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 A B S T R A C T 

Nanotechnology has garnered significant attention for its capacity to manipulate matter at atomic and molecular scales. This 
thorough review focuses on nanomaterials, with a specific emphasis on metal sulphides, elucidating their distinctive properties and 
applications. Nanoparticles, fundamental units in nanostructures, exhibit unique physical and chemical characteristics distinct 
from bulk materials, making them attractive for diverse industrial applications. The review provides a detailed categorization of 
nanomaterials based on dimensions, encompassing 1D (surface films), 2D (monolayer materials like graphene), and 3D (bulk 
powders, nanoparticle dispersions). Synthesis methods, categorized as top-down (breakdown) and bottom-up (build-up), are 
meticulously outlined, covering techniques such as dry/wet grinding, chemical vapor deposition, and liquid-phase methods. 
The synthesis methods and applications of metal sulphides, specifically Cadmium Sulphide (CdS), Nickel Sulphide (NiS), and 
Copper Sulphide (CuS), are explored in terms of crystal structures, quantum size effects, and their roles in solar cells, bioimaging, 
and photocatalysis. In conclusion, this review presents a comprehensive exploration of nanomaterials, synthesis methodologies, 
and the distinct applications of metal sulphides. The unique nanoscale properties of these materials hold promise for significant 
advancements across various fields, ranging from electronics to energy storage.
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1. Introduction
1.1 Nanotechnology

Nanoscience is the discipline dedicated to the examination of 
matter on a scale of one billionth of a meter (i.e., 10-9m = 1 nm). 
Similarly, nanotechnology involves the deliberate manipulation 
of matter at the atomic and molecular levels1,2. Notably, a 
nanometre corresponds to one millionth of a millimetre, 
approximately 100,000 times smaller than the width of a human 
hair., as illustrated in (Figure 1).

At the core of crafting a nanostructure, a nanoparticle 
functions as the elemental building block. This minute entity 
resides on a scale markedly tinier than the everyday objects 
adhering to Newton’s laws of motion, yet it surpasses the 

dimensions of atoms or basic molecules governed by the 
principles of quantum mechanics3,4.

Figure 1: Scale Comparison Including Nanometres.
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Typically ranging between 1 and 100 nm, nanoparticles 
exhibit distinct physical and chemical characteristics compared 
to bulk metals, such as lower melting points, higher specific 
surface areas, specific optical properties, mechanical strengths, 
and unique magnetization properties. These distinctive attributes 
make nanoparticles particularly appealing for diverse industrial 
applications.

1.2 Nanomaterials

In the contemporary era, nanomaterials have become a focal 
point of interest due to their distinctive physical, chemical, 
and mechanical attributes. The ability to manipulate essential 
material properties, encompassing magnetic, optical, and 
electrical traits, is achievable without altering the chemical 
composition. This mastery is attained by overseeing the size, 
structural configuration, and surface states of nanocrystalline 
materials5,6.

Nanomaterials attract attention due to the emergence of 
distinct optical, magnetic, electrical, and other properties at 
this scale. These unique characteristics possess considerable 
potential for advancements in electronics, medicine, and diverse 
fields.

As the particle radius approaches the asymptotic Bohr 
radii, quantum confinement effects come into play, especially 
observable in nanostructured semiconductors showcasing 
captivating electro-optical properties and catalytic behaviour. 
This emphasizes the significant influence of surface properties 
on the structural and optical traits of nanomaterials. Furthermore, 
the alteration of nanomaterial surfaces through the introduction 
of diverse inorganic species serves to eradicate surface defects 
and shape their optical properties.

The versatile applications of nanomaterials encompass fields 
such as light-emitting diodes, gas sensors, nanothermometers, 
solar cells, fuel cells, piezoelectric nanogenerators, and lithium-
ion batteries7,8.

1.3 Types of nanomaterials

Nanomaterials are characterized by their exceedingly small 
size, with at least one dimension measuring 100 nm or less. 
These materials can manifest in nanoscale dimensions along 
one (e.g., surface films), two (e.g., strands or fibers), or three 
dimensions (e.g., particles). They may exist in several forms, 
including single, fused, aggregated, or agglomerated structures, 
exhibiting spherical, tubular, or irregular shapes, as illustrated 
in (Figure 2). Prominent examples of nanomaterials encompass 
nanotubes, dendrimers, quantum dots, and fullerenes9-13.

