
Chaos Engineering in the Cloud-Native Era: Evaluating Distributed AI Model
Resilience on Kubernetes

Anila Gogineni*

Citation: Gogineni A. Chaos Engineering in the Cloud-Native Era: Evaluating Distributed AI Model Resilience on Kubernetes. J
Artif Intell Mach Learn & Data Sci 2025, 3(1), 2182-2187. DOI: doi.org/10.51219/JAIMLD/anila-gogineni/477

Received: 02 January, 2025; Accepted: 18 January, 2025; Published: 20 January, 2025

*Corresponding author: Anila Gogineni, Independent Researcher, USA, E-mail: anila.ssn@gmail.com

Copyright: © 2025 Gogineni A., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 3 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/anila-gogineni/477

 A B S T R A C T
In this study, participants assigned the role of a cloud-native system-operator will apply chaos engineering practices on

Kubernetes clusters to assess the operation of distributed AI models’ resilience. Chaos engineering is the most vital technique
when it comes to testing the failure conditions of AI systems and their vulnerabilities. The study aims at analyzing how the
concept of chaos engineering can be applied, specifically in Kubernetes environments and mainly in terms of fault tolerance
and performance recovery. This study will explore how Kubernetes can enable the daily operations of AI applications at scale by
performing multiple failure simulations and utilizing automated tools. It also outlines implements, techniques and approaches to
use when performing chaos experiments in the context of this discussion.

Keywords: Chaos engineering, Kubernetes, Cloud-native, Distributed AI models, Resilience, Fault tolerance, Kubernetes clusters,
AI Reliability and Automation

1. Introduction
Cloud-native era has significantly transformed the

development, deployment and management of applications
and services. Container orchestration has quickly evolved as a
mainstream part of cloud computing, with Kubernetes as the
leading platform. Many of the modern AI workloads, which
operate under distributed models, execute in Kubernetes-based
environments to leverage the flexibility and orchestration offered
by cloud-native solutions. Nonetheless, making these AI models
robust under failure conditions is going to be a challenging task.
This paper is centered on harnessing chaos engineering as a
means of testing the robustness of distributed AI models running
on Kubernetes.

Chaos engineering is an emerging technique for testing
reliability and robustness of cloud-native systems where
controlled experiments are performed to elucidate system
behavior under failure. The idea behind purposefully creating
failures is to look at how the system responds and what

improvements can be made to it by engineers. This paper
examines the process and effects of using chaos engineering
in order to assess and improve the robustness of AI models
deployed on Kubernetes platforms.

The paper discusses the following core concepts:

•	 Understanding Kubernetes and its relevance to AI models.
•	 The fundamentals of chaos engineering and its application

in cloud-native environments.
•	 Techniques for evaluating the resilience of distributed AI

models.
•	 Tools and frameworks available for chaos engineering in

Kubernetes.

2. Key Concepts
2.1. Kubernetes and distributed AI models

Kubernetes can be called the basics of Cloud Native
environments, in particular, for managing distributed systems,

https://doi.org/10.51219/JAIMLD/anila-gogineni/477
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/anila-gogineni/477

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 1Gogineni A.,

2

1.2. Chaos engineering in cloud-native systems

Chaos Engineering is designed to introduce failures into a
system to identify its robustness and determine how well it can
respond to different drastically conditions. In particular, through
the implementation of chaos engineering organizations can
discover the vulnerability of their infrastructure and guarantee
that their systems are stable in failure conditions. The cloud-
native environment poses some problems, most especially when
working with distributed systems, for instance, Kubernetes14. In
this context, chaos engineering can be used to perform a variety
of failure tests and to identify how the system is affected by
them. This helps in guaranteeing that functions such as Cloud
Native Applications, AI models running in Kubernetes clusters
are well constructed to include available options for failure,
flexibility for expansion, as well as recovery (Figure 2).

Figure 2: Chaos Engineering in Cloud-Native System
Framework.

