
Automated ASIC Design Optimization Using Neural Architecture Search Techniques

Rashmitha Reddy Vuppunuthula*

Senior Electrical Design Engineer, Exton, Pennsylvania - 19341, USA

Citation: Rashmitha RV. Automated ASIC Design Optimization Using Neural Architecture Search Techniques. Int J Cur Res Sci
Eng Tech 2024; 7(4), 95-102. DOI: doi.org/10.30967/IJCRSET/Rashmitha-Reddy-Vuppunuthula/149

Received: 19 November, 2024; Accepted: 16 December, 2024; Published: 19 December, 2024

*Corresponding author: 	 Rashmitha Reddy Vuppunuthula, Senior Electrical Design Engineer, Exton, Pennsylvania - 19341,
USA, E-mail: vrashmitha97@gmail.com

Copyright: © 2024 Rashmitha RV., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 7 & Iss: 4

https://urfpublishers.com/journal/ijcrset

International Journal of Current Research in Science, Engineering & Technology

ISSN: 2581-4311
DOI: doi.org/10.30967/IJCRSET/Rashmitha-Reddy-Vuppunuthula/149

1. Introduction
Application-Specific Integrated Circuits (ASICs) have

become a pivotal component in modern electronics, designed to
deliver unmatched performance, energy efficiency and scalability
for specific applications1. However, the manual design and
optimization of ASIC architectures remain an intricate and time-
intensive process. This complexity arises from the need to balance
multiple design parameters, such as power consumption, latency
and area efficiency, while meeting the performance requirements
of diverse and increasingly demanding applications2. Traditional
ASIC design methods often require significant expertise and
rely heavily on iterative, trial-and-error approaches, limiting
the scope for rapid innovation3. Neural Architecture Search

(NAS) has emerged as a transformative approach in the design
of neural networks, enabling the automated discovery of
optimal architectures tailored to specific tasks4. Extending this
capability to ASIC design introduces the potential for significant
advancements in the field. By integrating NAS techniques,
designers can automate the exploration of both architectural
and hardware configurations, identifying solutions that achieve
optimal performance and resource utilization5. This approach not
only reduces the manual effort required but also accelerates the
design cycle, enabling faster deployment of cutting-edge ASICs
in applications such as machine learning, edge computing and
high-performance data centers6.

The intersection of NAS and ASIC design presents unique

 A B S T R A C T
Application-Specific Integrated Circuits (ASICs) are tailored to maximize performance, efficiency and resource utilization for

specific tasks, yet the complexity of designing optimized ASIC architectures remains a significant challenge. This paper explores
the use of Neural Architecture Search (NAS) to streamline and enhance ASIC design by automating the selection of optimal
architectures based on predefined performance, area and power criteria. NAS algorithms, trained on diverse datasets of ASIC
designs, dynamically identify the most effective configurations, achieving substantial improvements across key metrics. Results
demonstrate that NAS-driven approaches reduce power consumption by up to 30%, with designs such as Design 5 showing a
decrease from 300 mW to 210 mW. Area utilization was also optimized, with reductions reaching 30%, exemplified by Design
5's decrease from 40 mm² to 28 mm². Additionally, computation speed was significantly enhanced, with improvements of up
to 37.14%, as Design 5's speed increased from 3.5 GHz to 4.8 GHz. These findings confirm that NAS-based methodologies
outperform traditional design approaches, offering a robust and scalable framework that accelerates the ASIC design process
while elevating the final product's efficiency and performance. This work establishes NAS as a pivotal tool for ASIC design
optimization in increasingly complex electronic systems.

Keywords: ASIC Design, Neural Architecture Search (NAS), Design Automation, Power and Performance Optimization, Energy-
Efficient Computing, Machine Learning in ASICs

https://doi.org/10.30967/IJCRSET/Rashmitha-Reddy-Vuppunuthula/149
https://doi.org/10.30967/IJCRSET/Rashmitha-Reddy-Vuppunuthula/149

Int J Cur Res Sci Eng Tech | Vol: 7 & Iss: 4Rashmitha RV.,

2

challenges, including the expansive design space and the need
for hardware-aware optimization. Addressing these challenges
necessitates innovative frameworks capable of co-exploring
neural architectures and ASIC configurations in tandem7,8. Such
frameworks can leverage advanced machine learning algorithms
and high-level synthesis tools to streamline the design process,
ensuring that resulting architectures are not only functionally
superior but also aligned with practical hardware constraints9.
This paper explores the use of NAS-driven methodologies
for automated ASIC design optimization. By combining
algorithmic precision with hardware adaptability, NAS enables
a paradigm shift in how ASICs are conceptualized, designed and
implemented. The findings of this study highlight the advantages
of NAS in enhancing ASIC design workflows, providing a
foundation for future innovations in hardware optimization10.

The success of deep neural networks (DNNs) in applications
such as computer vision, virtual reality and recommender
systems has significantly increased their deployment across
diverse domains. This rapid adoption, however, has been
accompanied by challenges, particularly due to the growing
complexity of models, which demand higher computation
and energy resources. Large-scale DNNs, while offering
high accuracy, suffer from increased latency and energy
consumption, necessitating efficient methods for hardware
and software optimization2. These demands have driven the
development of automated Neural Architecture Search (NAS)
techniques and hardware-aware optimization strategies5,11.
Application-Specific Integrated Circuits (ASICs) have emerged
as a powerful solution for meeting the high-performance and
energy-efficiency requirements of DNNs. However, designing
ASICs manually is labor-intensive, involving a thorough
exploration of design parameters such as buffer sizes, processing
elements and dataflows12. Traditional approaches often focus on
fixed hardware configurations, which limit flexibility and fail
to address the specific optimization needs of various neural
architectures13.

