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 A B S T R A C T 
This white paper examines the utilization of machine learning methods to analyze the financial risks linked to climate scenario 
planning in the power generation industry. Given climate change's substantial physical and transition risks, power generation 
companies must carefully manage the financial consequences of shifting towards cleaner energy sources. We introduce a 
comprehensive framework that integrates bottom-up and top-down methodologies to predict the financial implications of 
different climate scenarios. The paper focuses on creating, adjusting, and verifying machine learning models for forecasting 
creditworthiness and financial stability. Our research findings emphasize the significance of advanced analytics in improving risk 
management and strategic decision-making in response to climate change1,2.
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1. Introduction
The power generation industry is crucial in facilitating the 

worldwide shift towards a low-carbon economy. Power generation 
companies face substantial challenges and opportunities due to 
the ambitious targets established by countries and organizations 
to decrease greenhouse gas emissions. To adjust to the evolving 
energy environment, conducting a thorough analysis of climate 
scenarios is essential to evaluate the possible effects on financial 
performance and stability. Nevertheless, climate scenarios’ 
inherent intricacy and unpredictability necessitate using 
sophisticated analytical methods to measure and control financial 
risks accurately. With its ability to handle vast amounts of data 
and discover intricate patterns, machine learning presents a study 
to improve the level of detail in climate scenario analysis within 
the power generation industry. This white paper explores using 
machine learning methods to assess the financial consequences 
of different climate scenarios. The primary emphasis is on the 
financial implications of shifting towards greener energy sources 

and the potential credit risk linked to power generation firms. 
The paper seeks to utilize machine learning to gain a more 
profound understanding of financial risk management and 
strategic decision-making in response to climate change3-8.

2. Overview of Climate Scenarios and Their Impact on 
Power Generation
2.1. Description of commonly used climate scenarios

The Network for Greening the Financial System (NGFS) has 
developed a set of standardized climate scenarios that provide 
a common reference point for analyzing the potential impacts 
of climate change on the financial system. These scenarios 
consider different pathways for greenhouse gas emissions, 
climate policies, and technological advancements. The three 
main NGFS scenarios are9:

1.	 Orderly Transition Scenario: This scenario assumes early 
and decisive action to reduce emissions, leading to a more 
gradual and predictable transition.
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2.	 Disorderly Transition Scenario: Assumes delayed action 
followed by abrupt and disruptive changes in climate 
policies and technologies.

3.	 Hot House World Scenario: This scenario assumes limited 
action to reduce emissions, resulting in severe physical risks 
and impacts.

2.2. Transition risks and opportunities for power generation 
companies

Power generation companies face various transition risks 
and opportunities under different climate scenarios. Some of the 
critical factors include10:

1.	 Carbon pricing: Higher carbon prices under ambitious 
climate scenarios can increase the operating costs of fossil 
fuel-based power plants.

2.	 Renewable energy adoption: Rapid growth in renewable 
energy capacity can disrupt the market share of traditional 
power generation companies.

3.	 Stranded assets: Under stringent climate policies, coal-
fired power plants may become stranded assets, leading to 
write-downs and impairments.

2.3. Physical risks and their potential impact on power 
generation infrastructure

Physical risks, such as extreme weather events and rising 
sea levels, can threaten power generation infrastructure 
significantly11-13. For example:

1.	 Coastal power plants may be vulnerable to flooding and 
storm surges, which can lead to increased maintenance 
costs and reduced operational efficiency.

2.	 Droughts can impact the availability of cooling water for 
thermal power plants, resulting in reduced capacity or 
temporary shutdowns.

3.	 Severe weather events can damage Transmission and 
distribution networks, causing power outages and requiring 
costly repairs.

Geospatial analysis and risk modeling techniques can be 
employed to evaluate the potential consequences of physical 
risks on power generation infrastructure. For example, we can 
superimpose the positions of power plants onto maps that show 
the likelihood of flooding or water scarcity to pinpoint at-risk 
assets.

