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 A B S T R A C T 
With technological advancements automotive industry is witnessing new era of transition to self-driving vehicle for everything. 

Self-driving cars for personal and commercial use are right across the corner to become full reality. Along with self-driving drone 
and robots for delivery of food and merchandise have become reality.  With these advancements the safety and security of the 
self-driving vehicles have emerged as major concern for current times. To this end, this work proposes DashCamEye Federated 
learning based Smart Dash cam which continuously records and then processes video imagery while in route. The simulation 
results of DashCamEye based system with multiple scenarios shows promising results and opens a new research direction to 
explore to provide safe and informed route prediction for self-driving vehicles of next generation. 
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1. Introduction
Self-driving vehicles have emerged as a revolutionary 

technology, and it has transformed the modern-day transportation 
landscape. Modern-day automotives have a large network of 
computing, sensing, and processing engines. These systems are 
connected to the internal and external network for exchanging 
boot time and runtime critical information which are used for 
making informed decisions at different stages. These devices 
have built in Global Positioning Systems (GPS), satellite 
networks or a connected smart application (central controller / 
tablet screen / phones) to help users navigate the direction from 
point A to point B.  There has been significant research and 
development to aid in autonomous driving and route planning 
in recent years1-6. 

Self-driving cars can potentially reduce traffic accidents 
caused by human errors7 and provide more safer roads to users 
including pedestrians8. The routes used by self-driving vehicles 
will be based on shortest distance, toll, freeway, time of the day, 

traffic etc. Some of the latest applications uses machine learning 
and AI algorithms to get runtime updates such as accidents, road 
work and traffic slow alerts. However, routing applications lacks 
in accounting for safety, user preference and current surrounding 
metrics such as safety (break-ins9, vandalism10, porch-pirates11 
etc.), pollution, ease of parking, emergency situations12, food 
choices, etc. Given a city and surrounding areas have “better” 
and “worse” regions and local humans will be aware of the 
neighborhood and dynamic conditions but the self-driving 
vehicles (cars, robots, delivery drones etc.) currently lack in 
such dynamic route optimization. To this end, this work presents 
a novel federated learning combined with deep reinforcement 
learning based approach to help better route planning with 
dynamic changes in metrics. This work also presents promising 
simulation results with optimized algorithm. 

(Figure 1) depicts various non conventional sources of data 
collection my various sensors in self-driving cars, drones or 
robots. These dynamic sources of information provides realtime 
conditions for optimized route predictions. DashCamEye 
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uses this data as weights on the routing map and applies 
coordinated policy optimization for better decision making with 
reinforcement learning. DashCamEye algorithm collects the 
event markers and send it to the could server with timestamp and 
geolocation information. These cloud sourced information will 
be used by DashCamEye server to perform federated learning and 
optimize the model over time. Thus, DashCamEye simulation 
combines federated learning apporach with coordinated policy 
optimization. DashCamEye will not only provide better dynamic 
decision making at runtime but also it will aid in better route 
optimization to avoid certain situations such as crowd gathering, 
road blockage, criminal activities, porch pirates etc for the self-
driving vehicles. 

We propose to build a smart dashcam device which 
continuously records and then processes video imagery while in 
route. The results of the fast processing and labelling, once runs 
through a more intensive image processing verification step, 
are uploaded to a central web server which holds a dynamically 
updateable database of road segment (edge) information and 
corresponding calculated weights and labels for the area graph. 
The graph is continuously updated based on the information 
received from different sources (dashcams and publicly available 
information) and can be used to display a route map with 
current predicted conditions for the fleet vehicle operators and 
optimized, more efficient and safer routing, using the estimated 
weights and markings for each edge of the area graph.

2. Related Work 
With the advancement in self-driving automotives industry 

many researchers have explore different Machine Learning 
(ML) and Artificial Intelligence (AI) techniques for enhancing 
self-driving experience.  Multi Agent Reinforcement Learning 
(MARLA) has emerged as powerful approach to solve complex 
decision-making problems. The typical task settings are divided 
in three categories namely fully cooperative task which focuses 
on communication13,14 and credit assignment15-17. Second category 
is competitive tasks which focuses on meaningful opponents18,19. 
Third is mixed approach20-22.  CoPo23 presents cooperative policy 
optimization simulator for dynamic tasks handling at runtime. 

