
Data Evaluation System Utilizing Logic-Based Rules

Naveen Koka*

Naveen Koka, USA

Citation: Naveen Koka. Data Evaluation System Utilizing Logic-Based Rules. J Artif Intell Mach Learn & Data Sci 2022, 1(1), 250-
253. DOI: doi.org/10.51219/JAIMLD/Naveen-koka/79

Received: 02 January, 2022; Accepted: 18 January, 2022; Published: 20 January, 2022

*Corresponding author: Naveen Koka, USA

Copyright: © 2022 Koka N. Enhancing Supplier Relationships: Critical Factors in Procurement Supplier Selection.., This is an
open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original author and source are credited.

1

 A B S T R A C T

In modern software systems, the dynamic generation of queries plays a crucial role in retrieving relevant data based on user-
defined criteria. This paper explores a runtime approach where criteria names are utilized to dynamically construct queries
tailored to specific system contexts. The generated queries vary depending on the requirements of the system, ensuring the
retrieval of data that meets the specified criteria.

Furthermore, to enhance performance and optimize resource utilization, the paper proposes a caching mechanism for storing
generated queries. Once a query is generated, it is cached to eliminate the need for repeated evaluation, thereby reducing overhead
and improving response times. This caching strategy ensures that subsequent data retrieval operations can be executed efficiently,
contributing to a more responsive and scalable system architecture.

Overall, this paper presents a dynamic query generation and caching framework that facilitates efficient data retrieval in
diverse system environments. By leveraging runtime query generation and caching, software systems can achieve enhanced
performance and responsiveness, ultimately improving user experience and system scalability.

Keywords: Rules Engine, Configured based criteria, Reusable components

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/Naveen-koka/79

1. Introduction
Efficient data retrieval is a cornerstone of modern software

systems, often reliant on dynamically generated queries tailored
to specific criteria. In this context, the runtime generation
of queries plays a pivotal role, allowing systems to adapt to
varying requirements and user-defined conditions. This paper
delves into the dynamic query generation process, focusing on
its significance in retrieving pertinent data within diverse system
contexts. Furthermore, the paper explores the integration of a
caching mechanism to optimize query performance and resource
utilization. By caching generated queries, the system mitigates
the overhead associated with repetitive query evaluation,
thereby enhancing response times and overall system efficiency.
Through a combination of dynamic query generation and

caching, software systems can achieve heightened agility and
scalability, catering to evolving user needs and system demands.
This introduction sets the stage for a comprehensive exploration
of the dynamic query generation and caching framework,
elucidating its role in facilitating efficient data retrieval and
system optimization.

2. Problem Statement
Many software implementations encounter failure because

they overlook the necessity of designing certain crucial
components with a generic approach. This oversight proves
costly for companies, both in terms of time and finances. When
these components lack generality, the process of searching for
new tools and adapting them becomes protracted and resource-
intensive.

https://doi.org/10.51219/JAIMLD/Naveen-koka/79
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/Naveen-koka/79

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Koka N.,

2

Key components such as dynamic form creation, runtime
handle configuration, and criteria evaluation often fall victim
to this oversight. Without a generic framework in place, each
instance demands individualized development and adaptation
efforts. Consequently, the absence of a standardized approach
exacerbates the challenges of integrating and optimizing these
critical functionalities within the software ecosystem.

Addressing this issue requires a paradigm shift towards
prioritizing generic design principles in software development.
By imbuing essential components with adaptability and
flexibility, companies can streamline their processes, mitigate
risks, and enhance overall efficiency. Embracing this approach
ensures that future implementations are resilient, cost-effective,
and better positioned to meet evolving business needs.

3. Let’s Interact with an Example
Consider two customers who have purchased home

appliances from company A. Customer 1 reports an issue where
the system is generating noise, while customer 2 faces a more
severe problem with the system being completely down. Clearly,
the urgency differs between these cases, with customer 2’s issue
demanding immediate attention due to its critical nature.

In a conventional implementation relying on if-else
statements, assigning priorities and paths for resolution requires
explicit coding. For instance, if a status qualifies as high priority,
it must be routed through a critical path, while lower priority
statuses follow their own resolution paths. However, each
addition or modification to these statuses necessitates coding,
testing, and deployment, leading to a cumbersome and time-
consuming process.

This scenario underscores the limitations of a rigid if-else
structure in managing varying priorities effectively. A logic-
based rules engine offers a more dynamic solution, where
priorities and resolution paths are determined by configurable
rules rather than hard-coded conditions. This approach enables
easier adaptation to changing requirements and facilitates the
seamless incorporation of new statuses without the need for
extensive coding efforts. Thus, by implementing a logic-based
rules engine, company A can enhance its responsiveness to
customer issues while minimizing the overhead associated with
software maintenance and updates.

