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 A B S T R A C T 
This study focused on comparing different models for ethanol production through simultaneous saccharification and 

fermentation (SSF) of cassava starch. In recent years, modeling has become an essential tool for advancing the bioethanol industry 
by optimizing fermentation processes and facilitating their integration into industrial applications. Within this framework, the 
present work examined the applicability of two mathematical models andrews and Aiba, for both molasses fermentation and 
SSF. Kinetic parameters for the Aiba and Andrews models were derived from experimental data using MATLAB and Origin-
Lab software. The models were then simulated and validated against an independent set of experimental results not used in the 
parameter estimation. The results of modelling showed that μmax = 2.469 1/h and Ks = 8.509 g. L−1 for the Aiba model, whereas 
μmax = 0.9489 1/h, Ks = 0.002314 g. L−1 and Ki = 0.1536 g. L−1 for the Andrews model, which are too close to the values of 
other models in this study. The validation of both models showed that the Andrew model is more suitable for batch fermentation 
and ssf modelling at a low concentration, where the highest R squared was observed at S0 = 6.775 g. L−1 with an R squared equal 
to 0.9526 and 0.9051 for the biomass, substrate and product concentrations, respectively. In contrast, the Aiba model was more 
accurate at a high initial substrate concentration.
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1. Introduction
Over the past century, global energy consumption has 

risen sharply due to industrialization, population growth, 
economic expansion and modernization1. Meeting future energy 
requirements has therefore become a major focus of researchers. 
At present, fossil fuels remain the dominant energy source2. 
However, their extensive use has led to serious environmental 
and economic challenges, including resource depletion and 
climate change caused by greenhouse gas emissions3. Renewable 
energy sources such as biofuels, wind, solar and hydropower 
offer sustainable alternatives to conventional fossil fuels while 

mitigating their negative impacts4. Although the adoption of 
renewable energy has grown, it still accounts for only about 
4.4% of total primary energy consumption5. This highlights the 
urgent need to develop, promote and invest in new renewable 
technologies to address future energy demands.

Among renewable options, biofuels such as bioethanol 
and biodiesel—primarily derived from biomass stand out as 
promising alternatives due to their contributions to energy 
sustainability, greenhouse gas reduction and rural development6. 
Currently, bioethanol is largely produced from starch- and sugar-
based feedstocks. However, concerns have arisen about the 
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long-term viability of using food crops, particularly in relation 
to food security in developing nations7. To overcome this 
challenge, researchers are exploring alternative raw materials for 
bioethanol production that do not compete with the food supply. 
Molasses has emerged as a particularly attractive feedstock, as 
it offers low production costs, high ethanol yields and no direct 
competition with staple crops8.

The alcoholic fermentation of molasses using Saccharomyces 
cerevisiae has been widely studied and considerable interest 
has been directed toward developing kinetic models to better 
describe microbial growth, substrate consumption and ethanol 
production9. Mathematical modeling is especially valuable in 
optimizing fermentation processes, as it helps improve process 
control, reduce production expenses and enhance product 
quality. Fermentation and simultaneous saccharification and 
fermentation (SSF) models are generally divided into two 
categories: unstructured models, which treat biomass as a single 
compound with an overall formula and structured models, which 
consider the organism’s internal biochemical changes10.

Modeling batch bioprocesses, however, presents challenges 
due to their inherent nonlinearities, time-dependent dynamics 
and the complexity of biological systems. Factors such as 
multiple reactions organism adaptability and environmental 
variability make these systems particularly difficult to predict7. 
Nevertheless, batch reactors are commonly used to investigate 
the key mechanisms governing fermentation kinetics such 
as limitations, inhibition effects, cell death and maintenance 
requirements8. While a wide range of fermentation models have 
been proposed, the model introduced by11 is among the most 
widely accepted.

This study focuses on bioethanol production from molasses 
as a sustainable and cost-effective alternative to fossil fuels. By 
utilizing Saccharomyces cerevisiae in fermentation, the research 
seeks to optimize ethanol yields and minimize production costs. 
Furthermore, both structured and unstructured kinetic models 
will be applied and evaluated to better understand microbial 
behavior, substrate utilization and ethanol formation. Ultimately, 
mathematical modeling will serve as a key tool to enhance 
process efficiency, reduce costs and support the industrial-scale 
production of bioethanol as a cleaner energy source.

2. Methodology
2.1 Modelling

To better understand the reactor behaviour and to be able 
to simulate reactor operation, a flow conversion model must 
be developed using the well-established technique of combing 
reaction kinetics and Residence Time Distribution (RTD) 
information12. The model consists of the following, Aiba model13 
andrew model12, Aiba-andrews model12, Monod kinetics model, 
Tesier model and Webb model13.

