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 A B S T R A C T 
Groundnut is an oil seed crop, which is grown widely in the country and approximately 80% of groundnut is produced in the 

rainfed condition. Unlike weather factors even the prices of agriculture commodities are volatile in nature and the groundnut 
prices also behaves in an unusual pattern. A traditional farmer faces recurrent challenges. Deep learning methods and the 
accessibility of satellite imagery have, however, created new opportunities for more accurate and effective agricultural yield 
estimates. Large-scale yield estimation and understanding the impact of the variability of agricultural growing circumstances are 
critical due to the increased frequency of extreme climate occurrences. Crop growth condition models can be utilized with time 
series of spatially explicit information from satellite remote sensing (RS). For efficient agricultural management, guaranteeing 
food security and making wise decisions about resource allocation and market forecasting, accurate and timely estimation of 
crop yields is essential. Crop yield estimation has historically depended on time-consuming field surveys and statistical models. 
Machine Learning (ML) is an exciting application of Artificial Intelligence. It provides the ability to learn by experiences without 
any explicit. The proposed model is based on simple\and cost-effective hardware that can be used by agriculture officers and 
farmers to get good productivity of crops. SCS model is trained by classifying dataset and tested subsequently. The accuracy and 
performance of an ML classifier depend only on the type and size of the dataset. Crop selection by real-time sensing data and 
soil analysis attributes is a big contribution in research of smart agriculture. A model was proposed basing on three modules: 
crop selection, crop management and crop maturity. It used parameters soil moisture, temperature, humidity, air pressure and air 
quality with weather conditions for better crop selection and health monitoring. A real-time sensory data was used for analysis on 
Thing Speak application with KNN algorithm. Some data mining techniques are applied for data preprocessing and comparing 
real-time data with trained data for crop prediction. It also considered crop prices for crop prediction, listed on National 
Commodity and Derivative Exchange. The KNN classifier is applied for data analysis has focused on IoT-oriented agricultural 
methods for weather monitoring. The prediction methods are investigated for commercial and scientific perspectives, cost of IoT 
components, Think Speak application is used for data analysis. An Android application is also designed to intimate the farmers 
about required water level of fields. IoT framework best use of land to improve farming methods and increase crop production 
with profit maximization. A wireless sensor network was deployed in the field to sense data for different parameters and for 
proper monitoring of field. It proposed a crop prediction method for crop yield maximization and quality of crops by considering 
real-time data of metrological factors using ML algorithms: precipitation, temperature, humidity and solar light. Soft computing 
techniques can be employed to estimate the yield of various crops. As a result of rapid advancements in technology, crop models 
and decision tools have emerged as vital components of precision agriculture worldwide. These models and tools utilize linear 
regression techniques, non-linear simulations, expert systems, Adaptive Neuro-Fuzzy Interference Systems, Support Vector 
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Introduction and Review
Deep learning methods and the accessibility of satellite 

imagery have, however, created new opportunities for more 
accurate and effective agricultural yield estimates. Large-scale 
yield estimation and understanding the impact of the variability 
of agricultural growing circumstances are critical1-3 due to the 
increased frequency of extreme climate occurrences. Crop growth 
condition models can be utilized with time series of spatially 
explicit information from satellite remote sensing (RS)4,5. For 
efficient agricultural management, guaranteeing food security 
and making wise decisions about resource allocation and market 
forecasting, accurate and timely estimation of crop yields is 
essential. Crop yield estimation has historically depended on 
time-consuming field surveys and statistical models6. Estimating 
agricultural yield prior to harvest is an Estimating agricultural 
yield prior to harvest is an important issue in agriculture, as the 
changes in crop yield from year-to-year influence international 
business, food supply and global market prices. Also, early 
prediction of crop yield provides useful information to policy 
planners. Appropriate prediction of crop productivity is required 
for efficient planning of land usage and economic policy. In recent 
times, forecasting of crop productivity at the within-field level 
has increased. The most influencing factor for crop productivity 
is weather conditions. If the weather-based prediction is made 
more precise, then farmers can be alerted well in advance so 
that the major loss can be mitigated and would be helpful for 
economic growth. The prediction will also aid the farmers to 
make decisions such as the choice of alternative crops or to 
discard a crop at an early stage in case of critical situations. 
Further, predicting crop yield can facilitate the farmers to have a 
better vision on cultivation of seasonal crop and its scheduling. 
Thus, it is necessary to simulate & predict the crop yield 
before cultivation for efficient crop management and expected 
outcome. As there exists a non-linear relationship between 
crop yield and the factors influencing crop, machine learning 
techniques might be efficient for yield predictions. Due to its 
capacity to automatically uncover patterns and representations 
from enormous datasets, deep learning, a branch of machine 
learning, has attracted considerable interest in a number of 
fields7. Deep learning algorithms can analyze enormous volumes 