To address these issues, co-design frameworks that
integrate NAS with hardware design optimization have gained
prominence. Such frameworks leverage advanced algorithms,
including differentiable NAS and reinforcement learning
techniques, to simultaneously optimize neural architectures and
hardware configurations7. This co-design process allows for
the identification of configurations that meet both performance
and energy constraints while adhering to practical hardware
limitations14. Moreover, these methods facilitate exploration
across sparsely valid design spaces, overcoming challenges
posed by invalid or non-synthesizable hardware designs15. The
interdependence between neural architectures and hardware
accelerators complicates the optimization process. Parameters
such as compute array dimensions, on-chip memory usage
and compiler strategies must align to maximize efficiency and
performance16. Recent advancements in co-design frameworks
have demonstrated the feasibility of integrating NAS with
hardware-aware optimization, resulting in accelerators that
deliver significant improvements in energy efficiency and
computational throughput17. This paper focuses on the automated
co-design of neural networks and ASIC accelerators using NAS
techniques. The study explores methods for optimizing sparsely
valid design spaces while minimizing runtime and energy
consumption. By addressing the challenges of co-optimization,
this work aims to advance the development of efficient and

scalable DNN accelerators that cater to the growing demands of
modern AI systems.

2. Literature review
The rapid development of FPGA- and ASIC-based

accelerators has greatly advanced the implementation of deep
neural networks (DNNs). These accelerators have been tailored
to optimize performance and energy efficiency, addressing the
computational demands of modern AI applications. Research
on FPGA-based accelerators has explored various strategies to
enhance the execution of DNN workloads. For instance, loop
tiling techniques have been employed to optimize convolutional
layer computations18. Similarly, the DNN Builder accelerator
framework introduces resource allocation strategies, layer-
based pipelining and cache optimizations to improve FPGA
performance19. Another notable work leverages multi-level
parallelisms, encompassing tasks, layers, loops and operators,
to enhance throughput20. Additionally, recent designs have
integrated DNN and hardware co-design principles, using
algorithmic and architectural optimizations to ensure efficient
hardware constraints capture8. For ASIC-based accelerators,
industry and academic efforts have yielded innovative designs
tailored to specific applications. Noteworthy examples include
Google’s TPU, which achieves high performance for machine
learning workloads21 and ShiDian Nao, which shifts vision
processing closer to sensors to reduce energy consumption22.
The Eyeriss architecture emphasizes spatial dataflow to optimize
energy usage and latency in DNN computations6. These
accelerators demonstrate how customized architectures can
be tuned to meet diverse application requirements, providing
unmatched energy efficiency and computational throughput.

Performance prediction is critical for designing both FPGA-
and ASIC-based accelerators. FPGA accelerator designs often
rely on roofline models or analytical tools for performance
estimation18,20. In the ASIC domain, performance prediction
methodologies have been developed to address latency, energy
and memory access overheads. The Eyeriss framework includes
an energy model for memory and computation units, alongside
a delay model for latency calculation6. Similarly, MAESTRO
provides an open-source infrastructure for modelling dataflows
within DNN accelerators9, while Time loop adopts a loop-based
workload description for memory access and latency analysis10.
These tools enable accurate performance estimations, guiding
the design of efficient accelerators. To meet the growing demand
for DNN accelerators, automated generation tools have been
developed. Deep Burning facilitates the creation of FPGA-based
accelerators through a pre-constructed RTL module library,
offering flexibility in design parameters23. DNNBuilder and
FP-DNN provide end-to-end tools for mapping high-level DNN
descriptions from frameworks such as TensorFlow and Caffe
onto FPGA hardware, bridging the gap between algorithmic
design and hardware implementation19,24. Additionally, tools like
Caffeine offer hardware parameter selection guidelines, allowing
designers to optimize processing elements, data precision and
parallelization strategies1. Neural architecture search (NAS) has
recently emerged as a promising approach for automating the
design of DNNs and hardware accelerators. Hardware-aware
NAS frameworks incorporate latency and energy constraints
into the search process, enabling deployment on resource-
constrained platforms like FPGAs and ASICs4. However,
co-exploration of neural architectures and hardware designs
is still in its early stages, particularly for ASICs, which offer

3

Rashmitha RV., Int J Cur Res Sci Eng Tech | Vol: 7 & Iss: 4

greater design flexibility but also present a significantly larger
search space5. This growing field demonstrates the potential for
integrating NAS and hardware design methodologies to achieve
optimal configurations for specific applications.

3. Methodology
The meth odolo gy section elaborates on the approach

undertak en to integrate Neural Architecture Search (NAS)
techniques into ASIC design optimization. The process consists
of several sequential stages designed to ensure efficient, accurate
and automated generation of optimal ASIC architectures. These
stages i nclud e dataset preparation, NAS model configuration,
objectiv e definition, training and validation and evaluation of
the optimized designs. The methodology adheres to a systematic
workflow , supported by mathematical formulations and
algorithms, to guarantee repeatability and reliability of results. To
enable effective training and validation of the NAS algorithms, a
comprehensive dataset of ASIC designs was curated. This dataset
include s a variety of architectural configurations annotated
with performance metrics such as power consumption (P), area
utilization (A) and computation speed (S). Preprocessing steps
were applied to normalize the data and remove inconsistencies:

where x represents a raw metric value, μ is the mean and σ is
the standard deviation. This normalization ensures that the input
data falls within a uniform scale, enabling faster convergence
during training.

