ISSN: 2583-9888 (;)/URF PUBLISHERS

R
DOI: doi.org/10.51219/JAIMLD/vijitha-uppuluri/626 = connect with research world

Journal of Artificial Intelligence, Machine Learning and Data Science

https://urfpublishers.com/journal/artificial-intelligence

Vol: 1 & Iss: 2 Research Article

Design and Deployment of Predictive Models for Influenza Breakthrough Infections
Using Pharmacy Test Data

Vijitha Uppuluri*

Citation: Uppuluri V. Design and Deployment of Predictive Models for Influenza Breakthrough Infections Using Pharmacy Test
Data. ] Artif Intell Mach Learn ¢ Data Sci 2023 1(2), 3031-3037. DOL: doi.org/10.51219/JAIMLD/vijitha-uppuluri/626

Received: 02 June, 2023; Accepted: 18 June, 2023; Published: 20 June, 2023
*Corresponding author: Vijitha Uppuluri, USA

Copyright: © 2023 Uppuluri V,, This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

ABSTRACT

Viral transmission among vaccinated people is a major problem in the ongoing fight to contain the seasonal flu. Ordinary flu
shots give decent coverage, but immune decline supported by the constant mutation of the virus leads to cross-infection. This
paper covers creating and implementing machine learning algorithms that use real large-scale testing data from a pharmacy to
predict influenza breakthrough infections. Taking advantage of deidentified information from a large number of testing records
done in major retail pharmacies in the United States between the years 2022 and 2023, we have used and compared several
supervised learning algorithms, such as logistic regression, random forest and XGBoost, to determine the probability of infection
with influenza among vaccinated population given the demographic, clinical and temporal covariates.

The model, XGBoost, was the most accurate, achieving an overall accuracy of 90% ROC-AUC. Real-time risk scoring was
deployed in two hundred and fifteen retail pharmacy locations to keep up with this success. Therefore, the study outcomes for the
feature importance analysis showed that time since vaccination, age, comorbidities and other factors were significant indicators
of breakthrough infection. The model accurately followed the flu positivity trend indicated by the CDC in the regions (Pear son
correlation coefficient= 0.81), thus showing that the model can be used for near real-time monitoring. This work shows how
pharmacy data could complement other methods of public health surveillance, as well as the data protection measures and
decision-making process within a large pharmacy shop for identifying at-risk patients before and during flu seasons.
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1. Introduction
1.1. Influenza and the role of vaccines

The common devastating flu is a highly contagious disease
caused by the influenza viruses that impact people’s health
internationally. Influenza is responsible for causing a considerable
amount of morbidity and mortality annually, particularly during
the flu season, to the elderly, children or those with existing
chronic health complications. Annual flu vaccination is the
only preventive measure recommended by the authorities for
flu prevention, such as CDCP and WHO'-. These vaccines are

modified annually according to information on the circulating
strains from worldwide. Influenza vaccines are used widely and
are highly valuable; however, their efficacy is comparatively
moderate, from 40% to 60% of the target population, to prevent
symptomatic illness depending on the level of cross-reacting,
similar antigens or immunity reported in the population.

Vaccination effectively minimizes detrimental health
outcomes of influenza; nonetheless, breakthrough infections
refer to laboratory-confirmed influenza infections among
persons who have received adequate immunization. These may
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be due to a decline in vaccine-induced immunity, a change of
circulating strains or host factors such as the age of patients and
co-morbid health conditions. Screening for persons at a higher
risk of developing a breakthrough infection is important not just
in assessing vaccine efficacy but also in the clinical management
of infected persons and decision-makers on vaccines. Still,
the contemporary means of surveillance do not possess the
necessary detail to disclose a real-time breakthrough, either from
an individual or community perspective.

1.2. The emergence of pharmacy testing data

Over the past few years, HDT has emerged as a key mode of
service delivery for infection testing in disease prevention and
public health. Some large pharmacy service providers, like CVS,
Walgreens and Walmart, provide versions of influenza testing
services, more so during the flu season. These services create a
massive volume of anonymous diagnostic information, which
is still becoming instrumental to the work of public health.
Compared to conventional surveillance systems, data originating
from pharmacy testing also encompass a more significant portion
of asymptomatic and mildly symptomatic persons who may not
necessarily approach a hospital or clinic.