of spatial and temporal data when paired with satellite imagery 
to produce valuable insights about crop development and yield 
potential. The development of crops is influenced by a variety 
of climatic conditions, including temperature, precipitation and 
vegetation indices, which are all depicted in satellite imagery. 
The appropriateness of several neural network models, such 
as artificial neural networks (ANN) and deep neural networks 
(DNN) and machine learning (ML) models, such as random 
forests (RF), support vector machines (SVM), has been examined 
in a number of studies for yield estimation8. Further it lessens the 
need for labor-intensive field surveys, which decreases the time 
and expense of data collecting9,10.

Prediction of agricultural phenomenon has proved to be 
helpful for farmers and decision makers across the world. It 
has further helped to understand prevailing market situation, 
production11-14, price behavior15,16 and possible pests and disease 
attack if meteorological variables are changed suddenly. 
Moreover, Indian agriculture has massive land holding over wide 
variety of climate and potential to produce sufficient agricultural 
produce. As a result, many researchers have tried to predict 
and forecast many agricultural phenomenon17 like prediction 
of rainfall, prices18 of different agriculture produce across 
markets and area, production of different crops over the years 
using sophisticated statistical methodology. In most of the cases, 
authenticity of the data is a big question and the data obtained 
must be analyzed properly. On many instances, obtaining the 
auxiliary variables is difficult, therefore, time series models have 
become popular in the prediction process.

Groundnut is an oil seed crop, which is grown widely in 
the country and approximately 80% of groundnut is produced 
in the rainfed condition. Mainly, state includes Andhra 
Pradesh, Gujarat, Karnataka, Maharashtra and Tamil Nadu, 
were contributing nearly 90 per cent of total production of 
groundnut in the country. Among all the meteorological factors, 
rainfall plays a deciding role in the production as well as the 
incidence of pests and disease can cause significant damage 
to the production of groundnut in the country. Unlike weather 
factors even the prices of agriculture commodities are volatile 
in nature and the groundnut prices also behaves in an unusual 

Machines, Data Mining, Genetic Programming and Artificial Neural Network (ANN) to predict harvest outcomes particularly 
under the influence of climate change. These prediction methods play a significant role in improving the accuracy and reliability 
of yield estimation in agricultural systems. ANNs successfully address identification, classification and regression challenges 
in crop disease identification, harvest mechanization and product quality sorting. Multiple linear regression and discriminant 
function analysis were employed to construct a groundnut yield forecasting model, utilizing weather indices including maximum 
temperature, minimum temperature, total rainfall, morning relative humidity and evening relative humidity. Employing 
techniques such as stepwise multiple linear regression, principal component analysis was combined with stepwise multiple linear 
regression, ANN and penalized regressions like least absolute shrinkage and selection operator and elastic net. The models, 
particularly least absolute shrinkage and selection operator and elastic net, demonstrated remarkable accuracy, boasting a 
normalized root mean square error of under 10% across most test locations. Farmers using traditional methods in agriculture 
face problems such as low crop yield due to unpredicted weather, wrong amount of water and nutrients and wrong selection of 
crop. In previous research work, limited parameters were used that are insufficient for high yield of crops. Our research is aimed 
at maximizing the crop yield by selecting suitable crop. We tackle this issue by applying technology methodically and evidence-
based analysis. For instance, adding required amount of nutrients gives improved yields. Our work is based on selection of the 
influential parameters. Deep learning techniques used to give improved accuracy with less computational cost as compared to 
previous research.