3. Machine Learning Methodology for Financial Risk 
Assessment
3.1. Data sources and preprocessing techniques

To build a machine learning model for financial risk 
assessment, we need to gather and preprocess relevant data from 
various sources, such as14:

a.	 Company financial statements and reports.
b.	 Climate scenario data (e.g., carbon prices, renewable energy 

adoption rates)
c.	 Power plant characteristics (e.g., capacity, efficiency, fuel 

type)
d.	 Market data (e.g., electricity prices, demand projections)

3.2. Data preprocessing techniques include

a.	 Cleaning and handling missing data
b.	 Normalization or standardization of numerical features
c.	 Encoding categorical variables (e.g., one-hot encoding)
d.	 Merging and aggregating data from different sources15

1.	 Feature engineering and selection: Feature engineering 
generates new input features using existing data to enhance 
the model’s predictive capability. Examples of engineered 
features for financial risk assessment in the power generation 
sector include:

a.	 Carbon intensity (tons of CO2 per MWh) of a company’s 
power generation portfolio

b.	 Proportion of revenue from renewable energy sources
c.	 Debt-to-equity ratio and other financial ratios
d.	 Exposure to high-risk regions or assets (e.g., coastal power 

plants) 

2.	 Model architecture and training process:

a.	 For financial risk assessment, we can use various machine 
learning algorithms, such as:

b.	 Logistic regression for binary classification (e.g., default vs. 
non-default)

c.	 Decision trees and random forests for risk segmentation
d.	 Gradient boosting machines (GBM) for high-performance 

predictions
e.	 Neural networks for capturing complex, non-linear 

relationships

3.	 The model training process involves:

a.	 Splitting the data into training and testing sets
b.	 Fitting the model on the training data
c.	 Tuning hyperparameters using techniques like grid or 

random search
d.	 Evaluating the model’s performance on the testing data

4. 	 Model validation and performance metrics:

a.	 To validate the machine learning model and assess its 
performance, we can use various metrics, such as:

b.	 Accuracy: Proportion of correct predictions
c.	 Precision: Proportion of accurate positive predictions 

among all optimistic predictions
d.	 Recall: Proportion of accurate optimistic predictions among 

all actual positive instances
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e.	 F1-score: Harmonic mean of precision and recall
f.	 Area Under the Receiver Operating Characteristic curve 

(AUC-ROC): Measures the model’s ability to discriminate 
between classes

4. Case Study: Applying Machine Learning to Assess 
Financial Risks in Power Generation
4.1. Company selection and data collection

For this case study, we will focus on a hypothetical power 
generation company called “GreenPower Inc.” which operates a 
mix of coal, gas, and renewable energy power plants. To assess 
the financial risks faced by GreenPower Inc. under different 
climate scenarios, we need to collect the following data:

1.	 Historical financial statements (e.g., income statements, 
balance sheets, cash flow statements)

2.	 Power plant portfolio data (e.g., capacity, efficiency, fuel 
type, age)

3.	 Climate scenario data (e.g., carbon prices, renewable energy 
adoption rates)

4.	 Market data (e.g., electricity prices, demand projections)

4.2. Scenario-based financial projections

To create scenario-based financial projections for 
GreenPower Inc., we can use expert judgment and machine 
learning techniques. The process involves the following steps:

1.	 Define the climate scenarios (e.g., orderly transition, 
disorderly transition, hothouse world) and their key 
parameters (e.g., carbon prices, renewable energy adoption 
rates).

2.	 Develop a financial model incorporating the climate scenario 
parameters and the company’s power plant portfolio data to 
project future revenues, costs, and cash flows.

3.	 Train a machine learning model (e.g., gradient boosting 
machines) on historical financial data and climate scenario 
parameters to predict vital financial metrics (e.g., EBITDA, 
net income) under different scenarios.

4.	 Use the trained model to generate financial projections for 
GreenPower Inc. under each climate scenario.

4.3. Assessing credit risk and probability of default using 
machine learning

To evaluate the credit risk and probability of default for 
GreenPower Inc. under different climate scenarios, we can use a 
machine learning model trained on historical data and scenario-
based financial projections. The process involves the following 
steps:

1.	 Prepare a dataset containing historical financial ratios (e.g., 
debt-to-equity, interest coverage), credit ratings, and default 
events for a large sample of power generation companies.

2.	 Train a binary classification model (e.g., logistic regression, 
random forest) on the prepared dataset to predict the 
probability of default based on financial ratios and other 
relevant features.

3.	 Apply the trained model to GreenPower Inc.’s scenario-
based financial projections to estimate the probability of 
default under each climate scenario.