2.1.1. Monod’s kinetics model: The Monod equation is a 
mathematical model that describes microbial growth. It was 
introduced by Jacques Monod, who suggested that the rate 
of microbial growth in an aqueous system could be linked to 
the concentration of a limiting nutrient through this type of 
relationship. While it resembles the Michaelis-Menten equation 
in form, the Monod equation is empirical in nature, whereas the 
Michaelis-Menten model is derived from theoretical principles13.

In environmental engineering, the Monod equation is widely 
applied, particularly in modeling biological processes such as 
the activated sludge system used in wastewater treatment. 

The Monod equation is:

Where μ is the specific growth rate of microorganisms, 
μmax is the maximum specific growth rate, S is the substrate 
concentration, Ks is the half-saturation constant (the substrate 
concentration at which the growth rate is half of μmax.

2.2. Application 

The rate of substrate utilization is related to the specific 
growth rate as follows: 

Where X is the total biomass (since the specific growth rate, 
μ is normalized to the total biomass), Y is the yield coefficient, r 
su is the rate of substrate utilization.

In some applications, multiple terms of the form [S/(Ks + S)] 
are multiplied together where more than one nutrient or growth 
factor has the potential to be limiting (e.g. organic matter and 
oxygen are both necessary to Heterotrophic bacteria). A very 
high yield coefficient, defined as the ratio of microbial biomass 
produced to the amount of substrate consumed, indicates that the 
available substrate is insufficient for proper utilization. (Figures 
1-5) present the sample of plot obtained by the existing models.

2.2.1. General model:

A negative R-square is possible if the model does not contain 
a constant term and the fit is poor (worse than just fitting the 
mean) (Figure 1).
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Figure 1: Monod’s model.

2.2.2. Haldane model:

•	 General model:

•	 Coefficients (with 95% confidence bounds): Ki = 0.1095 
(-61.22, 61.44), Ks = 4.377 (-3653, 3662),  m = 1.355 (-750.3, 
753).

https://en.wikipedia.org/wiki/Heterotrophic
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A negative R-square is possible if the model does not contain 
a constant term and the fit is poor (worse than just fitting the 
mean). Try changing the model or using a different Start Point 
(Figure 4).
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Figure 4: Aiba-andrew’s model.

2.2.5. Aiba model

•	 General model:

•	 Coefficients (with 95% confidence bounds): Ki = 0.148 
(-62.01, 62.31), Ks = 2.973 (-2149, 2155),  m = 1.009 
(-417.3, 419.4)

•	 Goodness of fit: SSE: 0.0001274, R-square: 0.9108, 
Adjusted R-square: 0.8216, RMSE: 0.00798
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Figure 5: Aiba’s model.

3. Results and discussion 
3.1. Experimental result

The experimental results associated to the processing set up 
of each independent variable are listed in (Table 1). Five level 
central composite design matrix and the experimental responses 
of the dependent variable (ethanol concentration) are listed. The 
regression equation coefficients were calculated and the data is 
fitted to a second order polynomial (pure quadratic) equation. 
The (ethanol concentration) by saccharomyces cerevisiae can be 
expressed in terms of the following regression equation which 
can be used for future prediction.

•	 Goodness of fit: SSE: 0.0001252, R-square: 0.9123, 
Adjusted R-square: 0.8246, RMSE: 0.007913 (Figure 2).
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Figure 2: Haldane’s model.

2.2.3. Andrews model:

According to12 who developed an inhibition model for substrate-
inhibited enzymatic kinetics:

•	 General model: Coefficients (with 95% confidence 
bounds): Ki = 5023 (-8.648e+006, 8.658e+006), Ks = 2.513 
(1.134, 3.891),  m = 0.008412 (-0.02297, 0.0398)

•	 Goodness of fit: SSE: 6.775e-005, R-square: 0.9526, 
Adjusted R-square: 0.9051, RMSE: 0.00582 (Figure 3).
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Figure 3: Andrew’s model.