Keywords: RNNs; CNN; ANN; LSTM network. ML classifier; KNN classifier; ML algorithms and loT
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pattern. A time series model has wide variety of application 
includes risk management, tourism forecasting19 and in the 
medicine and pharmaceuticals sectors20-22. In agriculture and 
allied sciences, time series models are used for forecasting 
milk production, milk yield of certain breeds of cows, yield of 
a crop, prices, production and productivity23,24. These models 
can play a significant role in stock market decision-making25; its 
application in financial aspects like credit and banking sectors is 
also crucial26. The agricultural sector cannot be the exception in 
starting to adopt the best practices and tools that help the farmer 
in making decisions and encourage the agricultural investment 
and the growth of the economy in the sector. Having said the 
above and having taking into account that different public and 
private entities have been collecting different types of structured, 
semi-structured and unstructured data at different scales, such as, 
for example, meteorological stations, where they produce large 
volumes of hourly data, daily, monthly, among others, of various 
variables27. Reason why, they allow the possibility of start a path 
of data analytics in a sector that has the potential to grow and be 
each more profitable if tools, methodologies and best practices 
are incorporated in a preventive measure to mitigate financial 
risks, increasing the profitability of the agriculture crops.

In the agricultural sector, production agriculture depends 
on many biological factors, climatic, economic and human that 
interact in complex ways. Agricultural producers and companies 
in the agricultural industries must make countless decisions 
every day that impact on performance and supply chain 
operation respectively28. Therefore, decision making requires to 
be better grounded in various sources of information that are 
made progressively more difficult to manage outside the data 
paradigm. Remote sensing has great potential as a source of 
information for the prediction of agricultural production, both 
at the regional and the global scale, because it provides data at a 
level of consistency, repeatability, timeliness and scalability that 
is unmatched by any other data source. The costs of collecting 
the information and altering them into a reliable alternative for 
costly ground-based surveys are reduced markedly over the last 
decades due to the continuous improvements in remote sensing 
techniques29. In the agricultural production estimation field, 
satellite and areal images have become essential data sources 
rapidly as a consequence. The importance of yield estimation 
gains and crop monitoring includes on the scientific and the 
political agenda as the rapid growth of global population and a 
(negative) impact of \climate change on global crop production 
becomes probable. One of the principal determinants of crop 
yield is the percentage of solar irradiation intercepted by the 
plants’ foliage. One way to assess the productivity of crops 
depends on the ‘fraction of Absorbed Photosynthetically Active 
Radiation’ (fAPAR) and the efficiency with which that energy 
is converted into new biomass30. The value of fAPAR is largely 
determined by the crop’s foliage, which in turn can be related 
to the value of vegetation indices (VIs). VIs are numerical 
transformations of measured reflectance that are related to plant 
and canopy characteristics in a crop-specific and nonlinear 
way. The Normalized Difference Vegetation Index (NDVI) is 
improved by Deerin and it is used extensively.

According to [5], learning Supervised consists of predicting 
the values of a set of output data, from a set of input data. It 
is called supervised because according to the model predicts 
the outputs for test data, the error between what the algorithm 

predicted is calculated and the real value. The objective is to 
minimize the error, adjusting the density function of probability 
relating inputs to outputs. Priya, et al. predicted the crop yield 
based on machine learning algorithms from existed data using 
Random Forest algorithm31. To establish the models, real data 
of Tamil Nadu were utilized and the testing of models was done 
with samples. For getting accurate results in prediction of crop 
yield, Random Forest Algorithm can utilize. Balakrishnan, 
et al. has been proposed ensemble model based on AdaSVM 
and AdaNaive for predicting the production of crops over a 
certain period of time32. By using AdaNaive and AdaSVM, its 
implementation is accomplished. AdaBoost increases efficiency 
of SVM and Naive Bayes algorithm. Siju and Patel were 
reviewed on the prediction of crop yield based on Data Mining 
focusing on Groundnut crop using the technique of Naïve Bayes. 
In horticulture33, various applications of information mining 
have been illustrated and examined. The detection of crop yield 
prediction has been explored and actualization of Naïve Bayes 
technique has been done for different applications. The research 
works were demonstrated the expectation of Groundnut crop 
yield. By using different procedures of data mining, the model 
of exact groundnut crop yield expectation can be improved. 
Bhanumathi et al. were focused on breakdown various relevant 
properties like location and esteem from which the dirt alkalinity 
resolves in addition to the supplements level like Potassium 
(K), Phosphorous (P) and Nitrogen (N)34. By using the outsider 
applications like APIs, the Location has been taken for soil type, 
climate and temperature, estimation of supplements in the dirt 
and precipitation measure in the area and creation of soil can 
resolve. The information properties will break down and train 
it based on various appropriate AI calculations such as Random 
Forest Algorithm (RFA) and Back propagation Algorithm to 
design a model. In prediction of crop yield, the framework with 
a model to be provided the precise and exact results. Based 
on the soil and barometrical metrics of the land, the end client 
with appropriate proposals is conveyed about the required 
compost apportion that helps to improve the establishment of 
harvest yield and increment in rancher income. By considering 
this philosophy, the future work is extendible to build the web 
applications and allow the client to use this effectively for 
comprehending the harvest yield.

