
Design and Deployment of Predictive Models for Influenza Breakthrough Infections 
Using Pharmacy Test Data

Vijitha Uppuluri*

Citation: Uppuluri V. Design and Deployment of Predictive Models for Influenza Breakthrough Infections Using Pharmacy Test 
Data. J Artif Intell Mach Learn & Data Sci 2023 1(2), 3031-3037. DOI: doi.org/10.51219/JAIMLD/vijitha-uppuluri/626

Received: 02 June, 2023; Accepted: 18 June, 2023; Published: 20 June, 2023

*Corresponding author: Vijitha Uppuluri, USA

Copyright: © 2023 Uppuluri V., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 1 & Iss: 2

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/vijitha-uppuluri/626

1. Introduction
1.1. Influenza and the role of vaccines

The common devastating flu is a highly contagious disease 
caused by the influenza viruses that impact people’s health 
internationally. Influenza is responsible for causing a considerable 
amount of morbidity and mortality annually, particularly during 
the flu season, to the elderly, children or those with existing 
chronic health complications. Annual flu vaccination is the 
only preventive measure recommended by the authorities for 
flu prevention, such as CDCP and WHO1-3. These vaccines are 

modified annually according to information on the circulating 
strains from worldwide. Influenza vaccines are used widely and 
are highly valuable; however, their efficacy is comparatively 
moderate, from 40% to 60% of the target population, to prevent 
symptomatic illness depending on the level of cross-reacting, 
similar antigens or immunity reported in the population.

Vaccination effectively minimizes detrimental health 
outcomes of influenza; nonetheless, breakthrough infections 
refer to laboratory-confirmed influenza infections among 
persons who have received adequate immunization. These may 
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be due to a decline in vaccine-induced immunity, a change of 
circulating strains or host factors such as the age of patients and 
co-morbid health conditions. Screening for persons at a higher 
risk of developing a breakthrough infection is important not just 
in assessing vaccine efficacy but also in the clinical management 
of infected persons and decision-makers on vaccines. Still, 
the contemporary means of surveillance do not possess the 
necessary detail to disclose a real-time breakthrough, either from 
an individual or community perspective.

1.2. The emergence of pharmacy testing data

Over the past few years, HDT has emerged as a key mode of 
service delivery for infection testing in disease prevention and 
public health. Some large pharmacy service providers, like CVS, 
Walgreens and Walmart, provide versions of influenza testing 
services, more so during the flu season. These services create a 
massive volume of anonymous diagnostic information, which 
is still becoming instrumental to the work of public health. 
Compared to conventional surveillance systems, data originating 
from pharmacy testing also encompass a more significant portion 
of asymptomatic and mildly symptomatic persons who may not 
necessarily approach a hospital or clinic.

The increase in diagnostic diversity means there is the chance 
to monitor ever-varying influenza occurrences at the population 
level and the dynamics in real-time, which are not reflected 
in doctor’s offices or hospitals. However, when this artifact 
is combined with demographic, vaccination and comorbidity 
information, pharmacy test data can provide good material for 
predictive analytics. As such, these models can predict likely 
exposure to the virus and promote vaccination and safe practices 
for those still vulnerable.

1.3. Objectives of the study

The purpose of this paper is to advance and implement 
models for the diagnosis of influenza breakthrough disease 
using real-world pharmacy testing data. We are interested in the 
following aims: (i) to develop and train predictive models for 
the probability of emergence of superspreading using own and 
external factors; (ii) to compare and estimate the accuracy of 
the models using the test databases from the pharmacies; (iii) to 
apply the developed models in real-life settings of pharmacies 
for risk assessment.

Using expandable data transfer and cloud-based setup, 
Choate fills the gap between applying data analysis in public 
health and clinics. All in all, the findings of this research provide 
a foundation for enhancing influenza monitoring and various 
individual approaches to prevention and creating effective 
vaccine distribution and marketing strategies in the retail 
healthcare network of the United States.