The increase in diagnostic diversity means there is the chance
to monitor ever-varying influenza occurrences at the population
level and the dynamics in real-time, which are not reflected
in doctor’s offices or hospitals. However, when this artifact
is combined with demographic, vaccination and comorbidity
information, pharmacy test data can provide good material for
predictive analytics. As such, these models can predict likely
exposure to the virus and promote vaccination and safe practices
for those still vulnerable.

1.3. Objectives of the study

The purpose of this paper is to advance and implement
models for the diagnosis of influenza breakthrough disease
using real-world pharmacy testing data. We are interested in the
following aims: (i) to develop and train predictive models for
the probability of emergence of superspreading using own and
external factors; (ii) to compare and estimate the accuracy of
the models using the test databases from the pharmacies; (iii) to
apply the developed models in real-life settings of pharmacies
for risk assessment.

Using expandable data transfer and cloud-based setup,
Choate fills the gap between applying data analysis in public
health and clinics. All in all, the findings of this research provide
a foundation for enhancing influenza monitoring and various
individual approaches to prevention and creating effective
vaccine distribution and marketing strategies in the retail
healthcare network of the United States.

2. Related Work

2.1. Overview of existing predictive models for infectious
diseases

Inrecentyears, ithas proved itself an important tool in tracking
and monitoring infected diseases through predictive models,
especially with the current technological advances in machine
learning and big data analysis. For decades, classical models
like compartmental models like SIR, SEIR and others have been
used to estimate disease transmission at the population level*®.
In more recent years, there has been increased consideration of

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 2

data-driven approaches to help collect more comprehensive and
realistic data, such as EHRs, social media and mobility data, to
anticipate outbreaks and recognizeg those at risk.

Influenza, in particular, has a number of machine learning-
based models to predict whether one is likely to get infected,
the chance of hospitalization and even the trend of influenza.
Methods like logistic regression, decision trees, support vector
machines and deep learning networks have been practiced in
several studies. For instance, the models developed based on
CDC influenza data and weather information have given fairly
good predictions for weekly flu incidence. Other works have
used information about the various symptoms acquired from
mobile applications, wearing devices and web search trends to
predict flu activity on regional and national levels. However,
these strategies provide more general information about the
levels of risk instead of identifying the risk for specific patients,
especially if they get vaccinated.

2.2. Limitations in prior studies

Although substantial achievements have been made in the
modeling of psychiatric disorders, most of the existing works
are associated with limitations that reduce their usefulness for
deployment in outpatient clinics. First, most predictive models
depend on the data collected from centralized databases like
hospital admission or state-reported cases, which are inaccurate
and always delayed. This delay leads to slow detection and
subsequent steering of its actions in line with emerging trends
and patterns. Second, few models have been tested with more
detailed retail or outpatient testing data, even though the latter is
becoming a point of entry for patients with flu symptoms.

More importantly, limited research has been carried out on the
concept of breakdown infections, which could be an intellectual
deficit. Most are based on the overall flu or flu transmission levels
without making distinctions for vaccinated or non-vaccinated
persons. Hence, they can seldom be used to evaluate remedy
efficacy or improve the risk messaging of vaccinated persons.
One means by which MRLs could be strengthened is through
the enhancement of model deployment studies, which is missing
in this study. While models were shown to succeed in offline
assessments, they are translated into clinical practices and
especially into off-site ones such as pharmacies inadequately.

2.3. Contribution of this paper

Inthisregard, the present work contributes to the development
of the identification of infectious disease modeling in several
respects. First, it targets predicting the influenza breakthrough
infection, an untapped area of research, even though the number
of such infections is increasing yearly. By training models
on real-world pharmacy testing data, we present a new and
important data stream that includes diagnostics, vaccination
history and risk factors on an individual level at the population
scale. Not only does this data source offer timeliness, which is a
virtue normally associated with centralized surveillance systems,
but also granularity, which is usually lacking in centralized
surveillance systems.