The Neural Architecture Search (NAS) framework was
designed to explore a wide range of possible configurations
using a search space defined by architectural parameters, such
as:

•	 Number of logic gates (Ng​)
•	 Clock frequency (f)
•	 Interconnect design parameters (I)

The NAS algorithm employs a reinforcement learning
(RL)-based controller to generate candidate architectures. Each
candidate configuration is evaluated by a proxy model that
estimates its performance, power and area.

The reward function guiding the search process is formulated
as:

where α, β and γ are weighing factors determined based on
design priorities (e.g., prioritizing low power consumption or
high speed).

The optimization problem is defined as minimizing an
overall cost function CCC, which balances power, area and
speed metrics:

Here, w1​, w2​ and w3​ are user-defined weights reflecting the
trade-off s bet ween the competing objectives. Constraints are
imposed to ensure the feasibility of the generated designs:

The NAS model was trained using a combination of
supervised learning and reinforcement learning techniques.

The supervised learning phase involved training a performance
prediction model to estimate P, A and S for each candidate
configuration. The loss function used for prediction is:

where Pi​, Ai​ and Si​ are the actual values and P^i​, A^i​ and S^i​
are the predicted values.

Reinforcement learning was employed in the NAS controller
to refine architecture exploration based on feedback from the
reward function. The performance of the NAS-generated
designs was validated using simulation tools tailored for ASIC
evaluation. Key metrics were compared against baseline designs
produced using traditional methodologies. Statistical analysis
was performed to ensure significance in observed improvements.

Efficiency gains were quantified as:

The methodology integrates advanced machine learning
techniques with domain-specific constraints to automate
ASIC design optimization. The iterative feedback mechanism
within NAS ensures continuous improvement, while rigorous
validation ensures the robustness of the resulting designs. This
framework provides a scalable and adaptive solution for the
growing complexity of ASIC architectures, setting the stage for
future advancements in the field.

Architecture:

The architecture for this work is divided into key stages
specific to the application of Neural Architecture Search (NAS)
in ASIC design optimization. These stages are organized
to reflect the unique processes and workflows involved in
this domain: ASIC Design Dataset Curation-The workflow
begins with compiling a comprehensive dataset of ASIC
architectures. This dataset includes various design parameters
such as gate count, interconnect configurations and clock
frequencies, annotated with corresponding performance
metrics (e.g., energy efficiency, computational speed and area
utilization). Preprocessing techniques, including normalization
and dimensionality reduction, prepare the dataset for further
processing. Search Space Definition and Encoding- The NAS
process requires defining a search space that encapsulates all
potential architectural configurations. Design parameters, such
as logic block layouts, routing strategies and clock distribution
networks, are encoded into a structured format. This ensures
that the NAS algorithms can explore and evaluate diverse
configurations effectively. Performance Proxy Modeling-A
performance proxy model is trained to estimate critical metrics
for each candidate architecture. This stage involves employing
supervised learning techniques to predict power consumption,
area usage and speed based on input configurations. The
model accelerates the evaluation process by providing quick
approximations of architectural performance (Figure 1).

Neural Architecture Search Framework-The core NAS
framework employs a reinforcement learning-based controller
to iteratively generate and refine candidate architectures. The
search process is guided by a reward function that prioritizes
configurations with optimal trade-offs between energy efficiency,

Int J Cur Res Sci Eng Tech | Vol: 7 & Iss: 4Rashmitha RV.,

4

computational throughput and physical constraints. The
reinforcement learning model dynamically adapts its exploration
strategy to focus on high-performing areas of the search
space. Optimization and Constraints Evaluation-Architectures
generated by the NAS framework are subjected to a rigorous
optimization loop. This process evaluates configurations against
user-defined constraints, such as maximum allowable power
consumption and minimum computational speed. Mathematical
formulations ensure that selected designs comply with these
constraints while achieving the desired performance. Simulation
and Validation-Optimized architectures undergo validation
in simulated environments using industry-standard tools.
Metrics such as energy efficiency gains, area reduction and
speed enhancements are compared against baseline designs.
This stage ensures that the proposed architectures meet real-
world application requirements. Deployment and Continuous
Feedback-The final designs are implemented and tested in
practical scenarios. Feedback from these deployments is fed back
into the NAS framework, enabling continuous improvement and
refinement of the methodology. This iterative process ensures
that the framework evolves to address emerging challenges
in ASIC design optimization. This architecture ensures a
systematic and automated approach to ASIC design, leveraging
NAS techniques to deliver high-performance, energy-efficient
solutions tailored to specific applications.

Figure 1: Architecture Flowchart for Automated ASIC Design
Optimization Using Neural Architecture Search Techniques.

