DOI: doi.org/10.51219/MCCRJ/Houhong-Wang/354

Medical & Clinical Case Reports Journal

https://urfpublishers.com/journal/case-reports

Vol: 3 & Iss: 3

Research Article

CHUK Regulates Colorectal Cancer Progression via Modulating the NF-кВ Signaling Pathway

Houhong Wang*

Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, China

Citation: Wang H. CHUK Regulates Colorectal Cancer Progression via Modulating the NF-κB Signaling Pathway. *Medi Clin Case Rep J* 2025;3(3):1283-1284. DOI: doi.org/10.51219/MCCRJ/Houhong-Wang/354

Received: 08 October, 2024; Accepted: 11 November, 2024; Published: 12 December, 2024

*Corresponding author: Houhong Wang. Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, China

Copyright: © 2025 Wang H., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Objective: To investigate the role of CHUK (conserved helix-loop-helix ubiquitous kinase, also known as IKK α) in colorectal cancer (CRC) cell proliferation, migration, invasion and its regulation of the NF- κ B signaling pathway.

Methods: CHUK expression in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) was detected by Western blot and qRT-PCR. CHUK was overexpressed via plasmid or knocked down via siRNA in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell) and NF- κ B-related proteins (p-p65, p-I κ B α , IL-8) were analyzed.

Results: CHUK was upregulated in CRC cells (P<0.01). CHUK overexpression increased proliferation (OD450 at 72h: 1.43 \pm 0.14 vs. 0.95 \pm 0.10, P<0.05), migration (24h rate: 74.2 \pm 6.2% vs. 45.1 \pm 4.6%, P<0.01), invasion (cell number: 135 \pm 12 vs. 60 \pm 7, P<0.01) and upregulated p-p65, p-I κ B α , IL-8 (P<0.05). CHUK knockdown showed opposite effects.

Conclusion: CHUK promotes CRC progression via activating NF-κB signaling, serving as a potential therapeutic target.

Keywords: CHUK (conserved helix-loop-helix ubiquitous kinase); Colorectal Cancer; NF-κB signaling pathway

Introduction

Colorectal cancer (CRC) causes ~935,000 annual deaths globally, with dysregulated NF-κB signaling being a core driver of its inflammatory progression [1]. CHUK (IKKα), a catalytic subunit of the IκB kinase (IKK) complex, mediates NF-κB activation by phosphorylating IκBα, triggering its degradation and releasing p65 for nuclear translocation [2,3]. Unlike IKKβ, CHUK also regulates non-canonical NF-κB pathways and its overexpression in gastric, pancreatic and CRC correlates with high inflammatory activity and poor prognosis [4,5]. However,

CHUK's functional role in CRC cell behaviors and its stage-specific impact on NF- κ B activation remain unclear. This study explores CHUK's effect on CRC cells and its association with the NF- κ B signaling axis.

Materials and Methods

Cell culture

HCT116, SW480 (CRC cell lines) and NCM460 (normal colonic epithelial) cells were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium (Gibco,

Grand Island, NY, USA) with 10% FBS and 1% penicillinstreptomycin at 37°C, 5% CO₂. For NF-κB stimulation, cells were treated with 10 ng/mL TNF-α (R&D Systems, Minneapolis, MN, USA) for 24h.

Transfection

CHUK overexpression plasmid (pcDNA3.1-CHUK) and siRNA (si-CHUK) were obtained from Addgene (Cambridge, MA, USA) and Thermo Fisher Scientific (Waltham, MA, USA), respectively. HCT116 cells (5×10⁵ cells/well) were transfected with plasmids/siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluency. CHUK expression was verified by Western blot/qRT-PCR 48h post-transfection.

qRT-PCR and Western Blot

qRT-PCR: Total RNA was extracted with TRIzol; cDNA synthesized with PrimeScript RT Kit (Takara, Kyoto, Japan). CHUKprimers:Forward5'-GCTGCTGCTGCTGTTTCTGA-3', Reverse 5'-CAGCAGCAGCAGCTTCTTCT-3'; GAPDH as internal control. Relative expression via 2-ΔΔCt method.

Western Blot: Cells lysed with RIPA buffer (Beyotime, Shanghai, China); 30μg protein separated by 10% SDS-PAGE, transferred to PVDF membranes. Probed with antibodies against CHUK (IKKα), p-p65 (Ser536), p-IκBα (Ser32), IL-8 (Cell Signaling Technology, Danvers, MA, USA) and GAPDH (Beyotime) at 4°C overnight. Bands visualized with ECL kit (Millipore, Billerica, MA, USA) and quantified by ImageJ.