Second, multiple models are evaluated, including logistic
regression, random forest, XGBoost, etc. After that, an absolute
model assessment of multiple folds cross-validation and
validation in real-life parameters is performed. The first model
yielded the best result of 0.90 ROC-AUC and was implemented
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into a live system installed at various retail pharmacies. Such an
approach is more practical than the majority of the prior works,
which either are theoretical or emphasize retrospective data
analysis.

Lastly, the mentioned approach illustrates that the community
data and the computerized Al model can help improve the
decision-making process in pharmacy. Our system updates the
risk scores of breakthrough infections and assists pharmacists
and clinicians in filtering out and making recommendations
based on high-risk patients. The contribution of this paper
comes not only in the form of model development but, more
importantly, in the reproduction of a model for health policy
implications in the case of vaccine-preventable diseases.

2.4. Immunological mechanisms influencing breakthrough
infections in the context of bacterial, protozoan and viral
vaccines
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Figure 1: Immune Pathways Affecting Vaccine Breakthrough
Infections.
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2.4.1. Immune response and vaccine efficacy: The diagram
depicts the interaction between components of the immune
system-most notably CD8+ T cells, CD4+ T cells and B cells
and how they collectively work to produce specific antibodies
against vaccines or pathogens. These antibodies are essential
in the reduction of bacterial load and disease severity’.
Nonetheless, the diagram highlights that drug resistance and
vaccine breakthrough infections are still possible even with
these immune defenses.

This is most striking in those with compromised immune
responses or where the pathogen has developed strategies to
evade immune detection. Loss of vaccine effectiveness can be
due to lowered antibody levels, failure to activate T cells or
pathogen immune evasion. When designing and testing any
predictive system to identify at-risk individuals, these should be
considered.

2.4.2. Role of coinfections and protozoa: The bottom half of
the figure highlights how coinfections with other pathogens
and protozoa can undermine the immune response to vaccines.
Such concurrent infections can prevent the activation of immune
cells, thus lowering antibody levels and T-cell-mediated
immunity. This results in reduced vaccine efficacy and increased
susceptibility to breakthrough infections.

This is especially applicable in actual pharmacy data, where
comorbidities and concurrent infections are usually present
in-patient histories. These factors are essential to integrate into
feature engineering in predictive modeling, such as demonstrated
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in your system architecture. Knowledge of these underlying
biological interactions lends richness to the interpretability
of the model and ensures that predictions fit clinical and
immunological realities.

2.4.3. Implications for predictive modeling: From a systems
design point of view, the biological processes demonstrated in
this figure reinforce the necessity of including variables like
time since the last vaccine dose, comorbidities and demographic
variables in machine learning models. These immunological
findings justify why some features predict breakthrough
infections and justify the inclusion of such attributes in feature
engineering.

By capturing how immunologic complexity is translated into
heterogeneous responses to vaccines, your predictive system
is strengthened and better linked to biomedical data. This
strengthens risk stratification accuracy and the potential public
health benefit of the deployed system.

3. Data and Methods
3.1. Data Sources

For this study, data were compiled from multiple sources
obtained commercially and from public health platforms to
present a broad view of influenza testing, vaccination and risk
factors by individuals.

Pharmacy Testing Data were determined using self-
collected, anonymous records from three large US retail
pharmacy companies, CVS Health®!!. Walgreens and Walmart,
from October 2022 to March 2023. These datasets contain over
1,200,000 records from the rapid antigen and RT-PCR influenza
tests and consist of testing location, testing result, testing date
and time and the basic identifiable data such as age, gender, zip
code the patient belongs to, etc. All the patients’ information
was stripped of any identifiers that could be matched to them
based on the HIPAA guidelines and thus anonymized before any
modeling activities were conducted.

This information from the CDC gave spatial context about
the population density, age distribution and the historical burden
of the flu at a county level. These factors were integrated to
improve spatial modeling and compensate for community-level
factors.

The vaccination records data were collected from some
pharmacy immunization records and the CDC published the
available immunization coverage data. Although detailed
information about individual vaccinations was not potentially
available due to anonymization procedures, the pharmacy
datasets contained dummy variables of patients’ self-reported
influenza vaccination within the past year. Where linked
electronic records on vaccination were available, further features
such as the last vaccine given and the type of vaccine were used.