2. Related Work
2.1. Overview of existing predictive models for infectious 
diseases

In recent years, it has proved itself an important tool in tracking 
and monitoring infected diseases through predictive models, 
especially with the current technological advances in machine 
learning and big data analysis. For decades, classical models 
like compartmental models like SIR, SEIR and others have been 
used to estimate disease transmission at the population level4-6. 
In more recent years, there has been increased consideration of 

data-driven approaches to help collect more comprehensive and 
realistic data, such as EHRs, social media and mobility data, to 
anticipate outbreaks and recognizeg those at risk.

Influenza, in particular, has a number of machine learning-
based models to predict whether one is likely to get infected, 
the chance of hospitalization and even the trend of influenza. 
Methods like logistic regression, decision trees, support vector 
machines and deep learning networks have been practiced in 
several studies. For instance, the models developed based on 
CDC influenza data and weather information have given fairly 
good predictions for weekly flu incidence. Other works have 
used information about the various symptoms acquired from 
mobile applications, wearing devices and web search trends to 
predict flu activity on regional and national levels. However, 
these strategies provide more general information about the 
levels of risk instead of identifying the risk for specific patients, 
especially if they get vaccinated.

2.2. Limitations in prior studies

Although substantial achievements have been made in the 
modeling of psychiatric disorders, most of the existing works 
are associated with limitations that reduce their usefulness for 
deployment in outpatient clinics. First, most predictive models 
depend on the data collected from centralized databases like 
hospital admission or state-reported cases, which are inaccurate 
and always delayed. This delay leads to slow detection and 
subsequent steering of its actions in line with emerging trends 
and patterns. Second, few models have been tested with more 
detailed retail or outpatient testing data, even though the latter is 
becoming a point of entry for patients with flu symptoms.

More importantly, limited research has been carried out on the 
concept of breakdown infections, which could be an intellectual 
deficit. Most are based on the overall flu or flu transmission levels 
without making distinctions for vaccinated or non-vaccinated 
persons. Hence, they can seldom be used to evaluate remedy 
efficacy or improve the risk messaging of vaccinated persons. 
One means by which MRLs could be strengthened is through 
the enhancement of model deployment studies, which is missing 
in this study. While models were shown to succeed in offline 
assessments, they are translated into clinical practices and 
especially into off-site ones such as pharmacies inadequately.

2.3. Contribution of this paper

In this regard, the present work contributes to the development 
of the identification of infectious disease modeling in several 
respects. First, it targets predicting the influenza breakthrough 
infection, an untapped area of research, even though the number 
of such infections is increasing yearly. By training models 
on real-world pharmacy testing data, we present a new and 
important data stream that includes diagnostics, vaccination 
history and risk factors on an individual level at the population 
scale. Not only does this data source offer timeliness, which is a 
virtue normally associated with centralized surveillance systems, 
but also granularity, which is usually lacking in centralized 
surveillance systems.

Second, multiple models are evaluated, including logistic 
regression, random forest, XGBoost, etc. After that, an absolute 
model assessment of multiple folds cross-validation and 
validation in real-life parameters is performed. The first model 
yielded the best result of 0.90 ROC-AUC and was implemented 
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in your system architecture. Knowledge of these underlying 
biological interactions lends richness to the interpretability 
of the model and ensures that predictions fit clinical and 
immunological realities.

2.4.3. Implications for predictive modeling: From a systems 
design point of view, the biological processes demonstrated in 
this figure reinforce the necessity of including variables like 
time since the last vaccine dose, comorbidities and demographic 
variables in machine learning models. These immunological 
findings justify why some features predict breakthrough 
infections and justify the inclusion of such attributes in feature 
engineering.

By capturing how immunologic complexity is translated into 
heterogeneous responses to vaccines, your predictive system 
is strengthened and better linked to biomedical data. This 
strengthens risk stratification accuracy and the potential public 
health benefit of the deployed system.

3. Data and Methods
3.1. Data Sources

For this study, data were compiled from multiple sources 
obtained commercially and from public health platforms to 
present a broad view of influenza testing, vaccination and risk 
factors by individuals.