•	 One-dimensional nanomaterials (1D): Systems with 
a single dimension, such as thin films or manufactured 
surfaces, have been employed for decades. Thin films 
with sizes ranging from 1 to 100 nm, or monolayers, have 
become integral components in diverse fields such as solar 
cells, sensing technologies, information storage systems, 
magneto-optics, optical devices, and fiber-optic systems.

•	 Two-dimensional nanomaterials (2D): Beyond the 
nanoscale, these materials have a single dimension 
comprising only a single or a few atomic layers. This 
category includes plate-like shapes, such as graphene and 
other monolayer materials like MXenes, black phosphorous 
(phosphorene), diatomic hexagonal boron nitride, and 
carbon nanotubes.

•	 Three-dimensional nanomaterials (3D): Materials 
in this category are not confined to the nanoscale in any 

dimension. They encompass bulk powders, dispersions of 
nanoparticles, bundles of nanowires, and multi-nanolayers, 
as exemplified by dendrimers, quantum dots, and fullerenes 
(e.g., Carbon 60).

Figure 2: Categorization of Nanomaterials.

1.4 Nanomaterials Synthesis Methods  

Two distinct approaches have historically been employed in 
the production of ultrafine particles. The first method involves 
the breakdown (top-down) approach, where an external force is 
applied to a solid, causing it to disintegrate into smaller particles. 
Another method, known as the build-up (bottom-up) approach, 
generates nanoparticles by commencing with gas or liquid atoms, 
relying on atomic transformations or molecular condensations, 
as illustrated in (Figure 3)14-17.

Figure 3: Nanoparticle synthesis methods.

1.4.1 Top-down method

The top-down approach entails the disintegration of a solid 
material into extremely fine particles, and it can be classified 
as dry and wet grinding. In the realm of dry grinding, the solid 
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material experiences pulverization through the application 
of shock, compression, or friction. This process is executed 
through various methods, including jet mills, hammer mills, 
shearing mills, roller mills, shock shearing mills, ball mills, and 
tumbling mills. Achieving particle sizes below 3μm through 
grain refinement is challenging due to simultaneous particle 
condensation during pulverization.

In the wet grinding approach, a solid substrate is processed 
utilizing specialized equipment like tumbling ball mills, 
vibratory ball mills, planetary ball mills, centrifugal fluid mills, 
agitating beads mills, flow conduit bead mills, annular gap beads 
mills, or wet jet mills. Unlike the dry method, wet processing 
proves advantageous in averting the agglomeration of generated 
nanoparticles, promoting the creation of finely dispersed 
nanoparticles. Moreover, within the top-down methodologies, 
the mechanochemical method and mechanical alloying method 
are incorporated1.

1.4.2 Bottom-up method

The bottom-up approach can be broadly categorized into 
gaseous phase methods and liquid phase methods. In gaseous 
phase methods, the chemical vapor deposition method (CVD) 
involves a chemical reaction, while the physical vapor deposition 
method (PVD) relies on the cooling of evaporated material. 
Although gaseous phase methods minimize the presence of 
organic impurities compared to liquid phase methods, they 
require complex vacuum equipment, leading to high costs and 
low productivity. The CVD procedure can generate ultrafine 
particles of less than 1 μm through chemical reactions in the 
gaseous phase, and careful control of the reaction allows 
the production of nanoparticles ranging from 10 to 100 nm. 
Elevated temperature chemical reactions in the CVD approach 
require heat sources like a chemical flame, plasma process, laser, 
or electric furnace. In contrast, the PVD technique involves the 
evaporation of solid or liquid material, followed by swift cooling 
of the resulting vapor to generate the desired nanoparticles. 
The evaporation of materials can be achieved using an arc 
discharge method. The straightforward thermal decomposition 
method has demonstrated notable efficacy in generating metal 
oxide and various particle varieties, establishing itself as a 
widely embraced synthetic approach in the industrial domain. 
Liquid phase methods, especially liquid/liquid methods and 
sedimentation methods, have traditionally served as the 
predominant techniques for nanoparticle preparation over many 
years18,19.