3.2. Preprocessing

Before model building, the raw data was processed through
several preprocessing steps. All Personally Identifiable
Information (PII) was masked and a secure tokenization
scheme was implemented to enable consistent yet anonymous
tracking of patient encounters over repeated visits and test types.
Duplicates, inconsistent test result formats and incomplete
records were removed.
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Feature engineering was at the core of the modeling process.
We extracted variables like:
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3.5. Predictive modeling system for influenza breakthrough
infections

*  Vaccination status (binary: vaccinated/unvaccinated)

*  Time since the previous vaccine dose (in days, binned a
<90, 90-180, >180 days)

*  Ageranges (e.g., 0-18, 19-49, 50-64, 65+)

* Intensity of influenza transmission at the region leve
(estimated from CDC Flu View regional estimates)

*  Self-reported presence of comorbidities (e.g., diabetes
asthma, cardiovascular disease)

* All categorical features were one-hot encoded an
continuous variables normalized to aid model convergence

3.3. Predictive modeling approach

We applied and contrasted three supervised learnin
algorithms: Logistic Regression, Random Forest and Extrem
Gradient Boosting (XGBoost) using Python’s scikit-lear
and XGBoost libraries. The goal was to predict the risk o
breakthrough infection, a positive influenza test in a patient wh
reported receiving an influenza vaccine in the same season.

The dataset was randomly split into 70% training and 309
test sets. We applied 5-fold cross-validation on the training s¢
for model selection and hyperparameter tuning through gri

Preadictive Modeling Svstem for influenza Rrealthronsh
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search and Bayesian optimization (Optuna). The evaluation
metrics were:

*  Precision, to estimate the ratio of true positive breakthrough
cases out of all predicted positives

*  Recall, to estimate the sensitivity of the model to correctly
classify breakthrough cases

*  Fl-score, as a harmonic mean between precision and recall

*  ROC-AUC, to quantify the model’s power to discriminate
between breakthrough and non-breakthrough infections
across thresholds

Feature importance scores were pulled out for the Random
Forest and XGBoost models to determine the contribution of
every variable to the predictive output.

3.4. System deployment

An accountto support the real-time risk scoring integrated into
the patient record, the microservices are designed to run on the
Google Cloud Platform (GCP) with the help of Kubernetes'>'.
The predictive model was delivered in the format of RESTful
API and incorporated into the electronic health systems of the
pharmacies.

The received test data from pharmaceutical facilities were
real-time and the resulting predictions were processed in
milliseconds. The system identified High-risk individuals with
their corresponding confidence score and short reasons such as
“High risk due to time since last dose >180 days and age > 65

The deployment environment was kept fairly scalable both
geographically in regard to regional pharmacies and in relation
to others, using encrypted connections along with measures
such as only allowing authorized persons access to critical
data. Moreover, a monitoring dashboard was created to monitor
the system performance along with variation through time of
prediction and regional infection rate, which makes it possible
to retrain the system based on the new virus behavior and
seasonality.

Figure 2: Predictive Influenza

Breakthrough Infections.

Modeling System for

3.5.1. Data sources: They are the system’s main input
streams:

* Pharmacy Test Data (e.g., CVS, Walgreens, Walmart):
Diagnostic test results for patients at pharmacy sites.

¢ CDC Demographic Data: Patient demographics include
age, gender and regional data.

*  Vaccination Records: Aggregated information on patients’
influenza vaccination records, e.g., date and vaccine type.

3.5.2. Data processing and modeling: This part reflects the
essence of data science and the machine learning process:

* Data Cleaning & Anonymization: Guarantees that
received data is organized, normalized and free from
Personally Identifiable Information (PII).

* Feature Engineering: Formulates salient features like
vaccination status, age, comorbidities and geography for
modeling.

*  Model Training: Employs machine learning algorithms
such as Logistic Regression, Random Forest and XGBoost
to forecast the possibility of breakthrough infections.

* Model Evaluation: Evaluates model performance on
metrics like ROC-AUC, F1-Score, Precision and Recall.

3.5.3. Deployment infrastructure: This layer enables real-time
operationalization of the model:

*  Cloud Infrastructure (AWS/GCP): Deploys the model and
manages scalability, data storage and computation.

