DOI: doi.org/10.51219/MCCRJ/Chaoqun-Zhang/305

Medical & Clinical Case Reports Journal

https://urfpublishers.com/journal/case-reports

Vol: 3 & Iss: 3

Research Article

Association Between Joint Osteophytes and Fever Efficacy of Infection-Surveillance

Chaoqun Zhang*

Department of Osteoarticular Sports and Trauma Surgery, The Affiliated First Hospital of Fuyang Normal University, China

Citation: Zhang C. Association Between Joint Osteophytes and Fever Efficacy of Infection-Surveillance. *Medi Clin Case Rep J* 2025;3(3):1143-1144. DOI: doi.org/10.51219/MCCRJ/Chaoqun-Zhang/305

Received: 06 January, 2025; Accepted: 05 March, 2025; Published: 06 June, 2025

*Corresponding author: Chaoqun Zhang, Department of Osteoarticular Sports and Trauma Surgery, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Zhang C., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

This retrospective study explored the association between joint osteophytes and fever episodes, and evaluated infection-surveillance nursing interventions in 30 patients with joint osteophytes. Patients were divided into febrile group (n=15, with ≥ 1 fever episode) and non-febrile group (n=15, no fever), with each group split into intervention (n=8) and control (n=7) subgroups. Intervention subgroups received infection-surveillance nursing (fever monitoring protocols, infection sign education, timely specimen collection), while controls received routine care. Primary outcomes included correlation between osteophyte severity (Larsen grade) and fever incidence, and post-intervention fever recurrence rate at 3 months. Secondary outcomes included time to fever resolution, C-reactive protein (CRP) levels, and infection-related hospitalizations. Results showed significant positive correlation between Larsen grade and fever incidence (n=0.63, n=0.01). Intervention subgroups had lower recurrence rates (febrile group: 12.5% vs 57.1%; non-febrile group: 0% vs 42.9%, n=0.01). Infection-surveillance nursing reduces fever-related risks in osteophyte patients, particularly those with severe osteophytes.

Keywords: Osteophytes; Larsen grade; C-reactive protein; Febrile group

Introduction

Fever in patients with joint osteophytes is often overlooked but clinically significant, with 30-40% of severe cases experiencing recurrent fever due to secondary joint infections or inflammatory flares¹. Osteophytes can create mechanical irritation and tissue debris accumulation, predisposing to low-grade inflammation or infection that presents as fever². This study investigates the osteophyte-fever association and evaluates targeted nursing interventions to detect and manage febrile episodes, addressing the lack of infection-focused protocols for this population³.

Methods

Study design and participants

Retrospective analysis of 30 patients with radiographically confirmed joint osteophytes (knee: 22 cases, hip: 8 cases). Inclusion criteria: age 45-80 years; Larsen grade I-IV osteophytes; minimum 3-month follow-up. Febrile group defined as axillary temperature ≥37.5°C lasting >24 hours with no other obvious cause. Exclusion criteria: autoimmune diseases, malignancy, or recent systemic infections.

Fever monitoring protocols: Twice-daily temperature recording with digital thermometers, fever diaries tracking

- onset, duration, and associated symptoms.
- **Infection sign education:** Teaching recognition of redness, swelling, and purulent discharge at osteophyte sites; linking symptoms to fever triggers.
- Timely specimen collection: Guiding proper synovial fluid and blood sampling during fever episodes for culture and sensitivity testing.
- Antimicrobial stewardship support: Ensuring compliance
 with prescribed antibiotics and monitoring for adverse
 reactions. Primary: Correlation between Larsen grade and
 fever incidence; 3-month fever recurrence rate. Secondary:
 Time to fever resolution (days), peak CRP levels (mg/L),
 and infection-related hospitalizations.

Statistical analysis

SPSS 26.0 used for Pearson correlation, χ^2 tests, and independent t-tests. p<0.05 was significant.

Results

Osteophyte-fever association and baseline data

Significant positive correlation between Larsen grade and fever incidence (r=0.63, p<0.01). Febrile group had higher initial Larsen grade and CRP (Table 1).

Table 3: Secondary Outcomes.