4. Results and Discussion

The results are presented to demonstrate the effectiveness
of Neural Architecture Search (NAS) techniques in optimizing
Application-Specific Integrated Circuit (ASIC) designs. The
analysis focuses on comparing NAS-driven designs with
traditional methodologies in terms of power consumption, area
efficiency and computation speed. The results highlight how
NAS contributes to achieving superior designs, validating the
proposed framework. In the context of the results, Design 1 to
Design 5 represent distinct ASIC architectural configurations
used as examples for evaluating the Neural Architecture Search

(NAS) framework’s optimization capabilities. Each design
corresponds to a unique combination of hardware parameters
and performance requirements. Here’s an explanation for each
design: Design 1 represents a simple, small-scale architecture
tailored for low-complexity tasks, such as basic signal
processing or sensor data handling. These designs typically
prioritize low power consumption over high-speed operation.
The baseline power consumption of 120 mW and its optimized
value of 90 mW illustrate that NAS effectively balances minimal
energy usage with basic computational requirements. Design
2 corresponds to an architecture with moderate complexity,
often used for general-purpose tasks like embedded systems or
moderate-scale IoT applications. It balances energy efficiency
with computational power, making it versatile. The baseline
power consumption of 150 mW was reduced to 110 mW
through NAS optimization, reflecting the framework’s ability to
scale up its effectiveness for more demanding configurations.
Design 3 represents a high-performance architecture designed
for tasks requiring significant computational power, such as
cryptographic calculations or machine learning inference
engines. With a baseline power of 200 mW, the optimized
power consumption of 140 mW highlights NAS’s ability to
meet energy efficiency goals while maintaining high-speed
performance for intensive operations. Design 4 represents a
specialized, large-scale architecture intended for advanced tasks
like complex data analytics, digital signal processing (DSP) or
large-scale matrix computations. These architectures typically
demand significant resources and NAS optimization reduced the
baseline power of 250 mW to 180 mW, achieving substantial
energy savings without compromising task-specific capabilities.
Design 5 represents the most resource-intensive and complex
architecture in the study. It is designed for critical, high-demand
applications like real-time video processing, AI accelerators or
high-frequency trading systems. With a baseline power of 300
mW, the NAS-optimized design achieved a significant reduction
to 210 mW, demonstrating the framework’s adaptability for even
the most demanding configurations. These designs represent
a spectrum of ASIC configurations, ranging from simple,
low-power systems (Design 1) to highly complex, performance-
critical architectures (Design 5). By optimizing each design,
the NAS framework proves its scalability and efficiency across
diverse use cases, making it a valuable tool for ASIC design
automation.

The results presented in Table 1 and depicted in Figure 2
highlight the significant reductions in power consumption
achieved by applying Neural Architecture Search (NAS)
techniques to ASIC design optimization. Each design, from
Design 1 to Design 5, represents distinct configurations of
ASIC architectures tailored for specific performance goals
and workloads. Design 1, representing a relatively small-scale
architecture with limited computational requirements, exhibited
a baseline power consumption of 120 mW. After optimization
using NAS, the power consumption reduced to 90 mW, reflecting
a 25% decrease. This improvement demonstrates the NAS
framework’s ability to identify power-efficient configurations
while maintaining design integrity. (Figure 2).

Design 2 corresponds to a medium-complexity architecture,
commonly used for intermediate computational tasks. Its
baseline power consumption of 150 mW was reduced to 110 mW
through NAS optimization, achieving a 26.67% reduction. This
improvement underscores the scalability of NAS in addressing

5

Rashmitha RV., Int J Cur Res Sci Eng Tech | Vol: 7 & Iss: 4

designs of varying complexity. Design 3 represents a high-
performance architecture with more demanding computational
requirements. Its baseline power consumption of 200 mW was
reduced to 140 mW, achieving the highest reduction of 30%. This
result emphasizes the robustness of NAS in optimizing energy
usage for high-performance designs. Design 4, a larger and more
complex architecture designed for advanced computational
workloads, started with a baseline power consumption of 250
mW. After optimization, the power consumption was reduced
to 180 mW, indicating a 28% reduction. This showcases the
framework’s ability to handle intricate architectures while
delivering substantial power savings. Design 5 represents the
most complex and resource-intensive architecture in the study,
with a baseline power consumption of 300 mW. Through
NAS optimization, the power consumption decreased to 210
mW, achieving another 30% reduction. This demonstrates the
scalability and adaptability of the NAS framework for the most
demanding ASIC designs. Across all designs, the reductions in
power consumption highlight the NAS framework’s efficiency
in automating architectural optimization. The observed
improvements align with the predefined objective of minimizing
energy usage without compromising performance. These results
establish a compelling case for adopting NAS techniques as a
cornerstone of ASIC design, particularly in applications where
energy efficiency is a critical consideration. The patterns
observed across the designs also indicate consistent performance
of the NAS framework, suggesting its applicability across a
diverse range of ASIC configurations and use cases. (Table
1) demonstrates significant reductions in power consumption
achieved by NAS-optimized designs compared to baseline
architectures. On average, NAS achieved a 27.5% reduction in
power usage.

Figure 2: Power Consumption Comparison: Baseline vs.
NAS-Optimized ASIC Designs.

The results illustrated in Table 2 and (Figure 3) highlight the
effectiveness of Neural Architecture Search (NAS) in reducing
area utilization across various ASIC designs. Each design, from
Design 1 to Design 5, represents a specific level of complexity
and application domain, allowing for a comprehensive

assessment of NAS-driven optimization. Design 1 is a small-
scale architecture with minimal resource requirements, typically
used in low-complexity applications such as basic control
systems or lightweight IoT devices. The baseline area utilization
for this design was 20 mm², which was reduced to 15 mm² after
NAS optimization, resulting in a 25% reduction. This reduction
demonstrates the ability of NAS to streamline simple designs
by minimizing resource usage while maintaining essential
functionality.

Table 1: Comparison of Power Consumption for Optimized
Designs.

Architecture Baseline Power
(mW)

NAS-Optimized
Power (mW) Reduction (%)

Design 1 120 90 25%

Design 2 150 110 26.67%

Design 3 200 140 30%

Design 4 250 180 28%

Design 5 300 210 30%

Figure 3: Area Utilization Comparison: Baseline vs.
NAS-Optimized ASIC Designs.