GiriBabu and Anjan Babun were made a conclusion that 
the proposed method will provide solutions for the problems 
of fertilizer and water35. The yield production will be more 
with the proposed technique. Agro algorithm is used in this 
paper. The accuracy in crop production didn’t provide by this 
method properly. Ramesh and Vishnu Vardhan were proposed 
multiple linear regression technique that can implement on 
existing information and assists in assessment and verification 
of data36. It is also providing less accurate results which is 
the drawback of proposed method. Djodiltachoumy has been 
focused on proposing and implementing the rule-based system 
which should forecast the production of crop yield using the 
previous collected data37. The utilized algorithms include 
clustering method and K-means algorithm. The drawback of 
the system is only suitable for association rule and less data 
is considered. Chlingaryan, et al. have accomplished an audit 
which considered the AI techniques predominantly, estimation 
of yield and nitrogen accuracy on the board38. The method of 
back proliferation significance and harvest yield expectation 
precision for various lists of vegetation have been explored by 
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the survey. Priya, et al. were predicted the crop yield based on 
the algorithm of machine learning31. By using Random Forest 
algorithm, the crop yield is forecasted from the existing data. 
Here, the real-time data of Tamil Nadu were utilized to establish 
the models and test them with samples. To get the crop yield 
prediction accurately, Random Forest Algorithm can be utilized.

Hunt, et al. have been investigated on the Precision 
Agriculture for determining yield for crop insurance based on 
an Aerial Platform39. Precision Agriculture (PA) is utilized for 
identification of field variations and dealing with them based on 
various strategies as it is the application of remote sensors and 
geospatial methodologies. Owing to irrigation practices, crop 
stress and incidence of pest and disease, etc., the crop growth 
variability might be caused in an agricultural field. By using 
Ensemble Learning (EL), PA is implemented. Has proposed 
objective of agriculture not only lies in enhancing the cultivation 
but also to satisfy the end users with high quality goods. Due 
to a lack of scientific knowledge about farming and no rotation 
of crops, fertility of lands is affected adversely. Major factors 
contributing to the crop quality are soil nutrients, ground water 
level and type of fertilizer used. A traditional farmer facesrecurrent 
challenges. Soil acidity may increase due to selection of wrong 
crops and inadequate soil nutrients40,41. The unpredictable 
climate is the main factor for effecting crop’s quality and yield. 
Soil fertility is an important factor for right crop selection and its 
health. It is aimed at overcoming few current farming issues that 
arise due to inefficient approaches. SCS considers metrological 
factors such as temperature, humidity, rainfall, CO2 level in air, 
soil pH, EC and soil type. The metrological factors directly 
affect the plant\growth and production42-44. Machine Learning 
(ML) is an exciting application of Artificial Intelligence. It 
provides the ability to learn by experiences without any explicit 
program45. The proposed model is based on simple\and cost-
effective hardware that can be used by agriculture officers and 
farmers to get good productivity of crops. SCS model is trained 
by classifying dataset and tested subsequently. The accuracy and 
performance of an ML classifier depend only on the type and 
size of the dataset46.

Crop selection by real-time sensing data and soil analysis 
attributes is a big contribution in research of smart agriculture. 
Bhojwani, et al. proposed a model based on three modules: crop 
selection, crop management and crop maturity47. They used 
parameters soil moisture, temperature, humidity, air pressure 
and air quality with weather conditions for better crop selection 
and health monitoring. A real-time sensory data was used for 
analysis on Thing Speak application with KNN algorithm. Some 
data mining techniques are applied for data preprocessing and 
comparing real-time data with trained data for crop prediction. 
They also considered crop prices for crop prediction, listed 
on National Commodity and Derivative Exchange. The KNN 
classifier is applied for data analysis48. Majumdar, et al. have 
focused on IoT-oriented agricultural methods for weather 
monitoring49. The prediction methods are investigated for 
commercial and scientific perspectives, cost of IoT components, 
security threats and dependency of weather parameters on 
irrigation of crops48. Imran suggested a smart irrigation and 
crop selection system based on the parameters like temperature, 
humidity, light intensity and moisture level of soils. Experiments 
were\ performed on five types of soils (loamy, black, laterite, 
alluvial and silt soil). Experimental results show that soil’s 