2.2.4. Aiba-andrews model:

•	 General model:

•	 Coefficients (with 95% confidence bounds): Ki = 0.4383 
(-8.052e+007, 8.052e+007), Ks = 0.5637 (-5.466e+011, 
5.466e+011),  m = 0.01023 (-1.585e+009, 1.585e+009)

•	 Goodness of fit: SSE: 0.003317, R-square: -1.323, Adjusted 
R-square: -3.647, RMSE: 0.04073
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Table 1: Table for the models.
MODEL Ki Ks Um SSE  R2 ADJ R2 RSME

MONOD - 1.022 0.01944 0.001428 -2.297 -2.297 0.01889

HALDANE 0.1095 4.377 1.355 0.0001252 0.9123 0.8246 0.007913

ANDREW 5023 2.513 0.008412 6.775 0.9526 0.9051 0.00582

AIBA-ANDREW 0.4383 0.5637 0.01023 0.003317 -1.323 -3.647 0.04073

AIBA 0.148 2.973 1.009 0.0001274 0.9108 0.8216 0.00798

Y= 45.9069 + 0.3852X1 – 4.4712X2 – 1.7669X3 – 0.1264X4 – 
0.0163X5 – 0.0132X12 + 0.4151X22 + 0.0268X42 – 0.0032X52 (9)

Besides the linear effect of the ethanol concentration Y, the 
response surface method gives an insight about the parameter’s 
quadratic and combined effects. The analysis was done by 
using both Fiser’s f-test and student t-test statistical tools. The 
statistical significance of the ratio between residual error and the 
mean square residual error was tested using analysis of variance 
(ANOVA) was presented in (Table 2).

Table 2: Analysis of variance for ethanol production.
Variable Coefficient Se T-stat Pval

Constant 45.9096 15.1852 3.0231 0.0029

Substrate conc. 0.3852 0.1957 1.9684 0.0505

Ph -4.4712 3.3654 -1.3286 0.1856

Temperature -1.7669 0.5779 -3.0577 0.0026

Enzyme conc. -0.1264 0.1162 -1.0872 0.2784

Time -0.0163 0.0323 -0.5040 0.6149

(Substrate conc)2 -0.0132 0.0229 -0.5778 0.5641

pH2 0.4151 0.3056 1.3582 0.1761

Temperature2 0.0268 0.0085 3.1558 0.0019

Enzyme conc.) 2 0.0048 0.0048 1.0069 0.3153

Time2 -0.0032 0.0013 -2.4768 0.0142

Anova is a statistical technique that subdivides the total 
variation of a set of data into components associated to specific 
sources of variation. The regression equation obtained from the 
ANOVA shows that the R2 (coefficient of determination) was 
0.951(a value > 0.75 indicates fitness of the model). This is 
an estimate of the fraction of the overall variation in the data 
accounted by the model and thus the model can explain 95.1% 
of the variation in the response. The adjusted R2 is 0.907, which 
indicates that the model is good for a good statistical model, the 
R2 value should be in the range of 0-1.0 and the nearer to 1.0 the 
value is the more fit the model is deemed to be. 

The response surfaces can be used to predict the optimum 
range for different values of the test variables and the major 
interactions between the test variables can be identified from the 
circular or elliptical nature of the contours.

Since saccharification occurred simultaneously with 
fermentation, a certain amount of glucose was expected to be 
released during the process. In this study, however, the glucose 
derived from starch was rapidly consumed by fermentation 
and therefore rarely detected during SSF. Similar early glucose 
depletion has been observed by other researchers when using 
substrates such as soluble starch14 or raw cassava starch15 in 
combination with immobilized yeast. Nutrient limitation has been 
suggested as a factor influencing saccharification efficiency16. 
Another important consideration is the temperature difference 
between the optimal activity of amyl glucosidase (55ºC) and the 
optimal growth of yeast (35ºC). Lower temperatures are generally 
preferred, as they enhance yeast metabolism and accelerate the 

completion of fermentation17. A potential alternative highlighted 
in the literature is the use of thermo-tolerant yeast strains, which 
allow fermentation at around 42ºC while achieving higher 
ethanol yields18. Additional factors may also explain the reduced 
saccharification performance, including nutrient depletion and 
the limited amylolytic activity of S. cerevisiae, which may 
contribute to saccharification only to a small extent16.

Studies on raw wheat flour as the substrate for SSF have 
shown that glucose production increases during the initial stages 
of the process, closely linked to a rapid decrease in maltose 
consumption, with maximum ethanol yields of about 69 g/L19. 
Some authors have reported even greater ethanol concentrations 
93 g/L or 140 g/L when using yeast strains engineered for 
enhanced ethanol productivity18,20. Since conventional yeasts 
lack amylolytic enzymes and cannot directly convert starch into 
ethanol, genetic modification has been explored. As summarized 
in (Table 3), ethanol-fermenting microorganisms have been 
developed by engineering yeasts to express enzymes such 
as α-amylase and amyloglucosidase21 or to ferment xylose, a 
major pentose sugar present in cellulosic biomass, which is a 
commonly used feedstock for bioethanol production22.