Here’s some sample pseudocode for training a logistic 
regression model to predict the probability of default:

4.4. Sensitivity analysis of key variables

We can perform a sensitivity analysis to assess GreenPower 
Inc.’s financial performance and credit risk sensitivity to critical 
variables, such as carbon prices and renewable energy adoption 
rates. This involves varying the input parameters of the climate 
scenarios and observing the impact on the company’s financial 
projections and probability of default.

We can create a tornado chart to visualize the sensitivity 
of GreenPower Inc.’s net income to changes in carbon prices 
and renewable energy adoption rates under a specific climate 
scenario.

5. Future Work and Prospects
Integrating machine learning into climate scenario analysis 

for the power generation sector presents numerous future research 
and development prospects. Expanding the methodology to 
encompass additional energy-intensive industries, including 
transportation, manufacturing, and real estate, is an encouraging 
possibility. By integrating sector-specific data and risk factors 
into machine learning models, we can offer a more thorough 
evaluation of the financial consequences of climate change 
throughout the economy.

One possible direction for future research is to incorporate 
more sophisticated machine learning methods, such as deep 
learning and reinforcement learning, to model intricate and 
non-linear connections between climate scenarios and financial 
performance. These techniques have the potential to facilitate 
more precise and flexible risk assessments that can adjust to 
evolving market conditions and policy environments.
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Figure 1: Sample Tornado chart.

Moreover, there is a potential to enhance the development 
of more advanced scenario-generation techniques that integrate 
machine learning to generate a broader spectrum of credible 
future trajectories. Using generative models trained on historical 
climate and economic data makes it possible to create synthetic 
scenarios that accurately depict the interconnections and 
reciprocal influences among various risk factors. This approach 
offers a more authentic and all-encompassing perspective on the 
potential consequences of climate change.

5.1. Potential Extended Use Cases

1. Climate risk disclosure and reporting: Machine learning-
based climate scenario analysis could support the development 
of standardized climate risk disclosure frameworks, such as the 
Task Force on Climate-related Financial Disclosures (TCFD). 
By providing a consistent and transparent methodology for 
assessing the financial impacts of climate change, machine 
learning could help improve the comparability and reliability of 
climate risk disclosures across companies and industries.
2. Sustainable investment and portfolio management: Asset 
managers and institutional investors could use machine learning-
based climate scenario analysis to inform their investment 
strategies and portfolio allocation decisions. By incorporating 
climate risk assessments into their valuation models and risk 
management processes, investors could identify opportunities 
for sustainable investments and mitigate potential losses from 
stranded assets and other climate-related risks.
3. Policy analysis and regulatory stress testing: Financial 
regulators and policymakers could leverage machine learning-
based climate scenario analysis to calculate the impacts of policy 
interventions and regulatory requirements on the stability and 
resilience of the financial system. By conducting stress tests and 
sensitivity analyses under various climate scenarios, regulators 
could identify potential vulnerabilities and develop targeted 
measures to mitigate systemic risks.
4. Climate adaptation and resilience planning: Power 
generation companies and other infrastructure providers could 
use machine learning-based climate scenario analysis to inform 
long-term adaptation and resilience planning. By identifying the 
most critical physical risks facing their assets and operations, 
companies could prioritize investments in climate-resilient 
technologies and practices, such as flood protection, drought-
resistant cooling systems, and distributed renewable energy 
generation.

6. Conclusion 
This white paper examines machine learning methods 

to evaluate the financial consequences of climate scenarios 
in the power generation industry. Using climate scenario 
data, company-specific information, and advanced modeling 
techniques, we have shown how machine learning can improve 
the precision and level of detail in financial risk assessments 
within the context of the low-carbon transition.

6.1. Key findings and insights

1.	 Climate scenarios, such as those developed by the NGFS, 
provide a structured framework for analyzing the potential 
impacts of transition and physical risks on power generation 
companies.

2.	 Machine learning models can effectively integrate various 
data sources, including financial statements, power plant 
characteristics, and climate scenario parameters, to generate 
scenario-based financial projections and risk assessments.

3.	 Techniques such as feature engineering, model selection, 
and hyperparameter tuning can improve the predictive 
performance of machine learning models in climate scenario 
analysis.

4.	 Sensitivity analysis using machine learning models can help 
identify the key drivers of financial performance and risk 
for power generation companies under different climate 
scenarios
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