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1. Background
The use of AI in medicine is a novel development that has the 

potential to improve the practice of healthcare as it provides an 
opportunity to facilitate the work of physicians through aiding 
diagnosis or identifying and uncovering predictors of disease. 
With the many ways healthcare providers have theorized the 
use of AI, the goal is to leverage these technologies to enhance 
and improve patient outcomes. Adverse events in hospitals 
continue to be a focus of healthcare providers to improve 
clinical outcomes. These have been assessed through predictive 

risk models that physicians can use to make informed clinical 
decisions. Falls are not only ubiquitous but are rated among the 
most preventable complications with an estimated 87.5% of 
cases being considered preventable.1 Elderly adults who have 
suffered falls are likely to suffer from disability and fall-related 
injury leading to deterioration of personal health and increased 
burden of healthcare costs.2 In the United States, it is estimated 
that each year around $50 billion is spent on medical costs 
related to falls among older adults, with fatal injuries accounting 
for $754 million and the remaining cost associated with 
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non-fatal fall injuries.2 With more than 14 million elderly adults 
in the United States sustaining a fall each year, falls should be 
considered among the most important healthcare complications 
that can be prevented.3

Risk predictive models are models using historical data and 
prospective data to predict probabilities of events occurring. 
These can be classified as statistical models, including 
regression models or classification trees, and ML models, which 
apply models to data to learn over time. While classic statistical 
models for risk prediction such as the Morse Fall Scale (MFS) 
have proven helpful over the years, these models do not tell us 
which risk factors carry more weight and are most significant. AI 
modalities such as ML can, and although the complexity of ML 
models may obscure this process, there are methods of increasing 
interpretability.4 Among the existing tests clinicians use to assess 
risk for falls, these can be divided into clinical data-based fall 
risk assessments and mobility-based fall risk assessments. The 
MFS is a clinician tool for fall risk assessment that uses patient 
clinical data to stratify patients into risk levels for falls and is 
the most common fall risk assessment tool. It is widely used 
for its simplicity and quickness of use however limitations 
include low specificity in predicting falls.5 Mobility-based fall 
risk assessments such as the Timed Up and Go (TUG) test or 
the Berg Balance Scale (BBS) analyze a patient’s performance 
in movement activities to indicate or stratify risk for falls. 
Although useful, limited evidence exists validating the use of 
the TUG test.6 As for the BBS, its applicability is limited as the 
completion of 14 different items on the assessment requires a 
significant time investment from clinicians.7 With the advent of 
ML, the rise of sensory-based fall risk assessment has occurred 
which entails the use of data from kinematic sensors or camera 
systems to track body position during movement, which can be 
used to train ML models for fall risk prediction. AI is a rather 
broad collection of technologies that can range from physical 
robots to rule-based expert systems to ML learning. Of all the 
AI types, ML poses the greatest benefit in risk prediction as 
this type of AI can learn from prior data and change itself. This 
field represents algorithms that are developed to better represent 
a set of data whereby in ML a dataset and output are used to 
produce an algorithm as opposed to classical programming 
where a dataset and algorithm produce an output.8 ML can be 
further classified into sub-types of algorithms including Support 
Vector Machine (SVM), Convolutional Neural Network (CNN), 
Random Forest (RF), and Boosting Decision Tree among many 
others. Further information regarding the data processing 
techniques used in these models can be found elsewhere.8,9 
Numerous studies have sought to investigate ML modalities in 
developing risk predictive models, but questions still arise on 
the quality of the datasets, determining efficacy versus provider 
assessments, and what limitations these early modalities have in 
healthcare.10 In addition, ML models have often been regarded 
as black-box algorithms meaning that we cannot understand or 
explain how those predictions from the ML model came to be.11 
In this study, we provide a literature review exploring ML in the 
setting of fall risk assessment across healthcare settings. We aim 
to assess the outcomes of these studies in this field because falls 
represent one of the most preventable healthcare complications. 
The findings may prove to inform healthcare providers about 
new and upcoming AI methods of predicting risk for falls for 
implementation in the field.