Pharmacy Testing Data were determined using self-
collected, anonymous records from three large US retail 
pharmacy companies, CVS Health8-11. Walgreens and Walmart, 
from October 2022 to March 2023. These datasets contain over 
1,200,000 records from the rapid antigen and RT-PCR influenza 
tests and consist of testing location, testing result, testing date 
and time and the basic identifiable data such as age, gender, zip 
code the patient belongs to, etc. All the patients’ information 
was stripped of any identifiers that could be matched to them 
based on the HIPAA guidelines and thus anonymized before any 
modeling activities were conducted.

This information from the CDC gave spatial context about 
the population density, age distribution and the historical burden 
of the flu at a county level. These factors were integrated to 
improve spatial modeling and compensate for community-level 
factors.

The vaccination records data were collected from some 
pharmacy immunization records and the CDC published the 
available immunization coverage data. Although detailed 
information about individual vaccinations was not potentially 
available due to anonymization procedures, the pharmacy 
datasets contained dummy variables of patients’ self-reported 
influenza vaccination within the past year. Where linked 
electronic records on vaccination were available, further features 
such as the last vaccine given and the type of vaccine were used.

3.2. Preprocessing

Before model building, the raw data was processed through 
several preprocessing steps. All Personally Identifiable 
Information (PII) was masked and a secure tokenization 
scheme was implemented to enable consistent yet anonymous 
tracking of patient encounters over repeated visits and test types. 
Duplicates, inconsistent test result formats and incomplete 
records were removed.

into a live system installed at various retail pharmacies. Such an 
approach is more practical than the majority of the prior works, 
which either are theoretical or emphasize retrospective data 
analysis.

Lastly, the mentioned approach illustrates that the community 
data and the computerized AI model can help improve the 
decision-making process in pharmacy. Our system updates the 
risk scores of breakthrough infections and assists pharmacists 
and clinicians in filtering out and making recommendations 
based on high-risk patients. The contribution of this paper 
comes not only in the form of model development but, more 
importantly, in the reproduction of a model for health policy 
implications in the case of vaccine-preventable diseases.

2.4. Immunological mechanisms influencing breakthrough 
infections in the context of bacterial, protozoan and viral 
vaccines

Figure 1: Immune Pathways Affecting Vaccine Breakthrough 
Infections.

2.4.1. Immune response and vaccine efficacy: The diagram 
depicts the interaction between components of the immune 
system-most notably CD8+ T cells, CD4+ T cells and B cells 
and how they collectively work to produce specific antibodies 
against vaccines or pathogens. These antibodies are essential 
in the reduction of bacterial load and disease severity7. 
Nonetheless, the diagram highlights that drug resistance and 
vaccine breakthrough infections are still possible even with 
these immune defenses.

This is most striking in those with compromised immune 
responses or where the pathogen has developed strategies to 
evade immune detection. Loss of vaccine effectiveness can be 
due to lowered antibody levels, failure to activate T cells or 
pathogen immune evasion. When designing and testing any 
predictive system to identify at-risk individuals, these should be 
considered.

2.4.2. Role of coinfections and protozoa: The bottom half of 
the figure highlights how coinfections with other pathogens 
and protozoa can undermine the immune response to vaccines. 
Such concurrent infections can prevent the activation of immune 
cells, thus lowering antibody levels and T-cell-mediated 
immunity. This results in reduced vaccine efficacy and increased 
susceptibility to breakthrough infections.

This is especially applicable in actual pharmacy data, where 
comorbidities and concurrent infections are usually present 
in-patient histories. These factors are essential to integrate into 
feature engineering in predictive modeling, such as demonstrated 
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Feature engineering was at the core of the modeling process. 
We extracted variables like:

•	 Vaccination status (binary: vaccinated/unvaccinated)
•	 Time since the previous vaccine dose (in days, binned as 

<90, 90–180, >180 days)
•	 Age ranges (e.g., 0–18, 19–49, 50–64, 65+)
•	 Intensity of influenza transmission at the region level 

(estimated from CDC Flu View regional estimates)
•	 Self-reported presence of comorbidities (e.g., diabetes, 

asthma, cardiovascular disease)
•	 All categorical features were one-hot encoded and 

continuous variables normalized to aid model convergence.