Chaos engineering experiments can occur at the pod level, the
node level and even the networking level in the Kubernetes
environment. The purpose is to recreate realistic situations where
failures are bound to occur and determine if the framework can
detect the failure and continue to deliver the expected level
of service in the absence of human intervention. The primary
scenarios tested include:

1.2.1. Pod failures: Pods are the smallest objects of deployment
in the Kubernetes environment and can consist of one or multiple
containers. In actual chaos engineering, pod failures can be
emulated through the killing or removal of the pods that host the
AI model containers. This will prove that an attempt is made to
identify the failure and place the pod on another node while the
continued service is not affected. This experiment is especially
beneficial for distributed AI systems that need to be always ON
and self-healing at the same time. In the case when a pod fails,
Kubernetes will need to reschedule this pod without interrupting
model inference and training tasks and with minimal impact on
the performance.

1.2.2. Node failures: A node failure is a bigger failure where an
entire Kubernetes worker node is down and it may take down
several pods. Through various emulation scenarios such as
node failure, engineers are able to determine if the system is
capable of recovering from failure by shifting workload to other
more healthy nodes in the cluster16. Cooperative AI is designed
to apply to the failure of important sub-tasks in deep learning
like data pre-processing, model training and model inference for

such as AI models. It has highly efficient orchestration
capabilities, including automatic scaling, load balancing and
container management that are crucial to AI applications as
they can quickly change the needed resource consumption.
For the large datasets, the resource management for AI model
deployment plays an important role in ensuring that the utilized
system remains performant5. Kubernetes do this by providing
a way of managing containers that allows AI systems to be
deployed, monitored and scaled easily.

A distributed AI model is aimed to split dataset or
computational work-whether it is the training or the
inference-across different nodes of the Kubernetes cluster.
This parallelization increases performance because various
computational elements can process subsets of the data at the
same time15. As AI systems grow more complex these days, from
shallow machine learning to deep learning networks, distributed
computing offers optimal solutions to the volume of data and
computation needed. Kubernetes helps to manage this parallel
processing environment by maintaining resource isolation
through containers and state between them.

For instance, Kubernetes permits the distribution of models
that can incorporate several services or facets, such as data
cleaning, model building, model prediction and so more,
where all of them will be in the form of pods. These pods are
deployed across different worker nodes of the cluster2. In case
a pod crashes, Kubernetes swiftly reschedules its execution in
a different node, to enhance availability. This capability means
that the system does not shut down often, which is important for
AI systems that may be used for mission-critical applications or
for client 24/7 applications.

Pod and Node Resilience in the Kubernetes architecture,
containers can be grouped together into a pod, with one or
more containers allowed per pod. These pods are spread across
several worker nodes in a Kubernetes cluster, nodes which may
be physical or virtual hosts. Due to the node level resilience in
Kubernetes, the system provides mechanisms for handling failure
of individual nodes by rebalancing the pod workloads on healthy
nodes in the cluster. Pod-level resiliency is an important feature
that allows the containers residing in a pod to be automatically
restarted or migrated if they get stuck (Figure 1).

Figure 1: A Kubernetes cluster setup with AI models distributed
across pods and nodes.

Kubernetes’ flexible features can help AI models to scale up
or down and recover effectively from failures, which is crucial
when deploying large-scale, distributed systems in production1.

3

Gogineni A., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 1

the distributed AI models. While Kubernetes redistributes pods
automatically, chaos engineering enables the teams to determine
whether this process is fast enough, given the AI models’ need to
process requests in real time.

1.2.3. Network latency: Another potential failure mode is
network latency, which is closely related to microservices or
distributed architecture of AI models. Adding pauses between
nodes or pods mimics a network overload or bad conditions
of the network, which can dramatically impact the speed of
communication between the components of the model. This
experiment also allows testing how the system performs with
slower communication, for example, whether the load is
balanced more efficiently now or the system tries to minimize
the usage of pod-to-pod communication which is not optimal in
this case.

To manage and control these chaos experiments tools like
Chaos mesh and Gremlin are used quite often in Kubernetes
environments17. These tools offer strong functioning features
for introducing fault, failure infusion and observation of the
system’s reaction in actual times.

Chaos Mesh is an open-source software for chaos engineering
that works and coordinates well with the Kubernetes platform.
It enables people to perform some failure scenarios like pod
failures, network failures, CPU overload etc all of which are
weak points in cloud-native applications13. Chaos Mesh is
something where, for example, users can control failure cases
using YAML configuration files and perform various chaos tests
inside a Kubernetes infrastructure without additional operations.
It also offers metrics, logs and real-time statistics for capturing
the results of the experiment and verifying the efficiency of the
recovery processes.