The chemical reduction of metal ions exemplifies a liquid/
liquid method, offering the primary advantage of easily 
fabricating particles in diverse shapes, including nanorods, 
nanowires, nano-prisms, nanoplates, and hollow nanoparticles. 
Through the chemical reduction method, precise control over 
the form (shape) and size of nanoparticles can be achieved by 
adjusting factors such as the dispersing agent, reducing agent, 
reaction time, and temperature.

The chemical reduction method involves reducing metal 
ions to their 0 oxidation states (M+n → M0) through a chemical 
process. This method employs simple equipment and proves 
cost-effective, enabling the production of substantial quantities 
of nanoparticles in a short duration. Notably, microwave 
radiation serves as an efficient heat source, contributing to 
the swift generation of high-quality nanoparticles in this 
process. In addition to the chemical reduction method, which 
involves the introduction of a reducing agent (known as 

the direct reduction method), various alternative reduction 
techniques are recognized. These include photoreduction using 
ultrasonic waves, gamma rays, and liquid plasma, all viable for 
nanoparticle synthesis. A distinctive feature of these methods, 
characterized by the absence of chemical reducing substances, 
is their ability to introduce no additional impurities introduced 
to the nanoparticles. Additionally, other well-known methods in 
this domain encompass spray drying, solvothermal synthesis, 
spray pyrolysis, and the supercritical method18-22.

The sedimentation method commonly relies on a solgel 
process, widely applied for manufacturing metal oxide 
nanoparticles. This process begins by converting a metal 
alkoxide solution into a sol through hydrolysis, followed by 
polycondensation resulting in gel formation. Unlike the dry 
method, the wet process, operating in the liquid phase, ensures a 
superior dispersion of nanoparticles. However, when the resultant 
nanoparticles undergo drying, particle aggregation promptly 
occurs. In such instances, re-dispersion can be executed using 
the procedures employed in the solid phase method1,18-22.

1.5 Metal sulphides

Metal sulphides nanomaterials have garnered considerable 
attention owing to their exceptional properties and promising 
applications in electronic, optical, and optoelectronic devices. 
The extensive study of nanostructured metal sulphides is driven 
by their crucial role in elucidating quantum size effects and 
their applications across various devices, including solar cells, 
light-emitting diodes, sensors, thermoelectric devices, lithium-
ion batteries, fuel cells, and nonvolatile memory devices23-28. 
Representing a major group of minerals, metal sulphides offer a 
rich field for crystal chemists due to their diverse structural types. 
Abundant and cost-effective, these sulphides are commonly 
found in nature as minerals such as heazlewoodite (Ni3S2), 
chalcocite (Cu2S), pyrite (FeS2), CdS, and others.

This work will focus on a significant subgroup of 
nanoparticles which are metal sulphides. Subsequent sections 
will delve into the exploration of this nanoparticle group.

1.5.1 Cadmium Sulphide (CdS)

Cadmium sulphide (CdS), classified as an II-VI 
semiconductor, demonstrates insolubility in water but solubility 
in dilute mineral acids. Its intrinsic n-type conductivity is 
attributed to sulfur vacancies resulting from excess cadmium 
atoms. In bulk, CdS possesses a band gap energy of 2.42 eV 
at 300K, with absorption maxima at 515nm29-31. CdS can adopt 
three crystal structures—wurtzite, zinc blend, and high-pressure 
rock-salt phases. Among these, the wurtzite phase, known for 
its stability, can be readily synthesized. While both bulk and 
nanocrystalline CdS exhibit the wurtzite phase, cubic and rock-
salt phases are exclusive to nanocrystalline CdS32,33.

Nanoparticles of CdS exhibit distinct physical, chemical, 
and structural properties compared to their bulk counterparts. 
The size of CdS nanoparticles influences various properties, 
including melting point, electronic absorption spectra, band gap 
energy, and crystal structure34,35. The quantum size effect in CdS 
nanoparticles is evident in the direct relationship between the 
particle size and absorption wavelength. The electronic properties 
of nanocrystalline CdS can vary based on size reduction and 
reaction conditions, leading to different crystalline structures.