3. Methods
This study is a systematic literature review covering the 

exploring ML in the setting of fall risk assessment in according 
with PRISMA guidelines.12 Inclusion criteria included peer-
reviewed, full-text, English language primary research articles 
studying ML methods in fall risk assessment. Exclusion criteria 
included assessment of fall detection, lack of reporting both 
model performance and predictive accuracy of the ML algorithm, 
less than 20 fallers, and study population with a mean age of < 
55 years old. Studies were identified via the PubMed database 
in 2023 resulting in 181 unique articles identified. Keywords 
used in the article search process included: Machine Learning, 
ML, fall risk, fall risk assessment, prediction, and classification. 
During screening 86 records were excluded based on abstract and 
conclusion lacking relevance, 8 articles were review articles that 
were removed. An additional 22 articles were not retrieved due 
to paywalls. Of the 69 remaining articles advanced to full-length 
review, 28 were excluded based on: not including measures of 
both model performance and predictive accuracy, not meeting 
the desired age criteria, having too small a sample size, assessing 
fall detection, or not utilizing a machine learning model. Of the 
37 eligible articles, 15 were included in the study and evaluated 
in two categories: those involving clinical data on fall risk and 
those involving sensory data on fall risk. Given the nature of 
the articles being either retrospective or prospective prediction 
studies with differing methods of population selection and 
feature importance extraction, selection bias and confounding 
variables were discussed.  Screening, data collection, and bias 
assessment were performed by one reviewer and independently 
reviewed by a second reviewer.

4. Results 

Figure 1: An Overview of the Use of Clinical and Sensory Data 
in Fall Risk Assessment.

4.1. Clinical data-driven machine learning models

In Lindberg, et al., Lo, et al., Chu, et al., and Ye, et al., 
clinical and EHR data were utilized for ML-based fall risk 
models which produced AUC values of 0.90, 0.67, 0.72, and 
0.81 respectively.4,13-15 These performances were superior to 
control models based on the Morse Fall Scale or the Missouri 
Alliance for Home Care fall risk assessment.4,13 Unstructured 
clinical notes from EHR systems were utilized predict 1 year 
fall outcomes yielding a ML model with an AUC of 0.718.16 In 
Lathouwers, et al., an ML model using census socioeconomic 
information has accuracy of 73% in predicting falls within 
the next year.17 Ikeda, et al., ML models based on community 
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questionnaire data produced an AUC of 0.88 (SD = 0.02).18 In 
Patterson, et al., several ML algorithms were used to stratify 
recently discharged ED for fall risk to predict fall re-visit within 
the next 6 months which produced an AUC of 0.78.19 They 
estimated that an intervention consisting of fall clinic referrals 
had a number needed to treat (NNT) of 12.4 referrals to a fall 
clinic to reduce the number of ED re-visits by 1.

Figure 2: Bar Graph Demonstrating the Distribution of Data 
Types and Top Performing Machine Learning Classifiers. 
Patterson, et al. had two equally top performing classifiers (RF 
and AB) accounting for a total ML model number of 16.

4.2. Sensory data-driven machine learning models

In Eichler, et al., a ML fall risk assessment was developed 
using motion tracking systems while capturing patients 
performing the Berg Balance Scale (BBS) with a final fall risk 

prediction accuracy of 75.5% and an “Efficient BBS” of 3-6 
tasks resulting in improved accuracy (76-77%).7 Roshdibenam, 
et al., Noh, et al., Sun, et al., Kelly, et al., and Lockhart, et al., all 
utilized kinematic inertial, postural, or accelerometer data with 
varying results. Each of these studies were limited in their own 
way such as lack of direct or objective measurement of fall risk or 
model performance that was no better than guessing.20- 24 Mishra, 
et al., utilized model based on temporal spatial gait analyses with 
geriatric assessment to predict 6 month fall outcome producing 
an AUC 0.80.25

5. Discussion
The previous section provided the results of 15 studies and 

this section provides a discussion and evaluation of those results. 
Of the 15 papers, 8 described ML algorithms driven by clinical 
data, while 7 were driven by sensory data. Three papers7,17,22 do 
not provide an AUC (Area Under the Curve) which is a measure 
of predictive model performance and instead accuracy was 
provided which has limitations. Accuracy measures the ratio 
of true predictions to the total number of samples meaning it 
is ideal for uniformly distributed data, where there is an equal 
number of fallers to non-fallers. In the 3 papers7,17,22 that reported 
Accuracy but not AUC, data is imbalanced which can lead to 
cases where true negatives contribute to a larger portion of 
the sample while the ratio of true positives to false positives 
is relatively less and the ML algorithm cannot reliably predict 
positive fallers. In addition, 4 studies do not include a 95% CI 
for the AUC meaning the 95% CI could theoretically include an 
AUC of 0.5, which is no better than guessing.15,18,23,24

Table 1: Overview of 15 research articles assessing Fall Risk Assessment through Machine Learning. Either AUC or Accuracy 
when available in the paper is provided with regards to their top-performing ML algorithm. The top 3-5 predictive variables isolated 
in each paper are also provided indicating which factors had the highest importance in feature selection.