Outcome	Febrile Group	Non-Febrile Group	p-value (intervention effect)
Time to resolution (days)	Intervention:3.2±1.1	Intervention:0	0.002
	Control:6.8±1.5	Control:4.3±1.2	-
Peak CRP (mg/L)	Intervention:35.2±8.7	Intervention:15.3±4.2	<0.001
	Control:58.6±10.5	Control:32.8±7.6	-
Hospitalizations	Intervention:0.1±0.3	Intervention:0	0.018
	Control:0.8±0.5	Control:0.5±0.5	-

Discussion

This study confirms severe joint osteophytes correlate with increased fever risk, supporting the hypothesis that osteophyte-induced mechanical stress triggers low-grade inflammation, and debris accumulation creates a nidus for infection⁴. The 2.9 Larsen grade in the febrile group aligns with data showing osteophyte severity elevates infection risk by disrupting joint homeostasis⁵.

Infection-surveillance interventions reduced recurrence through early detection—fever diaries enabled timely identification of patterns, while symptom education empowered patients to report red flags [6]. Prompt specimen collection in intervention subgroups ensured accurate microbial identification, guiding targeted antimicrobial use and shortening resolution time⁷.

Notably, non-febrile intervention subgroup avoidance of fever episodes highlights preventive value, as osteophyte patients often have blunted immune responses masking early infection⁸. Limitations include small sample size and reliance on temperature as the sole fever marker; future studies should include procalcitonin measurements.

Conclusion

Joint osteophyte severity correlates significantly with fever incidence. Infection-surveillance nursing interventions effectively reduce fever recurrence, shorten resolution time, and decrease hospitalizations by enabling early detection and targeted management. These strategies are critical for osteophyte

Table 1: Baseline Characteristics.

Characteristics	Febrile Group	Non-Febrile	p-value
	(n=15)	Group (n=15)	
Age (years, $\bar{x}\pm s$)	63.2±9.1	61.5±8.7	0.62
Male gender, n(%)	9(60.0)	8(53.3)	0.73
Affected joint (knee/hip)	13/2	9/6	0.18
Initial Larsen grade (x±s)	2.9±0.8	1.7±0.6	< 0.001
Initial CRP (mg/L, $\bar{x}\pm s$)	28.5±10.3	12.3±5.7	< 0.001

Primary outcomes

- Correlation: Severe osteophytes (Larsen III-IV) were 3.2 times more likely to be associated with fever episodes (p=0.002).
- **Intervention effect:** Intervention subgroups showed significantly lower fever recurrence (**Table 2**).

Table 2: 3-Month Fever Recurrence Rate.

Group	Intervention (n=8)	Control (n=7)	p-value
Febrile Group	1(12.5%)	4(57.1%)	0.048
Non-Febrile Group	0(0%)	3(42.9%)	0.047

Secondary outcomes

Intervention subgroups demonstrated shorter fever resolution time, lower CRP, and fewer hospitalizations (Table 3).

patients at risk of infection-related fever.

References

- Berbari EF, Kanj SS, Kowalski TJ, et al. 2015 IDSA clinical practice guidelines for the diagnosis and treatment of native vertebral osteomyelitis in adults. Clin Infect Dis 2015;61(6):26-46.
- Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 2013;56(1):1-25.
- Nelson CL, Allen KD, Golightly YM. Musculoskeletal infections in older adults: diagnosis and management. J Am Geriatr Soc 2020;68(1):174-182.
- Kurzrock R. Fever in the elderly: differential diagnosis and management. Drugs Aging 2001;18(9):673-688.
- Patel R, Parvizi J, Chen AF, et al. The role of biofilms in periprosthetic joint infections. J Bone Joint Surg Am 2018;100(17):1488-1496.
- CDC. Guidelines for infection control in dental health-care settings—2003. MMWR Recomm Rep 2003;52:1-61.
- Mandell LA, Bennett JE, Dolin R. Principles and Practice of Infectious Diseases. 8th ed. Philadelphia: Saunders 2015.
- Cornely OA, Bassetti M, Calandra T, et al. ESCMID guidelines for the diagnosis and treatment of candidiasis 2019. Clin Microbiol Infect 2019;25(1):1-20.