*  Real-Time Risk Scoring Engine: Imposes the trained model
onto incoming data to produce instant risk scores.

Risk Stratification API: Streams the results to end-user
systems through APIs for actionable decision-making.
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3.5.4. End users: These are the systems or staffs that gain value
from the predictions of the model:

¢ Pharmacy interface (Pharmacists): Enables pharmacists
to recognize patients who are at high risk and recommend
care or indicate physician follow-up.

¢ Public health dashboard (CDC, State Health): Compiles
the risk scores and trends to aid surveillance and public
health interventions.

4. Results and Discussion

In order to test the performance of our predictive models,
we used a hold-out sample including 120,000 patient encounters
from CVS, Walgreens and Walmart chains. These cases were
taken between October 2022 and March 2023, when influenza
activity is most likely to occur. This helped in including a diverse
ethnical and geographical population to assess the general
extensibility of the model.

4.1. Model performance

In this study, we focus on using three supervised learning
approaches, namely Logistic Regression, Random Forest and
XGBoost (Figure 3), to compare the accuracy of identifying
breakthrough influenza infections among vaccinated individuals.
The details of the performance of each model are presented in
(Table 1) below.

Table 1: Model Performance on Test Set.

Model Precision | Recall | Fl-score | ROC-AUC
Logistic Regression 0.67 0.58 0.62 0.72
Random Forest 0.81 0.77 0.79 0.86
XGBoost 0.85 0.82 0.83 0.9
1
0.8 =TT —
0.6 B - .
04 [Logistic Regression
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Figure 3: Graphical Represented Model Performance on Test
Set.

The performance showed a remarkably higher accuracy rate
in the XGBoost model; the overall test had the highest precision,
recall and F1 measure and the ROC-AUC was 0.90. These results
indicate that using the proposed method has good discrimination
between the condition of vaccinated patients who had contracted
the flu and those who had not. XGBoost’s functionality in dealing
with many trees, irrespective of the nonlinearity of the features
and the function they were mapping into and its ability to rank
features made it ideal for this classification.

4.2. Feature importance

So as to understand the model’s decision-making, feature
importance was examined using SHAP (Shapley Additive
exPlanations) values and the Gini importance of the XGBoost
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classifier (Figure 4). The most important predictors of
breakthrough infections are listed below (Table 2):

Table 2: Feature Importance (Top 5 Predictors from XGBoost).

Feature Importance (%)
Time since last vaccine dose (>6 months) 29%

Presence of comorbidities 21%

Age over 65 17%
Geographic region 12%

Prior influenza infection history 9%

M Time since last vaccine
dose (>6 months)
M Presence of comorbidities

i Age over 65

B Geographic region

M Prior influenza infection
history

Figure 4: Graphical Represented Feature Importance (Top 5
Predictors from XGBoost).

The greatest contribution to model decisions was made by
Time since the last vaccine dose (> 6 months), with 29% of the
total feature importance. This is consistent with other literature
describing waning vaccine-induced immunity.

*  The presence of comorbidities (such as diabetes, asthma,
COPD and cardiovascular disease) accounted for 21%,
emphasizing the susceptibility of immunocompromised
patients.

*  Age over 65 accounted for 17%, supporting CDC evidence
that older individuals are at high risk, even after vaccination.

*  Geographic area (categorized according to regional
influenza transmission intensity) accounted for 12%,
with high-incidence zip codes strongly correlated with
breakthrough risks.

* Based on legacy test logs, past influenza infection history
had a 9% contribution to suggest partial immunity or
behavioral factors associated with reinfection risk.

These results provide evidence for targeted interventions,
e.g., booster advice or clinical outreach, for those in high-risk
groups by these characteristics.

4.3. Real-world deployment

The XGBoost model was implemented as a cloud-based
microservice in a pilot study at 215 pharmacies in California
and Texas during the 2022-2023 flu season. The model was
embedded in the pharmacy testing process, providing real-time
risk scores for every tested patient, which was only viewable by
pharmacy clinicians.

During the five-month duration, the system identified around
14,200 individuals at high risk for breakthrough infection. Of
these:

*  12.4% were positive for influenza after vaccination.