Cadmium sulphide finds applications across diverse fields 
such as solar cells, bioimaging36,37, photoconductive devices38, 
chemiluminescence39, and sensing applications40. It is extensively 
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utilized as a visible-light-driven photocatalyst, despite challenges 
like photocorrosion, facile recombination of electron-hole pairs, 
and lower efficiency in surface reactions. The development 
of stable CdS-based photocatalysts, ensuring efficient charge 
separation and high photocatalytic activity, is imperative 
for enhancing their practical utility. Various hierarchical 
nanostructures of CdS have been prepared using methods like 
microwave-assisted synthesis41, chemical vapor deposition 
(CVD)42, hydrothermal routes43, chemical bath deposition 
(CBD)44, UV irradiation technology45, and electrochemical 
synthesis46. Some of these nanostructures obtained through these 
methods have found applications in catalysis.

1.5.2 Nickel Sulphide (NiS)

Nickel sulphide (NiS), a significant member within the 
extensive family of transition metal (TM) sulphides, serves various 
purposes such as a potential cathode material for rechargeable 
lithium batteries, a catalyst in the degradation of organic dyes, 
and in magnetic devices and certain non-linear optical devices47. 
Catalysts, including NiS, play a crucial role in the oil industry 
for separating elements with hydrocompounds from insulators48. 
Given its diverse applications, numerous synthesis methods 
have been employed to prepare NiS nanoparticles, including 
the sol-gel method, laser ablation, solvothermal processes, 
UV irradiation, and the colloidal microemulsion method49. 
Among these, the chemical precipitation method stands out as a 
significant approach for nanoparticle synthesis.

Nickel sulphide showcases complex compositional, 
structural, optical, electrical, and magnetic phase responses. 
Different binary nickel sulphides, such as Ni3S2, Ni3+xS2, Ni4S3+x, 
Ni6S5, Ni7S6, Ni9S8, Ni3S4, and NiS, have been documented, 
depending on the chosen synthesis method50.

1.5.3 Copper Sulphide (CuS) 

Copper sulphide (CuS) stands as a significant p-type 
semiconductor with considerable potential applications, 
including its use as cathode materials for lithium-ion batteries, 
solar radiation absorbers, and nonlinear optical materials. Its 
appeal lies in being an exceptionally thin absorber layer for 
solar cells, owing to its nearly ideal band gap of 1.2 eV and cost-
effectiveness. Furthermore, CuS holds promise for nanoscale 
switches due to its nature as a mixed Cu ionic/electronic 
conductor51,52.

Monocrystalline copper sulphide serves as an n-type 
semiconductor, demonstrating at least five stable phases at room 
temperature with varying Cu:S molar ratios (CuxS). These phases 
include covellite (CuS), anilide (Cu1.75S), digenite (Cu1.8S), 
djurleite (Cu1.95S), and chalcocite (Cu2S), each possessing a 
crystal structure ranging from orthogonal to hexagonal53.

1.6 Sulphur sources

Many sulphur sources were used in the preparation of metal 
sulphide nanoparticles such as, thiourea, thioglycolic acid, 
dithiocarbamate…. etc.

In the present work, we will use three organic sulphur sources 
to obtain metal sulphide nanoparticles materials. These organic 
sulphur sources are thiocarbohydrazide TCH, thiocarbonic acid 
dipotassium salt and thiocarbonyl-bis-thioglycolic acid. In the 
following we will summarize the previous works deal with this 
organic sulphur source.  

1.6.1 Thiocarbohydrazide (TCH)

Thiocarbohydrazide, a straightforward hydrazine derivative 
of thiocarbonic acid, finds application in organic synthesis, 

as well as in the industrial manufacturing of insecticides, 
fungicides, and various agricultural chemicals. Moreover, it 
serves as a chemical reagent in laboratory settings54,55. TCH 
presents as a colorless crystalline solid, exhibiting decomposition 
at approximately 171 °C and facilitating recrystallization from 
water56,57. Multiple synthesis methods for TCH exist, including 
the Taguchi method56-58, Solomon Omwoma Lugasil59, Audrieth 
and colleagues60, and Mohamed A. Metwally et al.61-67. Recent 
comprehensive reviews delve into the chemistry and applications 
of thiocarbohydrazide in the realms of synthetic organic 
chemistry and biological sciences68. Beyond its role in organic 
synthesis, thiocarbohydrazide finds application in diverse areas, 
serving as fogging agents recognized for safety, storability, and 
cool-burning characteristics in pyrotechnic compounds used 
for smoke dissemination and chemical warfare agent dispersal. 
Moreover, it functions as a therapeutic agent, showcasing its 
efficacy as a highly selective adsorbent for heavy metal ions 
and as a complexing agent in various solvent extraction and 
separation methodologies68.