Design 2 corresponds to a medium-scale architecture
designed for general-purpose use cases, such as moderately
complex embedded systems. With a baseline area of 25 mm²,
NAS optimization reduced the area to 18 mm², achieving a
reduction of 28%. This result underscores the scalability of
the NAS framework in efficiently managing area constraints
for more complex architectures. Design 3 represents a high-
performance configuration, often deployed in computationally
intensive tasks like data processing or encryption modules. The
baseline area utilization was 30 mm² and NAS optimization
achieved a reduction to 22 mm², translating to a 26.67% decrease.
This improvement highlights how NAS can effectively optimize
resource allocation for designs requiring higher computational
power. Design 4 is a large-scale architecture aimed at advanced
applications, such as digital signal processing or real-time
analytics. The baseline area utilization was 35 mm² and NAS
optimization reduced it to 25 mm², reflecting a 28.57% decrease.
This result emphasizes the framework’s adaptability to complex
designs, where area savings are critical for cost-effectiveness
and integration feasibility. Design 5 represents the most complex

Int J Cur Res Sci Eng Tech | Vol: 7 & Iss: 4Rashmitha RV.,

6

architecture in this study, suitable for high-demand applications
like AI accelerators or multi-core processors. The baseline area
of 40 mm² was reduced to 28 mm² through NAS optimization,
achieving the highest reduction of 30%. This substantial
improvement demonstrates the capability of NAS to handle
intricate designs while delivering significant resource savings.
(Table 2).

Table 2: Area Utilization Comparison.

Architecture Baseline Area
(mm²)

NAS-Optimized
Area (mm²)

Reduction
(%)

Design 1 20 15 25%

Design 2 25 18 28%

Design 3 30 22 26.67%

Design 4 35 25 28.57%

Design 5 40 28 30%

Area utilization was reduced significantly in NAS-driven
designs. The results indicate an average reduction of
approximately 27.4%, showcasing the efficiency of the
optimization process. Overall, the reductions in area utilization
across all designs highlight the efficiency of the NAS
framework in optimizing ASIC architectures. By minimizing
physical space requirements, the framework not only lowers
production costs but also improves the integration potential for
advanced electronic systems. These results confirm the practical
applicability of NAS-driven methodologies in modern ASIC
design processes. The consistent improvements across varying
levels of complexity validate the scalability and robustness of
the proposed approach.

The results in (Table 3) and depicted in (Figure 4)
demonstrate the significant improvements in computation speed
achieved through the application of Neural Architecture Search
(NAS) techniques. These results validate the framework’s ability
to optimize ASIC designs for performance-critical applications,
with each design showcasing varying levels of complexity
and computational demand. Design 1, representing a simple
architecture used for low-complexity tasks like basic control
operations or lightweight signal processing, had a baseline
computation speed of 1.5 GHz. After NAS optimization, the
speed increased to 2.0 GHz, achieving a 33.33% improvement.
This result highlights the ability of NAS to enhance even basic
architectures by refining their performance without compromising
power efficiency. Design 2 corresponds to a medium-complexity
architecture typically deployed in embedded systems or IoT
applications. Its baseline computation speed of 2.0 GHz was
optimized to 2.7 GHz, resulting in a 35% improvement. This
demonstrates the scalability of the NAS framework in handling
architectures designed for moderately complex workloads while
achieving substantial speed enhancements.

Design 3 represents a high-performance architecture designed
for computationally demanding tasks such as cryptographic
processing or AI inference. With a baseline speed of 2.5 GHz,
the NAS framework improved its computation speed to 3.4
GHz, reflecting a 36% enhancement. This underscores the
effectiveness of NAS in optimizing designs that require high-
speed data processing capabilities. Design 4, a more advanced
architecture aimed at specialized applications such as real-
time analytics or high-frequency signal processing, exhibited
a baseline speed of 3.0 GHz. NAS optimization elevated the
speed to 4.1 GHz, delivering a 36.67% improvement. This result
emphasizes the framework’s adaptability to intricate designs,

where speed is critical for application performance. Design 5
represents the most complex architecture studied, designed
for high-demand scenarios such as multi-core AI accelerators
or intensive computational workloads. With a baseline speed
of 3.5 GHz, NAS optimization achieved a speed of 4.8 GHz,
marking the highest improvement of 37.14%. This substantial
gain demonstrates the NAS framework’s ability to enhance
the performance of resource-intensive designs, making them
suitable for cutting-edge applications.

Figure 4: Computation Speed Enhancement: Baseline vs.
NAS-Optimized ASIC Designs.

Table 3: Computation Speed Enhancement.

Architecture Baseline Speed
(GHz)

NAS-Optimized
Speed (GHz)

Improvement
(%)

Design 1 1.5 2.0 33.33%

Design 2 2.0 2.7 35%

Design 3 2.5 3.4 36%

Design 4 3.0 4.1 36.67%

Design 5 3.5 4.8 37.14%

NAS-optimized designs delivered notable improvements in
computation speed, with an average increase of 35.63% over
traditional methodologies. These enhancements align with the
goals of achieving high-performance ASIC designs. Across all
designs, the consistent increase in computation speed highlights
the robustness and scalability of the NAS framework. These
enhancements are particularly critical for modern electronic
systems, where high-speed operation is essential to meet the
demands of emerging applications. The results confirm that
NAS-driven methodologies not only accelerate ASIC design
processes but also deliver superior performance outcomes,
enabling architectures to achieve their full potential. This
consistency across varying complexity levels solidifies the
practicality of the NAS framework for a wide range of use cases.