characteristics of different lands can be used for crop selection. 
Think Speak application is used for data analysis. An Android 
application is also designed to intimate the farmers about required 
water level of fields50. Rekha, et al. proposed an IoT framework 
to improve farming methods for best use of land to increase crop 
production and profit maximization51. A wireless sensor network 
was deployed in the field to sense data for different parameters 
and for proper monitoring of field. Mulge, et al. proposed a crop 
prediction method for crop yield maximization and quality of 
crops by considering real-time data of metrological factors using 
ML algorithms: precipitation, temperature, humidity and solar 
light52.

Groundnut (Arachis hypogaea L.) is a self-pollinating 
allotetraploid legume crop that belongs to the Fabaceae 
family53,54. Groundnut, also known as peanut, is recognized 
as the third most significant oilseed crop globally [3]. It holds 
great significance due to its high-quality edible oil and protein 
content. Moreover, the crop’s byproducts, namely oilcake and 
haulms, play a crucial role as valuable animal feed, further 
enhancing its economic value in the agricultural industry55. 
China is the largest groundnut producer in the world, followed 
by India and Nigeria. In the year 2022/2023, China produced 
37% of the global groundnut output, while India accounted for 
13% and Nigeria contributed 9%. The total global production for 
that year was 49,535 thousand metric tons (MT) (USDA, 2023). 
Groundnuts are typically cultivated in tropical, subtropical 
and warm temperate climatic zones56. Therefore, Sri Lanka, 
located in a tropical region, provides a suitable environment for 
growing groundnuts. In Sri Lanka, two primary seasons exist, 
namely Yala and Maha. The Yala season typically extends from 
April to the end of August, while the Maha season spans from 
September to the end of March of the subsequent year, following 
the rainfall pattern57. Groundnuts are primarily grown in the dry 
and intermediate zones of Sri Lanka, either as rain-fed crops 
in highland areas during the Maha season or as irrigated crops 
in paddy lands during the Yala season. In Sri Lanka, the main 
groundnut cultivation regions include Moneragala, Kurunegala, 
Ampara, Badulla, Puttalama and Ratnapura districts58,59. In 2021, 
the country’s groundnut production reached 36,947 metric tons, 
cultivated across an area spanning 18,537 hectares60.

Soft computing techniques can be employed to estimate 
the yield of various crops. As a result of rapid advancements 
in technology, crop models and decision tools have emerged 
as vital components of precision agriculture worldwide. 
These models and tools utilize linear regression techniques, 
non-linear simulations, expert systems, Adaptive Neuro-
Fuzzy Interference Systems, Support Vector Machines, Data 
Mining, Genetic Programming and Artificial Neural Network 
(ANN)s to predict harvest outcomes61,62, particularly under the 
influence of climate change. These prediction methods play a 
significant role in improving the accuracy and reliability of yield 
estimation in agricultural systems63. ANNs successfully address 
identification64, classification and regression challenges in crop 
disease identification65, harvest mechanization66 and product 
quality sorting67. Multiple linear regression and discriminant 
function analysis were employed to construct a groundnut yield 
forecasting model, utilizing weather indices including maximum 
temperature, minimum temperature, total rainfall, morning 
relative humidity and evening relative humidity68. In this study69, 
the objective was to predict sesame oilseed yield based on plant 
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characteristics. Several machines learning models, including 
radial basis, multiple linear and gaussian process, were employed. 
These models were complemented by the principal component 
analysis method to enable a comparative analysis with the 
original machine learning models. The aim was to assess the 
efficiency of the prediction process. In this study70, minimum and 
maximum temperatures, rainfall and relative humidity were also 
utilized as factors in the development of wheat yield prediction 
models. Employing techniques such as stepwise multiple 
linear regression, principal component analysis was combined 
with stepwise multiple linear regression, ANN and penalized 
regressions like least absolute shrinkage and selection operator 
and elastic net. The models, particularly least absolute shrinkage 
and selection operator and elastic net, demonstrated remarkable 
accuracy, boasting a normalized root mean square error of under 
10% across most test locations. In this study71, a wheat yield 
forecasting model was developed using an ANN that considers 
factors like productive soil moisture, soil fertility, weather and 
the presence of pests, diseases and weeds. The model utilized 
input parameters like the soil’s moisture content, nitrogen, 
phosphorus, humus and acidity levels, as well as precipitation 
data, average air temperature and the presence of diseases and 
pests from 13 North Kazakhstan districts from 2008 to 2017, 
achieving commendable prediction results. The neural network’s 
advantage lies in its ability to handle nonlinear data relationships 
and its enhanced performance with abundant training data, 
suggesting potential adaptability for forecasting other crops 
and regions. Neural networks, inspired by the nonlinear parallel 
structure of the human brain system, constitute a large-scale, 
parallel distributed information processing system. Originally 
derived from the biological central nervous system, ANNs are 
composed of interconnected nonlinear computational units. 
These networks emulate the intricate processing capabilities of 
the human brain and enable complex information-processing 
tasks through their parallel and distributed nature. ANN’s 
flexibility makes it a powerful alternative to linear models. 
A single hidden layer ANN, with enough neurons, fits any 
continuous mathematical function within a given interval, given 
ample data and computational resources72.