3.3. Predictive modeling approach

We applied and contrasted three supervised learning 
algorithms: Logistic Regression, Random Forest and Extreme 
Gradient Boosting (XGBoost) using Python’s scikit-learn 
and XGBoost libraries. The goal was to predict the risk of 
breakthrough infection, a positive influenza test in a patient who 
reported receiving an influenza vaccine in the same season.

The dataset was randomly split into 70% training and 30% 
test sets. We applied 5-fold cross-validation on the training set 
for model selection and hyperparameter tuning through grid 
search and Bayesian optimization (Optuna). The evaluation 
metrics were:

•	 Precision, to estimate the ratio of true positive breakthrough 
cases out of all predicted positives

•	 Recall, to estimate the sensitivity of the model to correctly 
classify breakthrough cases

•	 F1-score, as a harmonic mean between precision and recall
•	 ROC-AUC, to quantify the model’s power to discriminate 

between breakthrough and non-breakthrough infections 
across thresholds

Feature importance scores were pulled out for the Random 
Forest and XGBoost models to determine the contribution of 
every variable to the predictive output.

3.4. System deployment

An account to support the real-time risk scoring integrated into 
the patient record, the microservices are designed to run on the 
Google Cloud Platform (GCP) with the help of Kubernetes12-16. 
The predictive model was delivered in the format of RESTful 
API and incorporated into the electronic health systems of the 
pharmacies.

The received test data from pharmaceutical facilities were 
real-time and the resulting predictions were processed in 
milliseconds. The system identified High-risk individuals with 
their corresponding confidence score and short reasons such as 
“High risk due to time since last dose >180 days and age > 65”.

The deployment environment was kept fairly scalable both 
geographically in regard to regional pharmacies and in relation 
to others, using encrypted connections along with measures 
such as only allowing authorized persons access to critical 
data. Moreover, a monitoring dashboard was created to monitor 
the system performance along with variation through time of 
prediction and regional infection rate, which makes it possible 
to retrain the system based on the new virus behavior and 
seasonality.

3.5. Predictive modeling system for influenza breakthrough 
infections

Figure 2: Predictive Modeling System for Influenza 
Breakthrough Infections.

3.5.1. Data sources: They are the system’s main input 
streams:

•	 Pharmacy Test Data (e.g., CVS, Walgreens, Walmart): 
Diagnostic test results for patients at pharmacy sites.

•	 CDC Demographic Data: Patient demographics include 
age, gender and regional data.

•	 Vaccination Records: Aggregated information on patients’ 
influenza vaccination records, e.g., date and vaccine type.

3.5.2. Data processing and modeling: This part reflects the 
essence of data science and the machine learning process:

•	 Data Cleaning & Anonymization: Guarantees that 
received data is organized, normalized and free from 
Personally Identifiable Information (PII).

•	 Feature Engineering: Formulates salient features like 
vaccination status, age, comorbidities and geography for 
modeling.

•	 Model Training: Employs machine learning algorithms 
such as Logistic Regression, Random Forest and XGBoost 
to forecast the possibility of breakthrough infections.

•	 Model Evaluation: Evaluates model performance on 
metrics like ROC-AUC, F1-Score, Precision and Recall.

3.5.3. Deployment infrastructure: This layer enables real-time 
operationalization of the model:

•	 Cloud Infrastructure (AWS/GCP): Deploys the model and 
manages scalability, data storage and computation.

•	 Real-Time Risk Scoring Engine: Imposes the trained model 
onto incoming data to produce instant risk scores.

•	 Risk Stratification API: Streams the results to end-user 
systems through APIs for actionable decision-making.
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3.5.4. End users: These are the systems or staffs that gain value 
from the predictions of the model:

•	 Pharmacy interface (Pharmacists): Enables pharmacists 
to recognize patients who are at high risk and recommend 
care or indicate physician follow-up.