Nevertheless, Gremlin is an enterprise-grade, chaos
engineering tool that can also work with Kubernetes to perform
more complex tests. Following the control plane details, Gremlin
has the possibility of testing latency, CPU spikes, container
failures and memory leaks12. Gremlin is perfect for organizations
that want to practice chaos engineering at scale, integrating
extensive features for focusing on particular workloads, software
application monitoring during tests and studying the effects of
failures on distributed structures, such as AI models.

Both of these tools help to ensure that the Kubernetes
managed AI systems can perform and remain stable even under
stress or failure scenarios which is crucial for keeping AI models
running in production.

Pseudocode Example:

Pseudocode: Simulating network latency in Kubernetes using
Chaos Mesh
Function simulate_network_latency():
 Initialize chaos_mesh as new ChaosMesh()
 chaos_mesh.create_experiment(‘network-latency’,
 parameters:
 target = ‘pod’
 latency = ‘500ms’
 duration = ‘60s’
)
Call simulate_network_latency()

2. Evaluating AI Model Resilience
The quality of the distributed AI models is an outstanding

attribute that defines the performance and availability of the
system in case some attacks happen in the future. In Kubernetes-
managed AI systems, resilience is not restricted to recovering
from failures but is equally the ability to provide conclusive
results in and around structures3. AI model robustness requires
checking the AI system’s ability to be relatively robust to failure
modes and maintain the ability to quickly recover from failures
while still generating accurate predictions with low latency.

The following key metrics are commonly used to measure the
resilience of AI models:

2.1. Availability

Availability is defined as the time that AI models can remain
active after a failure has happened. A robust AI solution should
be able to handle faults including node failure or pod shut down
while continuing to operate without many disruptions to service.
Ideally, the system should be self-healing so that it can easily
switch to healthy nodes or pods without manual manipulation.
For instance, if a pod that is running an AI inference container
has crashed, Kubernetes should transfer that pod to another node
in the cluster and make sure that the model is available to be on
demand to users.

2.2. Consistency

Consistency implies that after the system has come back
from the failure, the AI model should be able to provide the
right predictions or results4. It is crucial to be consistent across
containers and nodes when the internal state of an AI model
must remain intact (e.g., model weights or training progress).
To measure consistency, checkpointing or rolling update can
be performed on AI models during the chaos experiment
wherein state of the model is captured before and after a failure,
respectively, to ensure that the predictions are still accurate at
that point.

2.3. Performance

Performance involves monitoring the (Figure 3),

Response time and throughput of the AI model during failure
events like congestion or intractable algorithms11. It should not
be affected by latencies in the network or failures of nodes or
conflicts in resources in terms of response time and number of
successful transactions it can handle concurrently. For instance,
during chaos experiments when simulating network latency or
CPU spikes, the AI model should not considerably slow down.
A performance test uses actual data in normal environmental
conditions to establish the efficiency baseline; then it introduces
disturbances to the functional model to compare the results.

A resilience test should be done using chaos experiments,
along with the use of the monitoring tools that would display the
latency, throughput, errors and system integrity in real-time18.
These tools enable the engineers to determine the influence of
faults on the model and the ability of the model to self-correct
without further assistance.

The following flowchart outlines the general process
of conducting a resilience test for distributed AI models in
Kubernetes:

During the Chaos Experiment phase, different failure

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 1Gogineni A.,

4

scenarios like pod eviction, node failure, network latency etc are
injected into the Kubernetes environment.

Figure 3: Flowchart of Resilience Testing for Distributed AI
Models.

Monitoring Metrics involve gathering of data like response
time, errors and load during chaos experiments.

Analyze Recovery investigates if the AI model can return to
normal operation after the failure and its efficiency10.

A System Stable is a checkpoint wherein the stability and
robustness of the created model is assessed. In the case that the
model comes across all the recovery checks, then it is considered
to be stable.

3. Tools and Frameworks
Some of the tools and frameworks with which chaos

engineering practices can be performed specifically in the
Kubernetes environment includes7. These tools facilitate the
automation of fault injection, monitoring and analysis, ensuring
that the system’s resilience can be tested at scale:

3.1. Chaos mesh

Chaos Mesh is an open-source chaos engineering platform
particularly designed for integration with the Kubernetes
environment. Chaos Mesh is able to perform a number of
experiments, including network unavailability, CPU storms or
out of memory processes. it lets users describe chaos scenarios
in YAML files and apply it on the Kubernetes environments.
Chaos Mesh includes metric collection and visualization on

the dashboard so that it is possible to monitor the AI model’s
performance during disruption.