When developing a neural network model, people normally 
employ three distinct training algorithms, namely Levenberg–
Marquardt (LM), Bayesian Regularization (BR) and Scaled 
Conjugate Gradient (SCG). These training algorithms aid in the 
training process of the ANN model to achieve better results. The 
LM algorithm excels in various problem do-mains, surpassing 
simple gradient descent and other conjugate gradient methods in 
terms of performance and effectiveness73. BR is a regularization 
method used in tandem with a gradient-based solver. It prevents 
over-fitting by limiting the magnitude of the synaptic weightings 
relative to the sum of the squared error or mean squared error 
(MSE) being minimized74. The SCG algorithm, a supervised 
learning method for network-based approaches, finds widespread 
application in addressing large-scale problems75. These algorithms 
are utilized to train the neural network model and enhance its 
performance through optimization techniques76,77. Temperature 
and rainfall variations significantly impact various crop types in 
different regions across the globe. These climatic factors have a 
crucial role in influencing the growth, diverse responses of crops 
to temperature and rainfall variations highlight the importance 
of considering regional climatic conditions when planning and 
managing agricultural activities78,79. The adverse impact of 

increasing temperatures on crop yields has been acknowledged 
as a notable factor. Extensive research has been conducted using 
advanced modeling techniques to comprehensively study this 
phenomenon80-82. Maximizing crop yield by keeping the cost 
as low as possible is one of the main goals of many precision 
agriculture systems. Early identification and prediction of crop 
traits such as crop disease, biomass and yield are beneficial as 
they allow the farmer to manage crop growth and harvesting 
well in advance83. Therefore, the estimation of yield and related 
parameters such as biomass, disease, plant health, nitrogen status 
and soil conditions has been a frequent topic in the literature84. 
Early detection and management of problems associated with 
farming can help increase yield and subsequent profit and better 
estimation of the yield offers farmers and processors numerous 
benefits in terms of harvest planning, storage and transportation 
scheduling, sale and price negotiation and other business 
decisions.