Second key aspect of the related work is to find suitable 
traffic simulator for evaluating the proposed technique. Various 
traffic flow simulators such as CARLA24, SUMO23, CityFlow25 
and FLOW26 uses RL agents to steer the low-level controllers 
for investigating specified traffic conditions. SMARTS27 
evaluates the interaction between social vehicles dynamic traffic 
environments and RL agents.  Maps based application such 
as Google maps, apple map, waze. Safety and neighbourhood 
watch apps such as citizen, crime-alert, neighbourhood watch 
etc, are few examples of route mapping apps that uses runtime 
reinforcement learning and adds weights and biases on the route 
selection. However, they do not count of cooperation-based 
policy optimization which from the simulation results aids in the 
safe self-driving vehicle experience. 

3. Dash Cam Architecture
(Figure 2) Shows high-level system design of DashCamEye. 

The server will send initial model for training to the client 
application running on the self-driving vehicle upon installation. 
The automotive dashcam data such as and HD cameras readings 
are feed into federated learning based modified CoPo algorithm 
during runtime. 

Figure 2: High-level system design for DashCamEye.

It will result in adding the weights and bias to the x and y 
coordinates of the geo location during runtime. The algorithm 
will take this weights and biasing with geo coordinates into 
account for cooperative policy optimization and agent will act 
based on not only past but current situation of the environment 
in which it is.  The server collects the feedback of each client and 
use it for optimizing the training model and refeeds it to client 
application periodically. Thus, live updates of the geolocation 
and surrounding conditions are given to the modified CoPo 
algorithm. The policies are optimized on the client agent by 
combining local policy updates and the feedback received from 
the server as global policy updates. 

The localized policy optimization is performed using Eq1

                                
    ……1

Where, Ndn (i, t) defines the neighbourhood of agent i for 
the given radius dn at step t.  The key reason for adding the 
global policy is to make route prediction accuracy high. As 
the vehicles are running in the road with dynamic surrounding 
and conditions of the neighbouring vehicles will also affect 
the reward given to the agent. When a consensus based global 
policy weights and biases were added to the routing algorithm. 
It improved the performance significantly. The co-ordinated and 
weighted rewards are defined using following equation:

  …..2

Implementation of fast scenery recognition methods, 
whereby the dashcam continuously records video and marks 
select frames of the recorded video for further analysis, based 
on rapid image segmentation and object detection technology. 
For this, we can make use of existing image processing libraries 
such as PixelLib and e.g. public data sets such as Pascal VOC 
and YOLO algorithm approaches2,3. This will allow us to rapidly 
segment out the cars on the road in image frames obtained from 
the camera and estimate traffic density. We will also develop 
machine learning based techniques to quickly identify potential 
road issues (lane closures, large potholes, road-work equipment 
and personnel, etc.) for marking road segments with preliminary 
markings. 

Implementation of more intensive machine learning based 
image analysis for processing and labeling marked frames from 
a predefined road and traffic condition characterization list (for 
example, route closure, lane restrictions, road work markings, 
traffic jam, etc.). In this step, we will take the segments with 
preliminary markings and run two-stage machine learning 
based approaches with higher computational load to ascertain 
the kind of condition present on the segment. For this, we can 
use object detection based on Convolutional Neural Networks, 
APIs from Google’s TensorFlow and related developments4,5. 
This processing will be activated based on the readings of the 
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motion detection module, when the system has ascertained that 
the vehicle has been stationary above a set threshold of time. It 
can also be manually disabled by the operator, if necessary. 

Creation of an online database to store information for a 
defined area as referenced by location (lat, lon) and the time of day 
and data aggregation and prediction approaches to automatically 
predict information for all edges based on merged available 
data coming from different dashcam systems and publicly listed 
information. This information would be integrated together and 
used to predict a weight and any extra labeling information 
for each edge of the graph representing the area map for each 
(lat, lon, time) triplet associated with each edge (road segment) 
location. Development of a customized map display and routing 
methods based on a weighted area graph information from the 
database, via a web-based service development.