3.2. Gremlin

A commercial chaos engineering platform that offers some
sophisticated features on top of the ones explained above for
clouds. In this way, through integration with Kubernetes, Gremlin
lets engineers cause latencies, container crashes, exhausted
resources and more6. Gremlin has extreme flexibility in terms of
chaos experiments in that users can manipulate individual nodes
or pods and inject various fault modes.

3.3. Kube-monkey

Kube-monkey is an application that terminates Kubernetes
pods randomly to check the state of the system after a failure.
Kube-monkey, further, shuts pods randomly within a Kubernetes
cluster and thereby checks the resilience of the cluster’s self-
healing process of enlightening the pods to healthy nodes, thus
ensuring the availability of the AI model in case of random pod
failures.

4. Case Study: Chaos Engineering in AI Model
Deployment

For contextual purposes and to emphasize chaos engineering
as an effective approach to the validation and testing of AI
models, we will describe an AI-based recommendation system
that was deployed on Kubernetes. The highly variable AI
model that makes recommendations based on a user’s data was
containerized and deployed on to multiple nodes in a Kubernetes
cluster. The following chaos experiments were conducted:

4.1. Network interruptions

To further mimic conditions of excessive network
connectivity between pods of containers, the recommendation
model was subsequently exposed to network latency. The
system proved responsive in that it transferred the load from
unhealthy pods to healthy pods and proved capable of adapting
to shortened latency.

4.2. Node failures

Some nodes were intentionally failed to measure the
performance of the system’s recovery and continuity in the case
of infrastructure outages. When a node was not reachable any
longer, Kubernetes alerts the failure and started the management
of the rescheduling of the AI model containers in healthy nodes
within the cluster. This self-healing mechanism would make
sure the system could recover on its own, meaning that the
availability of the service is high. When dealing with the recovery
process, the AI model worked efficiently as expected without a
significant decline in its effectiveness, plus, it possessed fault
tolerance (Figure 4).

4.3. High CPU Usage

To simulate resource contention, stress was specifically
applied to the CPU components of the Kubernetes cluster on
which the AI model was deployed. This mimicked a situation
where one or more processes or tasks required a large number of
CPU cycles which may have had an effect on the AI model built.
However, the results show that the incorporation of new data
parameters does not hinder the performance of the AI model,
as it showed flexibility to turn down processing power while
persistently providing predictions. The relatively low latency

5

Gogineni A., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 1

values and the model’s stability during the simulation during
CPU load confirmed the idea of the system optimizing resource-
constrained conditions. Such resource management features in
Kubernetes like CPU limits and requests were able to control
these stress cases without affecting the availability of services
and keeping the AI model running under pressure.

Figure 4: Chaos Engineering Works.

5. Observations
The AI-based recommendation system worked robustly

during chaos experiments, ensuring it remained available and
did not degrade in terms of functionality even when multiple
failure scenarios were encountered. In this particular simulation,
the various conditions such as network interference, node failure
and high CPU loading did not drastically affect the overall
standard of service provision. Each time the model produced
invalid values, it returned to abnormal state rapidly, thus
guaranteeing that it was coming up with values as expected by
the system.

The load balance that is inherent in the Kubernetes platform
was particularly impactful in its ability to re-balance workloads
across healthy pods, in order to mitigate any service disruptions.
The pod rescheduling improves the tolerance of the system for
failure by enabling the replacement of the failed containers
through automation at a fast rate. Real-time adjustments of the
system also helped to maintain the continuity of the uninterrupted
work of the end-users during stress conditions. This shows the
usefulness of Kubernetes in managing distributed AI models in
a reliable and efficient manner.

6. Conclusion
The purpose of this paper is to put emphasis on the importance

of chaos engineering for assessment and enhancement of fault
tolerance of distributed AI models in the Kubernetes application
environment. The primary advantage of incorporating chaos
experiments into the continuous delivery pipeline is in revealing
areas of vulnerability and regression in such applications as
those using artificial intelligence. By actively introducing faults
like node failures, network latency and accidents like container
crashes, it is possible to test fault tolerance, availability, as well
as performance while in a disrupted state. It makes it possible
to detect areas in the infrastructure that would not be seen if an
actual failure were to happen and not before.