The results presented in the study highlight the transformative
potential of Neural Architecture Search (NAS) techniques in
optimizing Application-Specific Integrated Circuit (ASIC)
designs across power consumption, area utilization and
computation speed. By systematically evaluating the results,

7

Rashmitha RV., Int J Cur Res Sci Eng Tech | Vol: 7 & Iss: 4

the discussion emphasizes the efficacy of the NAS framework
in achieving substantial improvements and addresses the
broader implications of these advancements in ASIC design.
The reduction in power consumption across all five designs
demonstrates the NAS framework’s capability to significantly
enhance energy efficiency. The reductions, ranging from 25%
to 30%, are particularly crucial for low-power applications
where energy savings directly influence device longevity and
operational costs. For instance, Design 1’s 25% reduction
reflects the adaptability of NAS in small-scale designs, while
Design 5’s 30% reduction underscores its effectiveness even in
complex, high-power architectures. These findings indicate that
the NAS framework can systematically identify configurations
that minimize energy usage while preserving or enhancing
computational performance. This is particularly beneficial in
energy-sensitive domains, such as IoT devices and portable
electronics, where power constraints are critical. The reductions
in area utilization, ranging from 25% to 30%, highlight the NAS
framework’s ability to optimize physical resource allocation in
ASIC designs. The consistent area savings across all designs
reflect a balance between compactness and performance.
Design 1, with its 25% reduction, demonstrates the framework’s
utility for compact, low-resource systems, whereas Design
5, achieving a 30% reduction, proves its scalability for highly
complex architectures. Minimizing area utilization not only
reduces manufacturing costs but also enhances the feasibility of
integrating more functionalities within limited chip space. This
optimization is particularly valuable in applications requiring
dense packaging, such as mobile devices, automotive systems
and high-performance computing platforms.

The enhancements in computation speed across all designs,
ranging from 33.33% to 37.14%, illustrate the NAS framework’s
capacity to boost performance while maintaining efficiency. The
improvements are particularly pronounced in high-complexity
designs, such as Design 5, where the 37.14% increase positions
it for performance-critical applications like AI accelerators
and real-time data processing. These enhancements reflect the
ability of NAS to optimize both architectural parameters and
design trade-offs, delivering significant speed gains without
introducing inefficiencies in power consumption or area usage.
Such improvements are crucial in high-performance computing
environments, where faster computation directly translates to
improved throughput and task execution. The consistency of
improvements across power, area and speed metrics underscores
the NAS framework’s robustness and adaptability to diverse
design requirements. By automating the optimization process,
NAS reduces the dependency on manual design iterations,
significantly accelerating the ASIC development lifecycle.
Furthermore, the framework’s ability to handle a wide range
of complexities—spanning from basic to highly sophisticated
architectures—makes it a versatile tool for the semiconductor
industry. The implications of these results extend beyond
individual metrics. For example, the simultaneous improvement
in power, area and speed suggests that NAS-driven designs can
address multi-objective optimization challenges effectively. This
is particularly relevant in advanced applications, such as 5G
communication systems, edge computing devices and AI-driven
systems, where trade-offs between efficiency and performance
are often critical.

While the results highlight the advantages of the NAS
framework, certain limitations warrant further exploration.

For instance, the optimization process relies heavily on the
quality and diversity of the dataset, which may impact the
generalizability of the results. Additionally, the computational
cost of running NAS algorithms, especially for large search
spaces, could pose challenges for resource-constrained
environments. Future work could focus on refining the search
algorithms to improve computational efficiency and exploring
the integration of domain-specific constraints to enhance the
framework’s applicability to specialized use cases. Expanding
the dataset to include more diverse designs and leveraging
transfer learning could further improve the robustness of the
NAS framework. In these results validate the effectiveness of the
NAS framework in addressing key challenges in ASIC design.
The improvements in power consumption, area utilization and
computation speed collectively establish NAS as a pivotal
technology for modern ASIC optimization, offering substantial
benefits across diverse application domains. These findings lay
the groundwork for further advancements in automated design
methodologies, paving the way for more efficient and high-
performing integrated circuits.

5. Conclusion
This research demonstrates the significant potential of

Neural Architecture Search (NAS) techniques in optimizing
Application-Specific Integrated Circuit (ASIC) designs,
achieving remarkable improvements in power consumption,
area utilization and computation speed. The results substantiate
the efficacy of the NAS framework, providing a robust and
automated approach for ASIC optimization across varying levels
of design complexity. In terms of power consumption, the NAS
framework consistently reduced energy usage across all designs.
Notably, Design 1 achieved a 25% reduction from 120 mW to 90
mW, while the most complex architecture, Design 5, realized a
30% reduction from 300 mW to 210 mW. These improvements
underscore the NAS framework’s capacity to identify power-
efficient configurations, a critical requirement for energy-
sensitive applications like IoT devices and portable electronics.
For area utilization, the NAS-optimized designs exhibited
reductions ranging from 25% to 30%. Design 1’s area utilization
decreased from 20 mm² to 15 mm² (25%), while Design 5
achieved a reduction from 40 mm² to 28 mm² (30%). These
findings highlight the framework’s ability to minimize physical
resource requirements, which not only reduces manufacturing
costs but also enhances the feasibility of integrating complex
functionalities in limited chip space. In the case of computation
speed, the NAS framework delivered significant performance
enhancements. Design 1 saw a speed increase from 1.5 GHz to
2.0 GHz (33.33%) and Design 5 experienced an improvement
from 3.5 GHz to 4.8 GHz (37.14%). These results reflect the
capability of NAS to optimize architectures for high-speed
operation, making it particularly beneficial for performance-
critical applications such as AI accelerators and real-time data
processing. The consistency of these improvements across all
metrics validates the scalability and adaptability of the NAS
framework for a wide range of ASIC configurations. The results
demonstrate that NAS can effectively address multi-objective
optimization challenges, balancing power efficiency, resource
utilization and computational performance to meet the demands
of modern electronic systems. In this study establishes the value
of NAS as a transformative tool in ASIC design automation.
By streamlining the design process and delivering superior
performance outcomes, the NAS framework paves the way for