1.6.2 Synthesis of thiocarbonic acid dipotassium salt:

Thiocabonic acid dipotassium salt was obtained by the 
reaction between K2S and carbon disulphide in 35 ml distilled 
water by Holmberg synthesis method69.

1.6.3 Synthesis of the thiocarbonyl-bis-thioglycolic acid

Thiocarbonyl-bis-thioglycolic acid can be prepared by 
Holmberg synthesis method69.

1.7 Literature Survey and previous work 

1.7.1 CdS nanoparticles 

Various methodologies and precursor combinations were 
employed to synthesize CdS nanoparticles. Ristic et al70 achieved 
the synthesis of cubic CdS nanoparticles with a size range of 
2-3 nm by reacting H2S gas with a 10% aqueous solution of 
cadmium acetate at room temperature. Beggasa et al71 utilized 
the chemical bath deposition technique to produce hexagonal 
CdS nanoparticles, demonstrating an average size spanning 
14.3 to 30.4 nm. In their approach, a bath solution consisting of 
Cadmium carbonate and thiourea was employed, with ammonia 
serving as a complexing agent. The transmittance of CdS 
exceeded 70% in the invisible region, and the band gap energy 
ranged from 2.46 to 2.42 eV. Yang et al72 opted for an organic 
synthesis method to prepare CdS, resulting in the development 
of Se-doped CdS semiconductor nanocrystals (NCs). Billakant 
et al73 synthesized CdS nanoparticles using a solution-phase 
hexamethyldisilazane (HMDS)-assisted chemical synthetic 
method, with CdCl2 and thiourea as precursors. Lahewil et al74 
engineered CdS thin films with a nanostructure, depositing them 
on glass substrates with Cd:S ratios ranging from 1.2 to 0.05 
mol/L. The obtained films underwent annealing at 400 ºC, with 
different spin coating speeds (1000 and 5000 rpm) influencing 
the average grain size, varying from 1.35 to 2.66 nm for films 
prepared at 1000 and 5000 rpm, respectively. Amorphous CdS 
nanoparticles, capped with cetyltrimethyl ammonium bromide 
(CTAB), were synthesized under diverse conditions using a 
co-precipitation method, resulting in a blue shift in the band gap 
and an approximate CdS size of 8 nm75.

Mahdi et al76 employed the microwave-assisted chemical 
bath deposition method to fabricate CdS thin films onto glass 
substrates at 80 °C, achieving films with robust adhesion and 
an absence of pinholes. Aqueous solutions of cadmium chloride 
or cadmium acetate, along with thiourea, served as the sources 
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for Cd+2 and S-2 ions, respectively. Moualkia et al77 utilized the 
chemical bath deposition (CBD) technique to produce cubic CdS 
thin films exhibiting a preferential orientation along the (111) 
plane. The process involved NH4OH, CdSO4, and CS (NH2)2. 
Alonso et al78 synthesized hexagonal CdS, characterized as an 
n-type semiconductor, through microwave heating, utilizing 
thioacetamide as the sulfur source. Abo-Bakr et al79 synthesized 
two CdS nanocrystals using a novel organic salt named 
Potassium N’-[4-(N’-dithiocarboxy-hydrazino)-4-oxo-butyryl]-
hydrazinecarbo-dithionate, which was dissolved in different 
solvents (200 ml water and 100 ml water with 100 ml ethanol). 
Duchaniya80 employed the sol-gel technique to synthesize cubic 
CdS with a crystallite size ~ 10 nm. Al-Douri et al81 fabricated 
CdS nanostructures on glass substrates using the spin coating 
technique with varying spin coating speeds (1000, 3000, and 
5000 rpm). The resulting films underwent annealing at 400 °C, 
yielding particle sizes for CdS nanostructures of 1.40, 1.78, and 
2.31 nm at 1000, 3000, and 5000 rpm, respectively.