Data Type
R e f e r e n c e , 
Country Sample Size

Best Performing 
ML Classifier  AUC (95% CI)

 Accuracy
)(95% CI

 Predictive Variables Isolated
by ML Algorithm Setting

Clinical (EMR)
Lindberg, et al., 
U.S.

814 (272 
fallers, 542  
non-fallers) Random Forest 0.9 (0.87, 0.92) NA

 History of Falls, Total Morse
 Score, Age, Mental Status,
Unit Type

 I n p a t i e n t
Hospital

Clinical (EMR) Lo, et al., U.S.
59006 (5.14% 
fallers) Random Forest 0.67 (0.66, 0.68) NA

 Age, Severity of Home Care
 Diagnoses, Frequency of
 Therapy Visits, Pain Affecting
Function

 Home Health
Care

Clinical (EMR)
Chu, et al., 
China

1,101 ( 349 
fallers, 752 
non-fallers) XGBoost

0.57 (0.559, 0.603); 
0.72 (AUC analyzing 
top 5 variables)

 7 3 . 2 %
 ,7 1 . 8 % (
)76.1%

 IADLs, Brade Score, ADLs,
Age, Systolic BP

 I n p a t i e n t
Hospital

Clinical (EMR) Ye, et al., U.S.
265,225 (1.64% 
fall rate) XGBoost 0.807 NA

Cognitive Disease, Abnor-
 malities of Gait and Balance,
 Orthostatic Hypotension,
 Parkinson’s Disease, Muscle
Disorders

 I n p a t i e n t
 Hospital and
FQHC

Clinical (Social 
D e t e r m i n a n t s 
Questionnaire)

Lauthowers, et 
al., Belgium 82,580 Random Forest NA 73%

Number of grandchildren, In-
 security, Number of Children,
Housing Change, Mental Ac-
tivity

 Community
Dwelling

Clinical (Community 
Questionnaire)

Ikeda, et al., 
Japan

61,883 (5.43% 
multiple falls 
rate) XGBoost 0.88 88%

 Prior experience of falls, self
 rated poor health, older age,
 fear of falling, inability to
stand up from chairs

 Community
Dwelling

Clinical (EMR)
Patterson, et al., 
U.S.

9,687 (8.85% 
fall rate)

Random Forest, 
AdaBoost 0.78 (0.74, 0.81) NA Not Applicable

 I n p a t i e n t
 Hospital and
Clinic

Clinical (EHR)
Dormosh, et al., 
Netherlands

36,470 (4,778 
fallers, 31,692 
non-fallers)

L o g i s t i c 
Regression 0.718 (0.708-0.727) NA

 Residential Care, Cognitive
 Impairment, Fractures, Head
Trauma, Info exchange be-
 tween providers & CVRM lab
measurements Clinic
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S e n s o r y 
( S p a t i o t e m p o r a l 
tracking, Clinical Fall 
assessment)

Mishra, et al., 
U.S.

92 total (31 
fallers, 61 non-
fallers) SVM 0.80 (0.76-0.85)

 7 5 %
 ,7 2 % (
)79%

 IADL, ADL, Gait speed, FAP
score, MMSE

Inpatient (In-
 t e r m e d i a t e
Care Facil-
)ity

Sensory (Kinematic 
Sensors)

Roshdibenam, 
et al., U.S.

100 (54 fallers, 
46 non-fallers) CNN 0.56 (0.33, 0.74)

 6 0 . 6 %
 ,4 4 . 4 % (
)72.2% None identified

 I n p a t i e n t
 Hospital and
Clinic

Sensory (Multi 
Camera Tracking)

Eichler, et al., 
Israel

130 (30 low 
risk fallers) SVM NA

 ,7 5 . 5 %
 E - B B S (
 Accuracy
)97% BBS Scale Tasks 9, 7, 6, 11, 8

 I n p a t i e n t
 Hospital and
Healthy Vis-
itors

Sensory (Intertial 
Sensors)

Noh, et al., 
South Korea

746 (456 low 
risk, 290 high 
risk) XGBoost 0.72 (0.66-0.79) NA

 Walking Speed, Stride Length,
BMI, Physical Activity, Age Clinic

Sensory (Postural 
Sway Mechanics) Sun, et al., U.S.