The traditional yield prediction models are based on ground 
samples, collected from the farm and extrapolating these samples 
throughout the field to estimate the yield85. These methods are 
not only costly and labor-intensive but also poorly represent the 
spatial variability of yield over the field. An alternative approach 
is a non-destructive sampling method for yield estimation 
which uses a remote sensing platform to acquire field images 
and employs various vegetation indices (VIs) to establish a 
regression model for crop yield86. Recent works on UAV-based 
remote sensing87 showed the efficiency of crop traits such as 
yield estimation using multispectral images and ML methods88. 
For instance, Guo, et al. utilized the multispectral images 
of maize with a Mini-MCA camera embedded in the drone 
to estimate the soil and plant analyzer development (SPAD) 
values89. They also implemented various ML methods such as 
SVM and RF where SVM outperformed the RF with an R2of 
0.81 in estimating SPAD value. For crop yield estimation using 
UAVs, the VIs derived from the multispectral and RGB images 
were extensively utilized by various works90. These studies 
established a strong correlation between crop yield and VIs. For 
instance, the normalized difference vegetation index (NDVI) is 
linearly related to wheat yield91. Similarly, a yield map for rice 
and wheat crops was developed using NDVI from multispectral 
images92. Since UAV has the flexibility in revisiting the field and 
can capture high-resolution imagery in comparison to satellite 
imagery, it has opened possible avenues for cheaper and more 
frequent image acquisition to support more accurate estimates 
of crop traits using predictive approaches such as ML methods93. 
For instance, Zhou, et al. implemented a convolutional neural 
network (CNN) for soybean yield estimation with high-
resolution UAV imagery94. They used crop features such as 
plant height, canopy colour and canopy texture to train the 
neural network. Their model achieved an R2of 0.78 with a root 
mean square of391.0 kg/ha. Similarly, Guo, et al. implemented 
four ML models, a back propagation neural network (BPNN), 
SVM, RF and extreme learning machine (ELM), for maize 
yield predictions using Vis93. They showed that SVM with a 
modified red-blue vegetation index (MRBVI) was effective in 
monitoring maize yield. Besides the image feature, Guo, et al. 
employed the combination of phenology, climate and geography 
data to estimate rice yield with statistical and ML methods95. 
However, their proposal of building the yield prediction model 
with an individual ML method missed the cooperative nature of 
the ensemble approach where if one method fails to capture \
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the correct prediction, another ML method can pick the right 
prediction. Considering such limitations, this study first 
establishes the relationship between UAV images and peanut 
yield at the individual growth stage. Based on such a relationship 
and existing ML methods, an accurate and cooperative ensemble 
method for yield prediction is proposed and validated using 
peanuts as a study crop. Peanut is an oilseed crop grown in 
many countries over the world. In Australia, the peanut is mainly 
grown in Queensland, in the northeast of Australia. Its growth 
cycles include various stages: planting, emergence, emergence 
to first flower (FF), flowering (F), pegging, pod-filling and 
harvest maturity (HM). It takes around three to five months from 
planting to maturity96. Deep learning models have recently been 
used for crop yield prediction. You, et al. used deep learning 
techniques such as convolutional neural networks and recurrent 
neural networks to predict soybean yield in the United States 
based on a sequence of remotely sensed images taken before the 
harvest97. Their model outperformed traditional remote-sensing 
based methods\ by 15% in terms of Mean Absolute Percentage 
Error (MAPE). Russello used convolutional neural networks for 
crop yield prediction based on satellite images98. Their model 
used 3-dimensional convolution to include spatiotemporal 
features and outperformed other machine learning methods. 
Deep learning methods have been applied for the crop yield 
prediction. Khaki and Wang designed a deep neural network 
model to predict corn yield across 2,247 locations between 2008 
and 201610. Their model was found to outperform other methods 
such as Lasso, shallow neural networks and regression tree. 
You, et al. applied CNNs and RNNs to predict soybean yield 
based on a sequence of remotely sensed images97. Kim, et al. 
developed a deep neural network model for crop yield prediction 
using optimized input variables from satellite products and 
meteorological datasets between 2006 and 20157.Wang, et al. 
designed a deep learning framework to predict soybean crop 
yields in Argentina and they also achieved satisfactory results 
with a transfer learning approach to predict Brazil soybean 
harvests with a smaller amount of data99. Yang, et al. investigated 
the ability of CNN to estimate rice grain yield using remotely 
sensed images and found that CNN model provided robust yield 
forecast throughout the ripening stage100. Khaki and Khalilzadeh 
used deep CNNs to predict corn yield loss across 1,560\ locations 
in the United States and Canada101. Accurate and efficient 
methods to predict the crop yield helps economists and officials 
in the planning process of agricultural practices according 
to Maya Gopal and Bhargav102. Kouadio, et al. analyzed that 
the availability of varied data has urged researchers to use data 
driven models to understand and produce accurate results103. 
The prediction of the yield of any crop is not only dependent 
on environmental factors, such as the area, irrigation, rainfall, 
etc., but also the prediction algorithm, in order to expect precise 
results according to Sirsat, et al104.

