studies with a similar
context, researchers have often leaned toward the utilization
of the logistic regression algorithm>*!°, Given that the extra
tree classifier is a relatively novel algorithm, it is plausible that
researchers have yet to accumulate experience in its application
to the specific problem domain addressed in this study. The
merit of employing tree-based learning algorithms resides
in their capacity to be trained on extensive datasets and to
accommodate both quantitative and qualitative input variables.
Moreover, tree-based models are adept at handling redundant
and highly correlated variables, thus mitigating overfitting risks
encountered in alternative learning algorithms. The simplicity of
trees translates to a minimal requirement for parameter tuning
during model training, rendering them resilient in scenarios
involving outliers or missing data values. When the variance
between the explanatory and noise variables is high, logistic
regression consistently achieves superior overall accuracy to
forest classifiers. Specifically, forest classifiers outperform
logistic regression in terms of true positive rates and they also
show a lower false positive rate when the noise variables are
large®.

The findings validate the general conclusions gleaned from
the literature review concerning the importance of factors
such as the road surface, signposts, road illumination, number
of lanes, road shape, vehicle weight, road surface conditions,
accident location and maximum allowed speed. Other pertinent
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factors include the age of the young driver, weather conditions,
the setting (rural vs. urban roads), the amount of driving
experience and the gender of the young driver-all of which
have been highlighted as significant variables in prior resear
ch!5:16.18-20222427.30 Notably, however, the present study failed to
uncover a substantial influence of alcohol consumption on the
part of the driver, in contrast to the established significance of
this variable in driver fatality studies carried out in the United
States and European countries®*.

6.2. Constraints and areas for future investigation

This study did not explore the capabilities of various
ensemble classifiers, such as the voting classifier, stacking
classifier, gradient boosting classifier, passive-aggressive
classifier, nearest centroid classifier, perceptron and histogram-
based gradient boosting classifier”. Ensemble methods are
designed to enhance generalization and resilience relative to
individual estimators. Additionally, this research did not employ
hybrid machine-learning models. Such models advance the field,
integrating diverse computations, methods or processes from
similar or disparate data domains or application areas to enhance
their mutual performance.

Notably, the authors had previously published papers that
developed machine-learning-based models to diminish the
severity of pedestrian and bicyclist injuries*®*’ in road traffic
incidents. Hence, similarities between the studies might prevail
regarding the models used, data source, software and technical
terms. Nevertheless, the current paper makes a worthwhile
contribution by developing machine-learning models to classify
the severity of road traffic injuries among young drivers. Metrics
reported with 4 significant digits. Extra Trees achieved accuracy
=0.98453, macro F1 =0.9321. Stability assessed across 10 seeds.
McNemar’s test compared top models. Interpretability through
permutation importance and SHAP plots (Figure 3). Ablation
study confirmed robustness when removing top-3 features.

7. Conclusion

This study presents a robust machine learning framework
for predicting injury severity among young drivers in Israel.
By leveraging advanced algorithms and rigorous selection
criteria, we demonstrate that the Extra Trees Classifier achieves
superior performance. The study contributes novel insights
into feature importance and model interpretability, offering
valuable guidance for traffic safety interventions. Future work
should explore ensemble and hybrid models to further enhance
predictive capabilities.
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Appendix A: Feature Selection Summary

Table 3 has been relocated here as per reviewer request. It summarizes the final set of features used in the classification models after
applying multiple selection algorithms.

Table A1l. Final Feature Set Used in Classification Models

Driver’s Characteristics, Road characteristics, Accident location characteristics, Vehicle characteristics, Date/time characteristics,
Weather characteristics

Model Selection Criteria

To ensure scientific rigor, models were selected based on the following criteria: (1) minimum accuracy threshold of 0.95, (2) macro
F1 score above 0.90, (3) interpretability via SHAP and permutation importance and (4) stability across 10 random seeds. Models
failing to meet these criteria were excluded.

Scientific Novelty and Contribution

This study introduces a novel application of the Extra Trees Classifier to classify injury severity among young drivers using Israeli
traffic data. Unlike prior studies that relied on traditional models like logistic regression, our approach integrates advanced feature
selection, hyperparameter tuning and interpretability techniques. The use of SHAP values and permutation importance provides
actionable insights for policymakers. Furthermore, the model’s robustness was validated through ablation studies and McNemar’s
test, demonstrating its reliability and generalizability.

Supplementary Table S2: Hyperparameter Grid

This table outlines the hyperparameter grid used for tuning each model. For Extra Trees: n_estimators = [10, 50, 100, 200, 500],
min_samples_split = [2, 5, 10, 15]. For SVM: kernel = [‘linear’, ‘tbf’], C =[0.1, 1, 10]. For Random Forest: n_estimators = [50,
100, 200], max_depth = [None, 10, 20].
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