In Chaos Engineering, AI models can be exercised how they
hold state across multiple scenarios and how they respond to

infrastructure failure. This increases the reliability of AI systems
by avoiding issues such as system halts, data disparities and
degradation of performance in the production environment,
which is a major issue to companies that depend on AI-based
services.

Future work should explore the enhancement of automated
recovery mechanisms and how chaos engineering practices can
be expanded from infrastructure reliability to other areas related
to AI systems in cloud native platforms.

7. References

1.	 Almaraz-Rivera JG. An Anomaly-based Detection System for
Monitoring Kubernetes Infrastructures. IEEE Latin America
Transactions, 2023;21: 457-465.

2.	 Cai H, Wang C and Zhou X. Deployment and verification of
machine learning tool-chain based on Kubernetes distributed
clusters: This paper is submitted for possible publication in the
special issue on high performance distributed computing. CCF
Transactions on High Performance Computing, 2021;3:
157-170.

3.	 Carnero A, Martín C, Torres DR, Garrido D, Díaz M and Rubio
B. Managing and deploying distributed and deep neural models
through Kafka-ML in the cloud-to-things continuum. IEEE
Access, 2021;9: 125478-125495.

4.	 Czyzewski A, Stepień K and Poniszewska-Maranda A. Dynamic
Development of Artificial Intelligence Models with CI/CD
Environment-a Case Study. In 2024 50th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA),
2024: 451-458.

5.	 Dedousis P, Stergiopoulos G, Arampatzis G and Gritzalis D.
Enhancing Operational Resilience of Critical Infrastructure
Processes Through Chaos Engineering. IEEE Access, 2023.

6.	 Deng S, Zhao H, Huang B, Zhang C, Chen F, Deng Y, Yin J,
Dustdar S and Zomaya AY. Cloud-native computing: A survey
from the perspective of services. Proceedings of the IEEE,
2024.

7.	 Hettiarachchi LS, Jayadeva SV, Bandara RAV, Palliyaguruge D,
Arachchillage USSS and Kasthurirathna D. Artificial Intelligence-
Based Centralized Resource Management Application for
Distributed Systems. In 2022 13th International Conference
on Computing Communication and Networking Technologies
(ICCCNT), 2022: 1-6.

8.	 Hosseini MM and Parvania M. Artificial intelligence for resilience
enhancement of power distribution systems. The Electricity
Journal, 2021;34: 106880.

9.	 Hu F, Mehta K, Mishra S and AlMutawa M. Distributed Edge
AI Systems. In Proceedings of the IEEE/ACM 16th International
Conference on Utility and Cloud Computing, 2023;1-6.

10.	 Jorge-Martinez D, Butt SA, Onyema EM, Chakraborty C,
Shaheen Q, De-La-Hoz-Franco E and Ariza-Colpas P. Artificial
intelligence-based Kubernetes container for scheduling nodes of
energy composition. International Journal of System Assurance
Engineering and Management, 2021: 1-9.

11.	 Kosińska J, Baliś B, Konieczny M, Malawski M and Zieliński
S. Toward the observability of cloud-native applications: The
overview of the state-of-the-art. IEEE Access, 2023;11: 73036-
73052.

12.	 Mitchell BS. Cloud Native Software Engineering, 2023.

13.	 Mittal U and Panchal D. AI-based evaluation system for
supply chain vulnerabilities and resilience amidst external
shocks: An empirical approach. Reports in Mechanical
Engineering, 2023;4(1): 276-289.