Table 3: F-stat analysis ethanol production.
F-stat

Sse Dfe Dfr Ssr F Pval

186.96 185 10 177.89 17.698 0

3.2. Optimization of process variables on ethanol production 

The factors affecting the Simultaneous saccharification and 
fermentation of Cassava starch with Glucoamylase enzyme and 
S. cerevisiae culture was studied using CCD experiments. The 
substrate concentration (X1, g/l), the pH (X2), the temperature 
(X3, °C) and the Glucoamylase enzyme concentration (X4, IU) 
were chosen as the independent variables as shown in (Table 4). 
Ethanol Concentration (Y) was chosen as the dependent output 
variable. Thirty-six experiments based on the CCD were carried 
out with different combinations of variables and the results were 
presented in (Table 4). The data obtained from the four-level 
central composite design matrix were used to develop models 
in which each dependent variable (Ethanol Concentration, Y) 
was obtained as the sum of the contributions of the independent 
variable through second order polynomial equation and 
interaction terms. The actual ethanol concentration obtained in 
the experiments and the yields predicted by the model equation 
(2).

It showed that the regression coefficients of all the linear 
term and all quadratic coefficients of X1, X2, X3 and X4 were 
significant at < 1% level. The individual effect of all the four 
parameters studied quadratic effects and interaction effects 
between the dependent variables were found to be significant 
from the response surface plots shown in Figures 6 to 15. The 
clear elliptical shape of the curve shown in (Figures 6-15) 
indicates the interaction effect between all the four independent 
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variables were significant. Hence optimum combinations of 
substrate concentration, pH, pretreatment temperature, with 
the enzyme concentration play a major role to get maximum 
bioconversion of cassava starch to ethanol. The ANOVA result 
of quadratic regression model for Y is described in Table 4. 
ANOVA of the regression model for Y demonstrated that the 
model was significant due to an F-value of and a very low 
probability value (P < 0.005). The P-values are used as a tool 
to check the significance of each of the coefficients, which 
in turn indicate the pattern of the interactions between the 
variables. Smaller value of P then it was more significant to the 
corresponding coefficient. It showed that the experimental yields 
fitted the second order polynomial equation well as indicated by 
high R2 values (0.907). 

Table 4: Anova analysi independent variable.
Source Sum sq Df Mean sq F

X1 59.625 3 19.8751 21.99

X2 0.712 3 0.2372 0.26

X3 6.529 3 2.1762 2.41

X4 0.852 3 0.2841 0.31

X5 119.723 6 19.9539 22.08

Error 159.088 176 0.9039

Total 363.848 196
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Figure 6: 3d plot showing the effect of substrate concentration 
and temperature on ethanol concentration.
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and ph on ethanol concentration.

The orientation of the principal axes of the contour plots 
between the variable’s substrate concentration and temperature, 
substrate concentration and pH, Substrate Concentration and 
enzyme concentration pH and temperature, pH and enzyme 
concentration and temperature and enzyme concentration 
indicated that the mutual interactions between these set of 
variables had a significant effect on the ethanol Concentration. 
The values of P less than 0.005 in Table 2 also indicate the 
significance of interaction effects of all the four chosen 
independent variables. Based on the model, the optimal working 

conditions were obtained to attain high percentage conversion of 
starch. The optimum values of the parameters X1, X2, X3 and 
X4 were found to be 160 g/l, 5.5, 30°C and 50 IU respectively 
and were obtained by solving the regression equation (2) using 
the experimental data with square MATLAB version 7.0.
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Figure 8: 3d plot showing the effect of substrate concentration 
and temperature on ethanol concentration.
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Figure 13: 3d plot showing the effect of enzyme concentration 
and temperature on ethanol concentration.
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concentration on ethanol concentration.
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3.3. Starch liquefaction optimization

The experiment was carried out for up to 2 hours, which is the 
reaction time reported in the literature as necessary for complete 

starch hydrolysis19. Specifically, a 2-hour liquefaction step was 
required to achieve full hydrolysis when raw wheat flour was 
used as the substrate. Shorter liquefaction periods (0.5-1 hour) 
resulted in a wort with higher viscosity, which hindered the 
efficient breakdown of glucose polymers. In contrast, performing 
the process at a lower temperature (55ºC) with increased enzyme 
activity produced the highest liquefaction yield. However, when 
liquefaction was conducted at 55ºC with an enzyme dosage of 
100 U/g-cassava starch, the yield was the lowest.