•	 Public health dashboard (CDC, State Health): Compiles 
the risk scores and trends to aid surveillance and public 
health interventions.

4. Results and Discussion
In order to test the performance of our predictive models, 

we used a hold-out sample including 120,000 patient encounters 
from CVS, Walgreens and Walmart chains. These cases were 
taken between October 2022 and March 2023, when influenza 
activity is most likely to occur. This helped in including a diverse 
ethnical and geographical population to assess the general 
extensibility of the model.

4.1. Model performance

In this study, we focus on using three supervised learning 
approaches, namely Logistic Regression, Random Forest and 
XGBoost (Figure 3), to compare the accuracy of identifying 
breakthrough influenza infections among vaccinated individuals. 
The details of the performance of each model are presented in 
(Table 1) below.

Table 1: Model Performance on Test Set.
Model Precision Recall F1-score ROC-AUC

Logistic Regression 0.67 0.58 0.62 0.72

Random Forest 0.81 0.77 0.79 0.86

XGBoost 0.85 0.82 0.83 0.9

Figure 3: Graphical Represented Model Performance on Test 
Set.

The performance showed a remarkably higher accuracy rate 
in the XGBoost model; the overall test had the highest precision, 
recall and F1 measure and the ROC-AUC was 0.90. These results 
indicate that using the proposed method has good discrimination 
between the condition of vaccinated patients who had contracted 
the flu and those who had not. XGBoost’s functionality in dealing 
with many trees, irrespective of the nonlinearity of the features 
and the function they were mapping into and its ability to rank 
features made it ideal for this classification.

4.2. Feature importance

So as to understand the model’s decision-making, feature 
importance was examined using SHAP (Shapley Additive 
exPlanations) values and the Gini importance of the XGBoost 

classifier (Figure 4). The most important predictors of 
breakthrough infections are listed below (Table 2):

Table 2: Feature Importance (Top 5 Predictors from XGBoost).
Feature Importance (%)

Time since last vaccine dose (>6 months) 29%

Presence of comorbidities 21%

Age over 65 17%

Geographic region 12%

Prior influenza infection history 9%

Figure 4: Graphical Represented Feature Importance (Top 5 
Predictors from XGBoost).

The greatest contribution to model decisions was made by 
Time since the last vaccine dose (> 6 months), with 29% of the 
total feature importance. This is consistent with other literature 
describing waning vaccine-induced immunity.

•	 The presence of comorbidities (such as diabetes, asthma, 
COPD and cardiovascular disease) accounted for 21%, 
emphasizing the susceptibility of immunocompromised 
patients.

•	 Age over 65 accounted for 17%, supporting CDC evidence 
that older individuals are at high risk, even after vaccination.

•	 Geographic area (categorized according to regional 
influenza transmission intensity) accounted for 12%, 
with high-incidence zip codes strongly correlated with 
breakthrough risks.

•	 Based on legacy test logs, past influenza infection history 
had a 9% contribution to suggest partial immunity or 
behavioral factors associated with reinfection risk.

These results provide evidence for targeted interventions, 
e.g., booster advice or clinical outreach, for those in high-risk 
groups by these characteristics.

4.3. Real-world deployment

The XGBoost model was implemented as a cloud-based 
microservice in a pilot study at 215 pharmacies in California 
and Texas during the 2022–2023 flu season. The model was 
embedded in the pharmacy testing process, providing real-time 
risk scores for every tested patient, which was only viewable by 
pharmacy clinicians.

During the five-month duration, the system identified around 
14,200 individuals at high risk for breakthrough infection. Of 
these:

•	 12.4% were positive for influenza after vaccination.
•	 Pharmacists utilized these alerts to inform patients to get 

instant medical consultation or antiviral therapy, particularly 
in high-transmission areas.
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This intervention facilitated active case management, 
minimizing potential delays in treatment and hindering local 
transmission chains. Anecdotal feedback from the pharmacy 
workforce suggested that the alerts were straightforward to 
understand and imposed little overhead on clinical workflows.