https://latamt.ieeer9.org/index.php/transactions/article/view/7408
https://latamt.ieeer9.org/index.php/transactions/article/view/7408
https://latamt.ieeer9.org/index.php/transactions/article/view/7408
https://link.springer.com/article/10.1007/s42514-021-00065-w
https://link.springer.com/article/10.1007/s42514-021-00065-w
https://link.springer.com/article/10.1007/s42514-021-00065-w
https://link.springer.com/article/10.1007/s42514-021-00065-w
https://link.springer.com/article/10.1007/s42514-021-00065-w
https://link.springer.com/article/10.1007/s42514-021-00065-w
https://www.researchgate.net/publication/354344111_Managing_and_Deploying_Distributed_and_Deep_Neural_Models_Through_Kafka-ML_in_the_Cloud-to-Things_Continuum
https://www.researchgate.net/publication/354344111_Managing_and_Deploying_Distributed_and_Deep_Neural_Models_Through_Kafka-ML_in_the_Cloud-to-Things_Continuum
https://www.researchgate.net/publication/354344111_Managing_and_Deploying_Distributed_and_Deep_Neural_Models_Through_Kafka-ML_in_the_Cloud-to-Things_Continuum
https://www.researchgate.net/publication/354344111_Managing_and_Deploying_Distributed_and_Deep_Neural_Models_Through_Kafka-ML_in_the_Cloud-to-Things_Continuum
https://www.researchgate.net/publication/387479281_Dynamic_Development_of_Artificial_Intelligence_Models_with_CICD_Environment_-_a_Case_Study
https://www.researchgate.net/publication/387479281_Dynamic_Development_of_Artificial_Intelligence_Models_with_CICD_Environment_-_a_Case_Study
https://www.researchgate.net/publication/387479281_Dynamic_Development_of_Artificial_Intelligence_Models_with_CICD_Environment_-_a_Case_Study
https://www.researchgate.net/publication/387479281_Dynamic_Development_of_Artificial_Intelligence_Models_with_CICD_Environment_-_a_Case_Study
https://www.researchgate.net/publication/387479281_Dynamic_Development_of_Artificial_Intelligence_Models_with_CICD_Environment_-_a_Case_Study
https://www.researchgate.net/publication/373971973_Enhancing_Operational_Resilience_of_Critical_Infrastructure_Processes_through_Chaos_Engineering
https://www.researchgate.net/publication/373971973_Enhancing_Operational_Resilience_of_Critical_Infrastructure_Processes_through_Chaos_Engineering
https://www.researchgate.net/publication/373971973_Enhancing_Operational_Resilience_of_Critical_Infrastructure_Processes_through_Chaos_Engineering
https://arxiv.org/abs/2306.14402
https://arxiv.org/abs/2306.14402
https://arxiv.org/abs/2306.14402
https://arxiv.org/abs/2306.14402
https://www.researchgate.net/publication/366612923_Artificial_Intelligence-Based_Centralized_Resource_Management_Application_for_Distributed_Systems
https://www.researchgate.net/publication/366612923_Artificial_Intelligence-Based_Centralized_Resource_Management_Application_for_Distributed_Systems
https://www.researchgate.net/publication/366612923_Artificial_Intelligence-Based_Centralized_Resource_Management_Application_for_Distributed_Systems
https://www.researchgate.net/publication/366612923_Artificial_Intelligence-Based_Centralized_Resource_Management_Application_for_Distributed_Systems
https://www.researchgate.net/publication/366612923_Artificial_Intelligence-Based_Centralized_Resource_Management_Application_for_Distributed_Systems
https://www.researchgate.net/publication/366612923_Artificial_Intelligence-Based_Centralized_Resource_Management_Application_for_Distributed_Systems
https://www.researchgate.net/publication/347473312_Artificial_intelligence_for_resilience_enhancement_of_power_distribution_systems
https://www.researchgate.net/publication/347473312_Artificial_intelligence_for_resilience_enhancement_of_power_distribution_systems
https://www.researchgate.net/publication/347473312_Artificial_intelligence_for_resilience_enhancement_of_power_distribution_systems
https://dl.acm.org/doi/10.1145/3603166.3632546
https://dl.acm.org/doi/10.1145/3603166.3632546
https://dl.acm.org/doi/10.1145/3603166.3632546
https://www.researchgate.net/publication/355752263_Artificial_intelligence-based_Kubernetes_container_for_scheduling_nodes_of_energy_composition
https://www.researchgate.net/publication/355752263_Artificial_intelligence-based_Kubernetes_container_for_scheduling_nodes_of_energy_composition
https://www.researchgate.net/publication/355752263_Artificial_intelligence-based_Kubernetes_container_for_scheduling_nodes_of_energy_composition
https://www.researchgate.net/publication/355752263_Artificial_intelligence-based_Kubernetes_container_for_scheduling_nodes_of_energy_composition
https://www.researchgate.net/publication/355752263_Artificial_intelligence-based_Kubernetes_container_for_scheduling_nodes_of_energy_composition
https://www.researchgate.net/publication/371230230_Towards_the_Observability_of_Cloud-native_applications_The_Overview_of_the_State-of-the-Art
https://www.researchgate.net/publication/371230230_Towards_the_Observability_of_Cloud-native_applications_The_Overview_of_the_State-of-the-Art
https://www.researchgate.net/publication/371230230_Towards_the_Observability_of_Cloud-native_applications_The_Overview_of_the_State-of-the-Art
https://www.researchgate.net/publication/371230230_Towards_the_Observability_of_Cloud-native_applications_The_Overview_of_the_State-of-the-Art
https://www.researchgate.net/publication/372075077_Cloud_Native_Software_Engineering
https://www.researchgate.net/publication/375878059_AI-based_evaluation_system_for_supply_chain_vulnerabilities_and_resilience_amidst_external_shocks_An_empirical_approach
https://www.researchgate.net/publication/375878059_AI-based_evaluation_system_for_supply_chain_vulnerabilities_and_resilience_amidst_external_shocks_An_empirical_approach
https://www.researchgate.net/publication/375878059_AI-based_evaluation_system_for_supply_chain_vulnerabilities_and_resilience_amidst_external_shocks_An_empirical_approach
https://www.researchgate.net/publication/375878059_AI-based_evaluation_system_for_supply_chain_vulnerabilities_and_resilience_amidst_external_shocks_An_empirical_approach