3.4. Kinetic study

The essential feature of the model developed by23 was that 
starch was structured into susceptible and resistant fractions 
that differed in the rate constants of hydrolysis. There are as 
many kinetic models for kinetic study but the best of them all 
is the monod kinetics as it can study the gradual growth and 
decline of the cell (yeast). In this work, the kinetic study was 
based on the stage of the experiment at which the greatest 
ethanol concentration was obtained. At this stage, the glucose 
concentration becomes the substrate concentration (as it is 
the substance that is being converted to ethanol) and its being 
plotted against time. The monod kinetic was linearized using the 
Line-weaverburk scheme as follow; 

 

Linearalise;  	

A plot of  againt  will a give slope of  and an intercept 
of . From the graph, the values of µmax and Ks were 
determined as 0.3428hr-1 and 0.275g/ml respective

3.5. Liquefaction with a- and b-amylase

Maximizing ethanol productivity requires optimizing 
the amount of cassava starch available for saccharification 
in order to generate sufficient glucose for fermentation. To 
improve liquefaction efficiency, β-amylase was employed for 
starch hydrolysis and its performance compared with that of 
α-amylase. Typically, β-amylase is expected to produce greater 
quantities of maltose during starch breakdown than α-amylase24, 
as it is capable of converting polysaccharides containing α-1,4 
glycosidic bonds entirely into maltose. This enzyme is also 
widely applied in industrial ethanol production25. However, in 
this study, α-amylase demonstrated considerably higher maltose 
production than β-amylase.

Ethanol production through SSF of wheat-based substrates 
using Saccharomyces cerevisiae was previously reported by18, 
with yields of 44.2 g/L from fine wheat flour and 34.1 g/L from 
damaged wheat flour. In comparison, ethanol production obtained 
from LG1 in this experiment (38.6 g/L) was significantly higher 
than that from damaged wheat. Similarly, ethanol fermentation of 
sago starch slurries with Zymomonas mobilis produced 100 g/L 
starch conversion and 40 g/L ethanol26, which was comparable 
to the ethanol yield achieved with LG1.

The ethanol yield from LG1 (0.49 L ethanol/kg flour) was 
nearly 61% greater than that from LG2 and closely matched 
the average yield from sugarcane (0.50 L ethanol/kg dry 
biomass)27. Furthermore, yields obtained from both LG1 and 
LG2 in this study were markedly higher than those reported for 
other agricultural residues such as wheat straw (0.29 L/kg) and 
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sugarcane bagasse (0.28 L/kg)28. Due to the superior performance 
of LG1, subsequent SSF experiments were conducted using 
this substrate. During SSF of LG1, both glucose and maltose 
generated in the liquefaction step were completely consumed 
within 12 hours, after which reducing sugar levels remained 
constant, confirming the completion of fermentation18.

A one-step ethanol production process from soluble 
starch using a co-culture of amylolytic yeast (Saccharomyces 
diastaticus) and Saccharomyces cerevisiae was reported by29. In 
that study, a maximum of 24.8 g/L ethanol was achieved from 
60 g/L soluble starch, though yields declined with increasing 
starch concentrations in the medium. In another study, Candida 
tropicalis YMEC14, a low-rate amylolytic yeast, was used for 
ethanol production from corn soluble starch in the presence of 
α-amylase30. Results showed that higher ethanol concentrations 
were obtained when α-amylase was included, compared with 
fermentation by the yeast alone. The highest ethanol concentration 
reported was 43.1 g/L from 9% soluble starch, while 24 g/L was 
obtained from 6% starch. Additionally, fed-batch fermentation 
produced the highest yield, reaching 56 g/L.

4. Conclusion
The review clearly describes the concept and potential of cost 

effective microbial SSF process for starch-based bio-ethanol 
production in the background of the feasibility of other 
processes. The process so-called Simultaneous Saccharification 
and Fermentation (SSF) was incited with expensive enzymatic 
hydrolysis with simultaneous fermentation and was virtually 
similar as for the separate process. The process has been modified 
by combining two separate processes in one vessel to reduce 
the time and increase the efficiency of the overall process. The 
presence of yeast or bacteria along with enzymes or enzyme 
containing microorganism minimizes substrate inhibition effects 
by reducing the sugar accumulation in the vessel. The presence 
of ethanol in the broth makes the mixture less susceptible to 
unwanted microorganisms’ contamination and hence helped in 
increasing the overall ethanol yield and productivity using the 
SSF process. Such developed process with improved hydrolysis-
fermentation efficiency could help in significant reduction of 
ethanol production costs. Such technological advancement 
towards green and clean bio-ethanol production will contribute 
to reducing the fossil fuels dependency for future energy needs 
and hence eliminating the chances of air pollution caused due to 
combustion of petroleum-based derivatives.
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