3.1. Outcome

Once the configuration is established to handle this
prioritization and resolution routing, adjusting becomes a swift
task. The ability to modify configurations allows for quick
adaptations to evolving needs. Compared to the traditional
approach of coding, testing, and releasing changes, the time
required for such modifications is drastically reduced, by up
to 99%. This efficiency stems from the decoupling of business
logic from the codebase. With a configuration-driven system,
alterations can be implemented through simple adjustments to
the configuration settings. This streamlined process eliminates
the need for extensive coding and testing cycles, resulting
in significant time savings, and enabling rapid responses to
changing priorities or requirements.

By harnessing the power of configurable rules and logic-
based engines, companies can achieve unparalleled agility in
managing and resolving customer issues. This approach not only
accelerates problem resolution but also enhances overall system
flexibility, empowering organizations to adapt swiftly to market
dynamics and customer needs.

4. Solution
The In this discussion, we’ll explore the concept of making

criteria more dynamic to facilitate faster development and
reduce the likelihood of errors. By adopting a flexible approach
to criteria definition, developers can efficiently apply these
concepts across various configurations, promoting reusability
and consistency in both frontend and backend development.

Criteria, in essence, encapsulates the conditions used to make
decisions in programming constructs like if-else statements.
Regardless of the programming language or context, criteria
serve as the foundational logic governing the flow of execution.
This fundamental concept applies universally, whether in user
interface design or backend system architecture.

The proposed solution involves enhancing the dynamism
of criteria, enabling developers to leverage them wherever
necessary. By embracing this approach, development processes
become more streamlined and error resistant. Furthermore, by
abstracting criteria into configurable components, developers
can build a framework that fosters rapid development and easy
adaptation to evolving requirements.

By adopting a mindset that promotes the generic application
of criteria, developers can cultivate a more efficient and resilient
development environment. This shift towards dynamic criteria
empowers teams to accelerate development cycles, reduce error
rates, and create solutions that are adaptable to a wide range of
contexts and use cases.

“Criteria” refers to the expressions employed for assessing
and evaluating the attributes encapsulated by the fields, aiding in
decision-making processes within the system.

3

Koka N., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

Figure 1: Dynamic rules engine.

5. Concepts used for Solutioning
The solution for making criteria more dynamic relies on

several key concepts. First, it treats combined fields as entities,
where a data table represents an entity and its fields represent
attributes. This perspective allows for a structured understanding
of the data and its characteristics, facilitating more organized
development and configuration.

In cases where an entity lacks a physical representation,
the solution introduces the concept of virtual entities. These
virtual entities are defined through configurations, specifying
their attributes and characteristics without requiring a tangible
presence in the system. This approach enables developers to
work with abstract entities, expanding the scope of what can be
modeled and manipulated within the system.

By treating entities and attributes as configurable components,
the solution promotes flexibility and adaptability in system
design. Developers can define and modify entities and their
attributes through configurations, eliminating the need for manual
coding and facilitating rapid iteration and experimentation.
This configuration-driven approach streamlines development
processes and reduces the likelihood of errors, enhancing overall
productivity and system reliability.

Overall, these concepts form the foundation of a solution
that empowers developers to create dynamic and customizable
systems. By leveraging configurations to define entities and
attributes, the solution enables developers to build robust,
scalable, and adaptable software solutions that meet the evolving
needs of users and organizations.

The datatable object represents an entity within the system,
named “Account”.

JSON has the representation for entity schema.

•	 The properties object contains the attributes (or fields) of
the “Account” entity.

•	 Each attribute is represented as an json object with properties
such as description, type, etc.

•	 Attributes like id, name, and email are marked as required
fields.

Another crucial concept in the solution involves defining all
objects within the system and providing detailed descriptions
for each object. This comprehensive approach ensures that
every aspect of the system is accounted for and accessible for
configuration. By defining objects, such as data tables, forms,
or modules, developers create a structured representation of the
system’s components. Each object is accompanied by a detailed
description outlining its purpose, functionality, and associated
attributes. This descriptive approach serves as a reference point
for configuring the system and entering criteria.

Overall, the concept of defining and describing all objects
within the system ensures transparency, accessibility, and
ease of use during the configuration process. By establishing
a comprehensive understanding of the system’s components,
developers and users alike can effectively configure criteria to
meet specific requirements and objectives.

5. Configuration Structure
The configuration structure defines a framework for

specifying criteria in a structured manner. Here’s a breakdown
of its components.