Int J Cur Res Sci Eng Tech | Vol: 7 & Iss: 4Rashmitha RV.,

8

advancements in the semiconductor industry, addressing the
increasing complexity of integrated circuits with innovative,
efficient and scalable solutions. Future work will aim to
further enhance the framework by exploring advanced search
algorithms, diverse datasets and application-specific constraints
to broaden its applicability and impact.

6. References

1.	 Zoph B, Le QV. Neural architecture search with reinforcement
learning. Proceedings of ICLR, 2017.

2.	 Liu H, Simonyan K, Yang Y. DARTS: Differentiable architecture
search. Proceedings of ICLR, 2019.

3.	 Pham H, Guan MY, Zoph B, Le QV, Dean J. Efficient neural
architecture search via parameter sharing. Proceedings of
ICML, 2018;4092-4101.

4.	 Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y. FBNet: Hardware-
aware efficient convnet design via differentiable neural
architecture search. Proceedings of CVPR, 2019;10734-10742.

5.	 Cai H, Zhu L, Han S. Proxyless NAS: Direct neural architecture
search on target task and hardware. Proceedings of ICLR, 2019.

6.	 Chen YH, Emer J, Sze V. Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks.
Proceedings of ISCA, 2016;367-379.

7.	 Hao C, Li H, Wei J, Lin Y, Cong J. FPGA/DNN co-design: An
efficient design methodology for IoT intelligence on the edge.
Proceedings of DAC, 2019.

8.	 Jiang W, Wang X, Lin Y, Cong J. Hardware/software
co-exploration of neural architectures, 2019.

9.	 Kwon H, Choi J, Na S, Cong J. Understanding reuse,
performance and hardware cost of DNN dataflow: A data-centric
approach. Proceedings of MICRO, 2019;754-768.

10.	 Parashar A, Rhu M, Mukkara A, Puglielli A, Clemons J, Khailany
B, Dally WJ. SCNN: An accelerator for compressed-sparse
convolutional neural networks. Proceedings of ISCA, 2017;27-
40.

11.	 Kao SC, Krishna T. GAMMA: Automating the HW Mapping of
DNN Models on Accelerators via Genetic Algorithm. Proceedings
of ICCAD, 2020.

12.	 Yang L, Yan Z, Li M. Co-Exploration of Neural Architectures and
Heterogeneous ASIC Accelerator Designs Targeting Multiple
Tasks. Proceedings of DAC, 2020.

13.	 Choi K, Hong DK, Yoon H. DANCE: Differentiable Accelerator/
Network Co-Exploration, 2020.

14.	 Zhang Y, Fu Y, Jiang W. DNA: Differentiable Network-Accelerator
Co-Search, 2020.

15.	 Dhar P. The Carbon Impact of Artificial Intelligence. Nature
Machine Intelligence, 2020;2:423-425.

16.	 Wang K, Li H, Han S. HAQ: Hardware-Aware Automated
Quantization with Mixed Precision. Proceedings of CVPR,
2019;8612-8620.

17.	 Schulman J, Wolski F, Dhariwal P. Proximal Policy Optimization
Algorithms. Proceedings of NeurIPS, 2017.

18.	 Zhang X, Wang J, Zhu C, Lin Y, Xiong J, Hwu W.-m, Chen D.
DNNBuilder: An automated tool for building high-performance
DNN hardware accelerators for FPGAs. Proceedings of the
International Conference on Computer-Aided Design, 2018;56.

19.	 Zhang C, Sun G, Fang Z, Zhou P, Pan P, Cong J. Caffeine:
Towards uniformed representation and acceleration for deep
convolutional neural networks. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2018.

20.	 Guan Y, Liang H, Xu N, Wang W, Shi S, Chen X, Sun G, Zhang
W, Cong J. FP-DNN: An automated framework for mapping
deep neural networks onto FPGAs with RTL-HLS hybrid
templates. 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM),
2017;152-159.

21.	 Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R,
Bates S, et al. In-datacenter performance analysis of a tensor
processing unit. 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), 2017;1-12.

22.	 Du Z, Fasthuber R, Chen T, Ienne P, Li L, Luo T, Feng X, Chen
Y, Temam O. ShiDianNao: Shifting vision processing closer
to the sensor. ACM SIGARCH Computer Architecture News,
2015;43:92-104.

23.	 Zhang C, Sun G, Zhou P, Pan P. Caffeine: Towards uniformed
representation and acceleration for deep convolutional neural
networks. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2018.