4.4. Comparison with CDC flu surveillance

We correlated weekly numbers of flagged breakthrough 
cases against CDC FluView regional influenza positivity rates 
to test how effectively our model accounted for population-level 
flu dynamics. A close correlation appeared upon comparison:

•	 A Pearson correlation coefficient (r) of 0.81, p < 0.001, 
between CDC flu rates and model outputs, signifies a robust 
and statistically significant relationship.

•	 Notably, our model identified increases in breakthrough 
cases 1-2 weeks prior to corresponding CDC regional 
positivity peaks, indicating that pharmacy-based predictive 
analytics can serve as an early warning system.

This result highlights the value of incorporating retail 
diagnostics into wider public health surveillance, especially in 
underreported or delayed data.

4.5. Ethical and operational considerations

All procedures for handling data and model deployment 
were HIPAA-compliant and anonymized and tokenized data 
alone were utilized across the pipeline. Of note, no patient-level 
identifiable data were preserved post-inference. The system 
produced risk scores without retaining identifiable outputs 
and results were applied solely at the point of care to inform 
pharmacy-based decisions.

In addition, we put in place governance practices around data 
usage, access control and bias reduction. Model fairness audits 
revealed no meaningful performance differences by race or 
gender strata, although repeated audits are advisable for future 
growth. Community education sessions were conducted in pilot 
areas to inform patients of the use of AI in medical decision-
making.

5. Conclusion
The overall objective of this paper is to describe the 

development of a real-world predictive model for re-infection 
with the flu prevalent in community pharmacies’ diagnostic and 
vaccination records. Our evaluation showed that the proposed 
XGBoost model outperformed other less complex methods with 
the ROC-AUC of 0.90 and high precision, recall and F1-score. 
In the following, this study makes several contributions to 
infectious disease modeling, owing to its ability to harness 
a high volume of real-time pharmacy test data from over 1.2 
million patient examinations across major chains throughout the 
United States.

In 215 pharmacy locations, the pilot’s success showed that 
machine-learning models are easily implementable at the point of 
care. Thus, of over 12% of people initially identified as high-risk 
patients, 15.5% tested positive for influenza despite vaccination, 
allowing pharmacists to oversee appropriate interventions such 
as further consultations or prescribing antivirals.

Consequently, this model provides a feasible and cost-
efficient way of improving the methodology of pharmacy-based 
Surveillance and filling the gaps in the existing public health 
system. Due to latency and underreporting cases, pharmacy data 

also offer near real-time information on the community level 
that is often not easily obtainable from a centralized reporting 
system. Likewise, the high correlation with the CDC FluView 
trends (r = 0.81) indicates that retail-based prediction can act as 
a leading indicator of flu epidemics in those regions.

5.1. Future work

There are several avenues for developing and further 
applying the existing predictive system presented in this paper. 
One of the major areas to consider would be feeding the model 
into state immunization registries that will further enhance risk 
stratification from actual vaccination schedules and dosages 
recorded in the registry. This would help to overcome a major 
weakness of the current model, which often uses self-reported 
data or only partially integrated vaccination cards.

The further development of the model itself, extending 
it to other respiratory illnesses such as RSV or SARS-CoV-2 
(COVID-19), requires further research. Given that these viruses 
co-infect with influenza and display signs similar to those of 
influenza, a polynomial model that would help ascertain the 
probability of co-infection would prove effective in boosting 
the diagnostic aid and triage accuracy at the pharmacy level. It 
would also be consistent with further developing such a model to 
promote syndromic surveillance and constructive strategies for 
pandemic preparedness.

Lastly, we will discuss different self-learning methods that 
can be used to retrain the existing models over the incoming 
data streams. This would help avoid the diffusion of reduced 
model accuracy due to dynamics in viruses, the effectiveness 
of vaccines and behaviors of the population. With these future 
improvements in place, the concept of an intelligent surveillance 
system will be integrated into the structure of retail pharmacy. It 
will offer timely, targeted public health interventions to its users.
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