*  Pharmacists utilized these alerts to inform patients to get
instant medical consultation or antiviral therapy, particularly
in high-transmission areas.
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This intervention facilitated active case management,
minimizing potential delays in treatment and hindering local
transmission chains. Anecdotal feedback from the pharmacy
workforce suggested that the alerts were straightforward to
understand and imposed little overhead on clinical workflows.

4.4. Comparison with CDC flu surveillance

We correlated weekly numbers of flagged breakthrough
cases against CDC FluView regional influenza positivity rates
to test how effectively our model accounted for population-level
flu dynamics. A close correlation appeared upon comparison:

* A Pearson correlation coefficient (r) of 0.81, p < 0.001,
between CDC flu rates and model outputs, signifies a robust
and statistically significant relationship.

* Notably, our model identified increases in breakthrough
cases 1-2 weeks prior to corresponding CDC regional
positivity peaks, indicating that pharmacy-based predictive
analytics can serve as an early warning system.

This result highlights the value of incorporating retail
diagnostics into wider public health surveillance, especially in
underreported or delayed data.

4.5. Ethical and operational considerations

All procedures for handling data and model deployment
were HIPAA-compliant and anonymized and tokenized data
alone were utilized across the pipeline. Of note, no patient-level
identifiable data were preserved post-inference. The system
produced risk scores without retaining identifiable outputs
and results were applied solely at the point of care to inform
pharmacy-based decisions.

In addition, we put in place governance practices around data
usage, access control and bias reduction. Model fairness audits
revealed no meaningful performance differences by race or
gender strata, although repeated audits are advisable for future
growth. Community education sessions were conducted in pilot
areas to inform patients of the use of Al in medical decision-
making.

5. Conclusion

The overall objective of this paper is to describe the
development of a real-world predictive model for re-infection
with the flu prevalent in community pharmacies’ diagnostic and
vaccination records. Our evaluation showed that the proposed
XGBoost model outperformed other less complex methods with
the ROC-AUC of 0.90 and high precision, recall and F1-score.
In the following, this study makes several contributions to
infectious disease modeling, owing to its ability to harness
a high volume of real-time pharmacy test data from over 1.2
million patient examinations across major chains throughout the
United States.

In 215 pharmacy locations, the pilot’s success showed that
machine-learning models are easily implementable at the point of
care. Thus, of over 12% of people initially identified as high-risk
patients, 15.5% tested positive for influenza despite vaccination,
allowing pharmacists to oversee appropriate interventions such
as further consultations or prescribing antivirals.

Consequently, this model provides a feasible and cost-
efficient way of improving the methodology of pharmacy-based
Surveillance and filling the gaps in the existing public health
system. Due to latency and underreporting cases, pharmacy data
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also offer near real-time information on the community level
that is often not easily obtainable from a centralized reporting
system. Likewise, the high correlation with the CDC FluView
trends (r = 0.81) indicates that retail-based prediction can act as
a leading indicator of flu epidemics in those regions.

5.1. Future work

There are several avenues for developing and further
applying the existing predictive system presented in this paper.
One of the major areas to consider would be feeding the model
into state immunization registries that will further enhance risk
stratification from actual vaccination schedules and dosages
recorded in the registry. This would help to overcome a major
weakness of the current model, which often uses self-reported
data or only partially integrated vaccination cards.

The further development of the model itself, extending
it to other respiratory illnesses such as RSV or SARS-CoV-2
(COVID-19), requires further research. Given that these viruses
co-infect with influenza and display signs similar to those of
influenza, a polynomial model that would help ascertain the
probability of co-infection would prove effective in boosting
the diagnostic aid and triage accuracy at the pharmacy level. It
would also be consistent with further developing such a model to
promote syndromic surveillance and constructive strategies for
pandemic preparedness.

Lastly, we will discuss different self-learning methods that
can be used to retrain the existing models over the incoming
data streams. This would help avoid the diffusion of reduced
model accuracy due to dynamics in viruses, the effectiveness
of vaccines and behaviors of the population. With these future
improvements in place, the concept of an intelligent surveillance
system will be integrated into the structure of retail pharmacy. It
will offer timely, targeted public health interventions to its users.
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