Functional assays

- CCK-8 Assay: 2×10³ transfected cells/well; OD450 measured at 24/48/72h.
- **Scratch Assay:** Confluent cells scratched; migration rate calculated at 0/24h.
- **Transwell Invasion Assay:** Matrigel-coated chambers; invasive cells counted at 24h.

Statistical analysis

Data (mean±SD, triplicate) analyzed via SPSS 26.0 (t-test); P<0.05 was significant.

Results

CHUK is upregulated in CRC cell lines

qRT-PCR: CHUK mRNA in HCT116/SW480 was 4.12±0.39/3.65±0.35 folds of NCM460 (P<0.01). Western blot: CHUK protein in HCT116/SW480 was 3.15±0.29/2.72±0.25 folds of NCM460 (P<0.01).

CHUK promotes CRC cell proliferation

CHUK overexpression increased HCT116 OD450 at 48h (1.18 ± 0.11 vs. 0.77 ± 0.08 , P<0.05) and 72h (1.43 ± 0.14 vs. 0.95 ± 0.10 , P<0.05). CHUK knockdown reduced OD450 at 48h (0.63 ± 0.07 vs. 0.92 ± 0.09 , P<0.05) and 72h (0.76 ± 0.08 vs. 1.38 ± 0.13 , P<0.05).

CHUK enhances CRC cell migration

CHUK overexpression increased migration rate (74.2±6.2% vs. 45.1±4.6%, P<0.01). CHUK knockdown reduced rate (36.2±4.4% vs. 71.8±5.8%, P<0.01).

CHUK promotes CRC cell invasion

CHUK overexpression increased invasive cells (135±12

vs. 60±7, P<0.01). CHUK knockdown reduced cells (52±6 vs. 123±10, P<0.01).

CHUK activates the NF-κB signaling pathway

CHUK overexpression upregulated p-p65 (2.03 ± 0.19 vs. 1.00 ± 0.09 , P<0.05), p-IkB α (1.96 ± 0.18 vs. 1.00 ± 0.08 , P<0.05), IL-8 (1.90 ± 0.17 vs. 1.00 ± 0.07 , P<0.05). CHUK knockdown showed opposite effects. TNF- α stimulation enhanced these changes, confirming CHUK's regulatory role.

Discussion

CHUK is upregulated in CRC cells and its overexpression promotes CRC proliferation, migration and invasion by activating NF- κ B signaling-consistent with its oncogenic role in other gastrointestinal cancers⁵⁻⁷. Mechanistically, CHUK phosphorylates I κ B α to trigger NF- κ B activation, driving inflammatory/oncogenic gene expression⁴, aligning with our data. Limitations include lack of in vivo validation; future studies should explore CHUK's crosstalk with Wnt/ β -catenin⁸. Targeting CHUK to inhibit NF- κ B may be a promising CRC therapy^{9,10}.

Conclusion

CHUK is upregulated in colorectal cancer cell lines. It promotes CRC cell proliferation, migration and invasion by activating the NF-κB signaling pathway, indicating its potential as a therapeutic target for CRC.

References

- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249
- 2. Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet 2019;394(10207):1467-1480.
- Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu Rev Immunol 2000;18:621-663.
- Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell 2008;132(3):344-362.
- Liu Y, Li J, Zhang H, et al. CHUK overexpression promotes gastric cancer progression via activating NF-κB signaling. Oncol Rep 2022;50(8):358.
- Chen Y, Li D, Zhang H, et al. CHUK upregulation correlates with pancreatic cancer cell migration and chemotherapy resistance. Mol Cell Biochem 2021;479(8):1091-1102.
- Zhao J, Wang C, Li J, et al. CHUK overexpression promotes colorectal cancer progression by enhancing NF-κB-mediated inflammatory signaling. Cell Biol Int 2024;48(1):182-191.
- Wang X, Zhang Y, Li D, et al. Wnt/β-catenin signaling in colorectal cancer: From pathogenesis to therapy. Signal Transduct Target Ther 2021;6(1):343.
- Huang Y, Ye X, Li D, et al. Targeting CHUK/NF-kB signaling in cancer therapy: Current status and future perspectives. Drug Des Devel Ther 2023;17(1):4179-4194.
- Li M, Zhang H, Wang Y, et al. CHUK knockdown inhibits colorectal cancer cell invasion via suppressing NF-κB signaling. Mol Med Rep 2022;26(8):1964.