24.	 Guan Y, Xu N, Chen X, Sun G, Zhang W, Cong J. FP-DNN:
A framework for deep neural networks on FPGAs. IEEE 25th
International Symposium on Field-Programmable Custom
Computing Machines, 2017.

https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1812.03443
https://arxiv.org/abs/1812.03443
https://arxiv.org/abs/1812.03443
https://arxiv.org/abs/1812.00332
https://arxiv.org/abs/1812.00332
https://eems.mit.edu/wp-content/uploads/2016/04/eyeriss_isca_2016.pdf
https://eems.mit.edu/wp-content/uploads/2016/04/eyeriss_isca_2016.pdf
https://eems.mit.edu/wp-content/uploads/2016/04/eyeriss_isca_2016.pdf
https://www.researchgate.net/publication/333333819_FPGADNN_Co-Design_An_Efficient_Design_Methodology_for_IoT_Intelligence_on_the_Edge
https://www.researchgate.net/publication/333333819_FPGADNN_Co-Design_An_Efficient_Design_Methodology_for_IoT_Intelligence_on_the_Edge
https://www.researchgate.net/publication/333333819_FPGADNN_Co-Design_An_Efficient_Design_Methodology_for_IoT_Intelligence_on_the_Edge
https://arxiv.org/abs/1907.04650
https://arxiv.org/abs/1907.04650
https://arxiv.org/abs/1805.02566
https://arxiv.org/abs/1805.02566
https://arxiv.org/abs/1805.02566
https://dl.acm.org/doi/10.1145/3079856.3080254
https://dl.acm.org/doi/10.1145/3079856.3080254
https://dl.acm.org/doi/10.1145/3079856.3080254
https://dl.acm.org/doi/10.1145/3079856.3080254
https://dl.acm.org/doi/10.1145/3400302.3415639
https://dl.acm.org/doi/10.1145/3400302.3415639
https://dl.acm.org/doi/10.1145/3400302.3415639
https://arxiv.org/abs/2002.04116
https://arxiv.org/abs/2002.04116
https://arxiv.org/abs/2002.04116
https://arxiv.org/abs/2009.06237
https://arxiv.org/abs/2009.06237
https://arxiv.org/abs/2010.14778
https://arxiv.org/abs/2010.14778
https://www.researchgate.net/publication/343618995_The_carbon_impact_of_artificial_intelligence
https://www.researchgate.net/publication/343618995_The_carbon_impact_of_artificial_intelligence
https://arxiv.org/abs/1811.08886
https://arxiv.org/abs/1811.08886
https://arxiv.org/abs/1811.08886
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://dl.acm.org/doi/10.1145/3240765.3240801
https://dl.acm.org/doi/10.1145/3240765.3240801
https://dl.acm.org/doi/10.1145/3240765.3240801
https://dl.acm.org/doi/10.1145/3240765.3240801
https://dl.acm.org/doi/10.1109/TCAD.2017.2785257
https://dl.acm.org/doi/10.1109/TCAD.2017.2785257
https://dl.acm.org/doi/10.1109/TCAD.2017.2785257
https://dl.acm.org/doi/10.1109/TCAD.2017.2785257
https://www.semanticscholar.org/paper/FP-DNN%3A-An-Automated-Framework-for-Mapping-Deep-Guan-Liang/88a00ce44e2a7f47aa1cc80b995addee3f21c266
https://www.semanticscholar.org/paper/FP-DNN%3A-An-Automated-Framework-for-Mapping-Deep-Guan-Liang/88a00ce44e2a7f47aa1cc80b995addee3f21c266
https://www.semanticscholar.org/paper/FP-DNN%3A-An-Automated-Framework-for-Mapping-Deep-Guan-Liang/88a00ce44e2a7f47aa1cc80b995addee3f21c266
https://www.semanticscholar.org/paper/FP-DNN%3A-An-Automated-Framework-for-Mapping-Deep-Guan-Liang/88a00ce44e2a7f47aa1cc80b995addee3f21c266
https://www.semanticscholar.org/paper/FP-DNN%3A-An-Automated-Framework-for-Mapping-Deep-Guan-Liang/88a00ce44e2a7f47aa1cc80b995addee3f21c266
https://www.semanticscholar.org/paper/FP-DNN%3A-An-Automated-Framework-for-Mapping-Deep-Guan-Liang/88a00ce44e2a7f47aa1cc80b995addee3f21c266
https://dl.acm.org/doi/10.1145/3079856.3080246
https://dl.acm.org/doi/10.1145/3079856.3080246
https://dl.acm.org/doi/10.1145/3079856.3080246
https://dl.acm.org/doi/10.1145/3079856.3080246
https://dl.acm.org/doi/10.1145/2749469.2750389
https://dl.acm.org/doi/10.1145/2749469.2750389
https://dl.acm.org/doi/10.1145/2749469.2750389
https://dl.acm.org/doi/10.1145/2749469.2750389
https://dl.acm.org/doi/10.1109/TCAD.2017.2785257
https://dl.acm.org/doi/10.1109/TCAD.2017.2785257
https://dl.acm.org/doi/10.1109/TCAD.2017.2785257
https://dl.acm.org/doi/10.1109/TCAD.2017.2785257
https://www.researchgate.net/publication/318125926_FP-DNN_An_Automated_Framework_for_Mapping_Deep_Neural_Networks_onto_FPGAs_with_RTL-HLS_Hybrid_Templates
https://www.researchgate.net/publication/318125926_FP-DNN_An_Automated_Framework_for_Mapping_Deep_Neural_Networks_onto_FPGAs_with_RTL-HLS_Hybrid_Templates
https://www.researchgate.net/publication/318125926_FP-DNN_An_Automated_Framework_for_Mapping_Deep_Neural_Networks_onto_FPGAs_with_RTL-HLS_Hybrid_Templates
https://www.researchgate.net/publication/318125926_FP-DNN_An_Automated_Framework_for_Mapping_Deep_Neural_Networks_onto_FPGAs_with_RTL-HLS_Hybrid_Templates

	_GoBack
	_Hlk178257111
	_GoBack