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 1Gogineni A.,

6

14.	 Palacios Chavarro S, Nespoli P, Díaz-López D and Niño
Roa Y. On the way to automatic exploitation of vulnerabilities
and validation of systems security through security chaos
engineering. Big Data and Cognitive Computing, 2022;7(1): 1.

15.	 Ruospo A and Sanchez E. On the reliability assessment of
artificial neural networks running on ai-oriented mpsocs. Applied
Sciences, 2021;11(14): 6455.

16.	 Serbout S, El Malki A, Pautasso C and Zdun U. API Rate Limit
Adoption--A pattern collection. In Proceedings of the 28th
European Conference on Pattern Languages of Programs,
2023;1-20.

17.	 Spatharakis D, Dimolitsas I, Vlahakis E, Dechouniotis D,
Athanasopoulos N and Papavassiliou S. Distributed resource
autoscaling in kubernetes edge clusters. In 2022 18th
International Conference on Network and Service Management
(CNSM), 2022: 163-169.

18.	 Zhou J, Zhang K, Zhu F, Shi Q, Fang W, Wang L and Wang Y.
Elastic Dl: A kubernetes-native deep learning framework with
fault-tolerance and elastic scheduling. In Proceedings of the
Sixteenth ACM International Conference on Web Search and
Data Mining, 2023: 1148-1151.

https://www.mdpi.com/2504-2289/7/1/1
https://www.mdpi.com/2504-2289/7/1/1
https://www.mdpi.com/2504-2289/7/1/1
https://www.mdpi.com/2504-2289/7/1/1
https://www.mdpi.com/2076-3417/11/14/6455
https://www.mdpi.com/2076-3417/11/14/6455
https://www.mdpi.com/2076-3417/11/14/6455
https://dl.acm.org/doi/10.1145/3628034.3628039
https://dl.acm.org/doi/10.1145/3628034.3628039
https://dl.acm.org/doi/10.1145/3628034.3628039
https://dl.acm.org/doi/10.1145/3628034.3628039
https://www.researchgate.net/publication/365983741_Distributed_Resource_Autoscaling_in_Kubernetes_Edge_Clusters
https://www.researchgate.net/publication/365983741_Distributed_Resource_Autoscaling_in_Kubernetes_Edge_Clusters
https://www.researchgate.net/publication/365983741_Distributed_Resource_Autoscaling_in_Kubernetes_Edge_Clusters
https://www.researchgate.net/publication/365983741_Distributed_Resource_Autoscaling_in_Kubernetes_Edge_Clusters
https://www.researchgate.net/publication/365983741_Distributed_Resource_Autoscaling_in_Kubernetes_Edge_Clusters

	_GoBack