Marathe et al82 employed both the sol-gel method and 
spray pyrolysis to fabricate CdS nanocrystalline thin films on 
glass substrates. The films obtained through the sol-gel method 
exhibited a band gap of approximately 3.25 eV, while those 
produced by the spray pyrolysis method had a band gap of 2.87 eV. 
Limin Qi et al83 synthesized CdS nanoparticles with particle sizes 
ranging between 2 and 4 nm. They utilized double hydrophilic 
block copolymers, consisting of a solvating poly(ethylene glycol) 
(PEG) and a poly(ethylene imine) (PEI), as effective stabilizers 
for CdS nanoparticle solutions in water and methanol. Jinxin 
et al84 employed the hydrothermal method in a microemulsion 
composed of polyoxyethylene laurylether, water, cyclohexane, 
and butanol to synthesize hexagonal CdS nanoparticles with 
a minimum diameter of approximately 10 nm. The study 
revealed a decrease in the diameter of CdS nanoparticles with 
an increase in the molar ratio of water to surfactant. Zang et al85 
utilized a solvothermal method with oxalic acid as an auxiliary 
agent to prepare hexagonal-phase CdS. The resulting hollow 
microspheres of CdS had a diameter of about 5 μm, with a center 
hole measuring approximately 500 nm. The optical energy band 
gap was determined to be 2.31 eV. Weiguang et al86 prepared 
CdS Q-nanoparticles with a narrow size distribution, featuring 
mean diameters ranging from 2 to 5 nm. This was achieved 
through size-selective precipitation techniques. Raevskaya et 
al87 synthesized CdS nanoparticles with a diameter of about 2 
nm using polyethylenimine, exhibiting a narrow size (~10%). 
These nanoparticles demonstrated luminescence in the range 
of 400-600 nm, with a quantum yield of about 10%. Niasari et 
al88 employed a cyclic microwave route and [Cd (C2O4)·3H2O] 
powder as a precursor to produce CdS nanoparticles with an 
average size of approximately 15 nm. Lingdong et al89 prepared 
CdS nanoparticles with an average particle size of 2.5 nm, 
utilizing a carboxylic-containing copolymer, polystyrene-maleic 
anhydride (PSM), as a template.

1.7.2 CuS nanoparticles

Various techniques and source materials were employed in 
the production of copper sulphide (CuS) nanoparticles. Wang et 
al90 utilized a sonochemical route, involving an aqueous solution 
containing metal monosulphide and thioacetamide, with 
triethanolamine acetate as a complexing agent under ambient 
air conditions to achieve CuS nanoparticle synthesis. Sandhya et 
al91 employed a simple chemical co-precipitation method using 
copper acetate and sodium thiosulfate as precursors. The pH of 
the solution varied from 5.5 to 9.5, resulting in the preparation 

of CuS nanoparticles with an optical band gap ranging from 
3.27 to 3.66 eV. Li et al92 conducted a solvothermal synthesis 
using copper nitrate trihydrate and thiourea to produce CuS 
nanomaterials. The UV-visible spectrum exhibited broad 
absorption in the visible range, and the photoluminescence 
spectrum revealed a strong green emission. Ramamoorth et al93 
synthesized hexagonal CuS nanoparticles by employing copper 
acetate and thiourea in the presence of water-butanol and water-
cyclohexanol as a mixed medium. The transmittance of the 
resulting CuS nanoparticles varied from 35% to 70% up to 450 
nm in the electromagnetic spectra, with the band gap ranging 
from 2.31 to 2.51 eV.