{

 “$schema”: “http://json-schema.org/draft-04/schema#”,

 “title”: “Account”,

 “description”: “Customer information”,

 “type”: “object”,

 “properties”: {

 “id”: {

 “description”: “The unique identifier for a account”,

 “type”: “string”

 },

 “name”: {

 “description”: “Account Name”,

 “type”: “string”

 },

 “email”: {

 “description”: “Account email”,

 “type”: “string”

 }

 },

 “required”: [“id”, “name”, “email”]

}

Structure

{

 “criteria_name”: “”,

 “object”: “<entity_name>”,

 “criteria”: {

 “1”: {

 “field_name”: “<field_name>”,

 “operator”: “<equal | contains | greater | many more>”

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Koka N.,

4

criteria_name: This field represents a descriptive name for the
criteria being defined. It serves as a label or identifier for the set
of conditions.

object: This attribute specifies the entity (or object) to which the
criteria apply. It identifies the context within which the criteria
are evaluated.

criteria: This section contains a set of conditions represented as
key-value pairs. Each condition is numbered (e.g., “1”, “2”, etc.)
and consists of:

field_name: Indicates the attribute or field within the specified
object against which the condition is evaluated.

operator: Specifies the comparison operation used in the
condition (e.g., “equal”, “contains”, “greater”, etc.).

advanced: This field provides an optional expression for
combining multiple conditions using logical operators (e.g.,
“and”, “or”, etc.). It allows for the creation of more complex
criteria by chaining together simpler conditions.

6. Runtime
At runtime, the system retrieves the criteria name and

dynamically generates a query to fetch the relevant data. The
query generated may vary depending on the specific system or
context in which the data retrieval is performed. This dynamic
query generation ensures that the data fetched meets the criteria
specified by the user or application.

Once the query is generated, the system caches it to avoid
the need for repeated evaluation. Caching the query improves
performance by eliminating the overhead associated with
regenerating the query for subsequent data retrieval operations.
Instead, the cached query can be quickly accessed and executed
whenever the same criteria need to be applied again.

By caching the generated queries, the system optimizes
resource utilization and response times, enhancing overall
efficiency. This approach ensures that data retrieval operations
are performed swiftly and seamlessly, contributing to a more
responsive and scalable system architecture.

7. Uses
Utilizing the dynamic rules engine enhances versatility

across various contexts, owing to its inherent dynamism. This
feature allows for widespread applicability and adaptability,
optimizing system functionality and flexibility. The dynamic
nature of the rules engine ensures seamless integration and
efficient utilization across diverse environments.

8. Conclusion
Optimizing n conclusion, the dynamic rules engine emerges

as a pivotal tool in modern software development, offering
unparalleled flexibility and adaptability. By enabling the dynamic
generation of queries and criteria, this engine facilitates efficient
data retrieval tailored to specific system contexts. Additionally,
the integration of a caching mechanism enhances performance
by reducing query evaluation overhead and optimizing resource
utilization. Through the combined capabilities of dynamic
query generation and caching, software systems can achieve
heightened responsiveness and scalability, catering to evolving
user needs and system demands. The widespread applicability
of the dynamic rules engine underscores its significance in
diverse domains, from backend data processing to frontend
user interactions. Moving forward, continued research and
development in this field promise to further enhance the
capabilities and effectiveness of dynamic rules engines, driving
innovation and efficiency in software engineering practices.
Overall, the dynamic rules engine stands as a cornerstone of
modern software architecture, empowering developers to create
robust, adaptable systems capable of meeting the ever-changing
demands of today’s digital landscape..

10. References

1.	 Huang Bin, He Zheyuan, Tang You. Application research of
business rules engine management system based on drools.
Cyber Security Intelligence and Analytics, 2020; 1146.

2.	 Naser Nrkarami, Junichi Iijima. A Logical Approach for
Implementing Dynamic Business Rules. Management
Information Systems, 2010; 6: 29-52.

3.	 https://www.academia.edu/21195403/ACTIVE_RULE_
ENGINE_FOR_DYNAMIC_BUSINESS_RULES

4.	 Bock Alexander, Frank Ulrich. Low-Code Platform. Business &
Information Systems Engineering, 2021; 63: 733-740.

5.	 Woo Marcus. The Rise of No/Low Code Software Development-
No Experience Needed?. Engineering, 2020; 6: 960-961.

 },

 “2”: {

 “field_name”: “<field_name>”,

 “operator”: “<equal | contains | greater | many more>”

 },

 },

 “advanced”: “ 1 or 2 and 3”

}

https://link.springer.com/chapter/10.1007/978-3-030-43306-2_34
https://link.springer.com/chapter/10.1007/978-3-030-43306-2_34
https://link.springer.com/chapter/10.1007/978-3-030-43306-2_34
https://www.cmr-journal.org/article/view/2584
https://www.cmr-journal.org/article/view/2584
https://www.cmr-journal.org/article/view/2584
https://www.academia.edu/21195403/ACTIVE_RULE_ENGINE_FOR_DYNAMIC_BUSINESS_RULES
https://www.academia.edu/21195403/ACTIVE_RULE_ENGINE_FOR_DYNAMIC_BUSINESS_RULES
https://link.springer.com/article/10.1007/s12599-021-00726-8
https://link.springer.com/article/10.1007/s12599-021-00726-8
https://pubmed.ncbi.nlm.nih.gov/32837752/
https://pubmed.ncbi.nlm.nih.gov/32837752/