4. DashcamEye approach for adding weights and Biases 
Implementation of routing methods based on a weighted 

graph approach, whereby each path between two defined 
locations consists of a set of weighted edges (corresponding 
to road segments). The weights of the edges are determined by 
factors such as distance, speed, road aspects, pollution, weather, 
and safety metrics. A UI interface with sliders for different 
aspects can be used to control the settings for the routing method 
to suggest routes based on user preferences (e.g., speed and 
safety, avoiding construction zones, etc.) 

Creation of an online database to dynamically update the edge 
weights in a defined area as referenced by location (lat, lon) and 
the time of day and routing algorithms for two end points based 
on the weights from previous step. This database can utilize data 
from public sources and optionally from sensors placed on fleet 
vehicles, which regularly drive through the defined area. 

Creation of a hardware module for the sensors to be 
mounted on fleet vehicles, including speed and camera sensors, 
and corresponding analysis algorithms. The cameras can 
analyze scenery and record e.g., instances of lane closures and 
construction presence and mark these aspects by uploading the 
information to the online database service. 

5. Evaluation  
The simulation was performed by modifying the CoPo 

simulator and including the weights and biases from the sensors 
RL learning. The modified algorithm and simulation were tested 
on following four scenarios for success rate and accuracy. 

Table 1: Depicts the success rate of different techniques 
compared to DashCamEye.

Technique Potholes Intersection Lane closures accidents

IPO 64.67 60.47 72.43 83.5

MFPO 66 69.43 67.43 81

CoPo 72.6 78.34 74.21 75.6

DashCamEye 75.3 83.23 80.54 79.32

DASHCAM-EYE 77.2 85.43 81.24 79.89

Scenario 1: when Potholes and not favourable weather conditions 
were feed to the simulation motel with modified CoPo. The 
generated weight and biases were used for making policy-based 
prediction and optimized route selection the accuracy of the 
DashCamEye was increased by 3% compared to that of CoPo. 
Scenario 2: Depicts when self-driving vehicle is on the road 

in the intersection with ongoing traffic with signal lights offs 
and the request for new route prediction comes to the client. 
The accuracy of this route and policy-based prediction with 
DashCamEye reaches 83.23 % correct results. 
Scenario 3 and Scenario 4 depicts road conditions blocked 
by accident and or construction on the road and lane closure 
as a result. In both the cases from the simulation results 
DashCamEye outperforms the other state-of-the-art techniques 
and provides better route and policy-based selection coordinated 
route prediction. 

(Figure 3) depicts the map plugin based on shortest distance 
between two endpoints. (Figure 4) represents the Map with 
additional layer of CoPo based optimization for the route. 
(Figure 5) shows the DashCamEye provided route options 
based on safety weights and biases. The red colour road indicates 
the scratchy area and recommends the self-driving vehicle to 
potentially avoid it by choosing alternate green path.

 

Figure 3: Sample object identification and web-based mapping 
interface.

Figure 4: Dash Cam Eye route map with safety weight/bias.

6. Conclusions
With the increased commercialization of self-f=driving cars, 

robots, and drone the secure and safe route selection and dynamic 
decision making based on the current surrounding conditions 
becomes vital. Previous works have demonstrated use of 
reinforcement learning to tackle some of these issues. However, 
they lack in dynamic cooperated policy optimization to handle 
real world scenarios such as pothole, crime activity, roadblocks, 
constructions, weather impacts etc. DashCam Eye provides the 
dynamic cooperated policy-based decision optimization along 
with usage of federated learning enabled it to proliferate the 
learning to the could server network and with applied weights 
and biases this federated learning-based approach optimizes the 
training model to handle such situations in the future better. The 
simulation results shows that DashCamEye based route maps is 
successfully able to avoid the scratchy neighborhood during the 
specific time of the day and alerted the user to chose alternate 
route. 
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