Ajibade94 conducted the synthesis of hexagonal copper 
sulphide nanocrystals using copper (II) dithiocarbamate 
single molecule precursors. The estimated crystallite sizes, 
as determined by XRD, ranged from 17.3 to 18.6 nm. TEM 
images further revealed particles with average crystallite sizes 
within the range of 3 to 9.8 nm. Castillón et al95 employed the 
polyol method to prepare copper sulphide nanoparticles by 
utilizing copper nitrate and sodium sulphide as raw materials 
in the presence of ethylene glycol at various temperatures. The 
resulting particles exhibited a size of 10 nm, and the band gap 
energy value for the nanoparticles was estimated to be 2.15 eV. 
Pal et al96 utilized a wet chemical method to produce hexagonal 
phase CuS nanoparticles with sizes in the nanometer range. The 
estimated band gap energy for these nanoparticles was found 
to be 2.05 eV. Nemade et al97 employed the spray pyrolysis 
technique to synthesize CuS nanoparticles at different substrate 
temperatures. Riyaz et al98 prepared CuS nanoparticles using the 
sol-gel route in the presence of distilled water at 100 °C for 3 
hours. The crystallite size, determined by the Debye-Scherrer 
formula, was found to be 17.73 nm, and the band gap was 
calculated using the Tauc relation, resulting in a value of 2.89 
eV.

1.7.3 NiS nanoparticles 

Wang et al90 employed a sonochemical route to prepare 
NiS from an aqueous solution containing metal monosulphide 
and thioacetamide, with triethanolamine acetate serving as a 
complexing agent under ambient air. Kristl et al99 sonochemically 
synthesized NiS and Ni3S4 from nickel acetate and sulfur using 
a direct immersion ultrasonic probe. The resulting nanoparticles 
exhibited an average crystallite size ranging from 7 to 30 
nm, with optical band gap energy in the range of 3.3 eV to 
3.8 eV. Shajudheen et al100 utilized the chemical precipitation 
method to prepare orthorhombic NiS nanoparticles, employing 
triethanolamine as a capping agent. Lili et al101 obtained the 
hexagonal NiS phase through a hydrothermal method starting 
from nickel acetate and sodium thiosulfate at 200 °C for 12 
hours. Additionally, NiS2 microsphere cubic phase was prepared 
by incorporating ethylenediaminetetraacetic acid (EDTA). 
Yang et al102 synthesized NiS nanorods through a solvothermal 
synthetic route using sulfur and nickel powders as reagents in 
ethylenediamine as the solvent at 200 °C. Rozue et al103 utilized 
nickel acetate, sodium sulphide, and sodium hydroxide to obtain 
β-NiS nanoparticles. The samples were calcinated at 500 °C 
and 1000 °C for 1 hour, resulting in band gap values of 4.8 eV 
and 2.8 eV, respectively. Abd El-Raady et al104 prepared nickel 
monosulphide using (Potassium N’-[4-(N’-dithiocarboxy-
hydrazino)-4-oxo-butyryl]-hydrazinecarbodithionate (I) and 
thiourea (II)) through a simple chemical method in an aqueous 
ethanolic solution105-107.
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2. Conclusion
In summary, this review highlights the rapidly advancing field 

of nanotechnology, with a specific emphasis on nanomaterials, 
synthesis techniques, and the practical applications of metal 
sulphides. The capacity to control matter at the atomic and 
molecular levels has given rise to a range of unique materials 
with varied properties, presenting numerous opportunities 
across different industrial sectors. Both top-down and bottom-up 
synthesis methods provide a comprehensive toolkit for crafting 
nanomaterials tailored to specific requirements. The article 
explores the intricacies of these methods, from dry/wet grinding 
to chemical vapor deposition, shedding light on the advantages 
and challenges associated with each approach.

The focus on metal sulphides, such as Cadmium Sulphide 
(CdS), Nickel Sulphide (NiS), and Copper Sulphide (CuS), 
unveils their distinctive properties and versatile applications. 
From their quantum size effects to their roles in solar cells, 
batteries, and catalysis, metal sulphides exemplify the 
transformative potential of nanomaterials. The examination of 
three organic sulphur sources for synthesizing metal sulphide 
nanoparticles introduces a layer of specificity to the discourse, 
demonstrating the diverse strategies employed by researchers to 
customize materials for intended applications. In essence, this 
review serves as a guide for researchers, providing valuable 
insights into the current state of nanotechnology, nanomaterials, 
and their applications. Simultaneously, it directs attention 
towards exciting avenues for future exploration and innovation 
in the field.
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