However, when such models are to be applied on a large-
scale region (like districts and states), the availability and 
collection of data for creating models is highly problematic 
according to Kaul, et al.105. Basso, et al. (2013) analyzed that the 
precision of results in the prediction of the yield for any crop can 
be achieved by providing appropriate inputs and selecting proper 
models without changing the traditional agricultural practices and 
their systems106. Basically, the most popular annual productivity 
seed or grain is groundnut (Arachis hypogaea L). The groundnut 
is a well-known source of nutritious food that contains healthy 

ingredients such as fat, vitamins, dietary fibers, minerals and 
protein107. The main seed oil crop in India is groundnut, which 
has taken the productivity area of 208,149 ha and it yields 0.45 
million tons of groundnut. Hence, the controlling procedure of 
pests and diseases can enhance the productivity of groundnut108. 
The report of India has shown; there may 40–60% of losses yield 
in groundnut production. Sometimes the ranges may increase to 
93% based on the different diseases in groundnuts like collar 
rot, stem rot, leaf spot, etc109. The enlarger number of diseases 
can affect the groundnut. Moreover, the oil obtained from the 
groundnut is used for cooking and soap production110. After the 
oil extraction, the remaining products are used in poultry feed. 
However, the raw, boiled and roasted groundnut seeds are used for 
eating. Mostly, the groundnut plants are caused\ by fungal, viral, 
rust and leaf spot diseases111. These made the losses in economic 
and productivity. The fungal disease, such as leaf blight, leaf 
scorch, pepper spot, Alternaria, Phomopsis, Phoma, Phyllosticta, 
Drech-slera leaf blight, anthracnose and Cylindrocladium leaf 
spot, affects the groundnut plant. Nowadays, the process of 
identifying groundnut disease is a major challenging prob-
lem112. The various image processing, artificial intelligence113-116 
and graphical processing units are widely used to detect the 
plant diseases117. Particularly, many of the researchers suggested 
various research techniques and pesticides to control and manage 
groundnut diseases. Few of the existing research mechanisms are 
formulated as follows. Bakker, et al. proposed a method of plant 
growth-promoting rhizobacteria (PGPR) for controlling pests118. 
It is a latent defense method and set in motion systematically 
based on the pathogen’s infection exposure of plants. Introduced 
the K-nearest neighbor (K-NN) method for the\ detection of 
plant diseases. The method is used to extract the features and 
it classifies the data based on their measures. But it does not 
predict the diseases correctly. Yang, et al. proposed a powerful 
and flexible method of machine learning mechanism to make 
the amalgamation of well suitable system knowledge119. The 
main advantage is few of the learning algorithms are used in 
agricultural fields. The process of classification models with 
high spectral agricultural image decisions making is used in 
the regression of logistic and decision trees. Therefore, a rural 
area in America initiates the application-oriented smart-phone 
to analyze the groundnut and plant diseases120. The process of 
automatic feature extraction is a key point of deep learning. The 
required problem features are elected automatically and there 
is no need for any fixed or handcrafted features. The explicit 
features are selected and it reduces the specialist works (i.e. 
traditional pattern\ recognition). Therefore, the different kinds 
of supervised, \ semi-supervised and unsupervised problems 
were recovered. The hidden layers consist of many layers, but 
a minimum amount of three hidden layers is applicable. The 
nonlinear feature transformation of one phase is presented in 
deep learning121. Significantly, the single sets of features are 
trained by using the group of\ neurons in every hidden layer and 
it depends upon the previous layer output. The amount of hidden 
layer is raised as well as the data generalization and complexity 
also get\ increased. The trainable classifier with a hidden layer 
carried out low-level, mid-level and high levels of the\ feature 
extraction process121.

Conclusion
Farmers using traditional methods in agriculture face 

problems such as low crop yield due to unpredicted weather, 
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wrong amount of water and nutrients and wrong selection of crop. 
In previous research work, limited parameters were used that 
are insufficient for high yield of crops. Our research is aimed at 
maximizing the crop yield by selecting suitable crop. We tackle 
this issue by applying technology methodically and evidence-
based analysis. For instance, adding required amount of nutrients 
gives improved yields. Our work is based on selection of the 
influential parameters. The ML algorithms used in our proposed 
research give improved accuracy with less computational cost as 
compared to previous research. To facilitate farmers, an Android 
app is developed. The cost of our system is very low and all 
the used sensors are easily available and easy to use. In future, 
more parameters and crops can be added to this system. The 
more accurate and efficient ML algorithms like CNN and LSTM 
can also be studied. SCS model can be\ integrated with security 
to protect crop data. For crop monitoring, drone cameras can 
also be used. Fertilizer recommendation system can also be 
developed on the basis of real-time sensory data of soil nutrients.
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