153 (103 MS 
cases, 50 
controls) Random Forest NA 92.3%

 Sample Entropy, Sway Range,
Sway Area Clinic

Sensory (Kinematic 
Sensors)

Kelly, et al., 
Sweden

1705 (15% fall 
rate) SGD 0.544 NA

 Free Living Accelerometer
Data across all ML classifiers

 Community
Dwelling

Sensory (Inertial 
sensor)

Lockhart, et al., 
U.S.

171 total (34 
fallers, 137 
non-fallers) Random Forest 0.78 NA

 Recurrence-Medial Lateral
 signal, Complexity- Medial
Lateral Signal Entropy, De-
 terminism-Vertical Signal,
 Recurrence-Vertical Signal,
 Overall Walking Time Series
Complexity

C o m m u n i -
ty-Dwelling

When assessing selection bias, randomization of populations 
are not explicitly described. Clinical data papers, save for 
two13,17, consistently report baseline population data that would 
allow analysis of the significant differences between the faller 
and non-faller demographics. On the other hand sensory data 
papers, save for two20,25, do not report baseline characteristics 
and completely rely on sensory data leading to potential selection 
biases.

Datasets were gathered in a plethora of settings including 
inpatient hospital in 8 of the papers, outpatient settings in 6 of the 
papers, or community settings as in 4 of the papers. We see this as 
reflecting the importance of fall risk detection in all settings, with 
promising results in each unique setting. In papers where EMR 
data was used as a dataset, sample populations are quite large 
ranging up to the hundreds of thousands of analyzed patients 
which prompts concerns about those studies being overpowered. 
Indeed, in Lo, et al. 137 EHR-derived patient features or variables 
had miniscule effect sizes, many of which were not statistically 
significant.13 The interpretation of these variables and their 
effect sizes is limited by the inability of ML model output to 
determine the presence of interactions (multiple variables 
influencing the effect of a dependent variable) or collinearity 
(multiple variables highly correlated in a linear manner) and 
thus confounding variables arise. This introduces difficulty in 
assessing the true importance of a variable as interactions may 
make it unpredictable how changing one variable may affect 
prediction, and collinearity may result in redundancy or lack of 
validity for a given variable. Feature extraction differs between 
each article including use of Lasso regression15,16, SHAP18,25, 
ReliefF13, or scores provided by the chosen ML models such 
as XGBoost14,21. While the former methods may address some 
amount of collinearity, other articles directly attempt to address 
the issue by analysis with Pearson correlation coefficient25 or 
clustering methods17. Six articles remain as not detailing any 
methods of addressing these issues. One additional issue is that 
there is a notable amount of ambiguity provided in the papers 
reporting whether the outcomes are based on training or testing 
datasets, however, all except 4 articles7,16,22,25 report separation 

Figure 3: A Forest Plot Comparing AUC with 95% CI. These 
papers were selected based on papers providing both AUC and 
95% CI. The X-axis corresponds to AUC with 0.50 representing 
a model that is no better than randomly guessing.

Figure 4: Infographic Depicting the Framework Machine 
Learning Studies Use in Assessing Fall Risk.
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of training and testing data and describe testing data before 
reporting outcomes. In terms of generalizability, populations 
are the desired age of 55 or older, and are represented across 
multiple continents including North America, Europe, and Asia, 
however these tend to focus on developed countries. Lack of 
clear randomization, especially in the sensory data studies 
also reduces generalizability, while the larger populations seen 
in clinical data studies enhances generalizability.24 Among 
the ML classifiers used, 6 of the most common ones included 
conventional techniques such as SVM and SGD, deep learning 
techniques such as CNN, and decision tree techniques including 
RF and Boosting Decision Trees (i.e. XGBoost, AdaBoost). Two 
classifier types rose above the rest and appeared to produce the 
highest model performance and prediction accuracies, those 
being RF and Boosting Tree. Conventional wisdom in the field 
of ML tells us that the advantage of RF is that it is fast and 
effective with large amounts of data and tends to avoid problems 
of overfitting, but is sensitive to small changes in training data 
such as what we would see in studies on gait and kinematics 
which are dynamic.9 This was consistent with our results as the 
RF classifiers were predominant in the clinical EMR studies 
but not the sensory studies. As for Boosting Tree models, it 
is expected that their predictive accuracy is generally higher 
compared to other models, but drawbacks include computational 
intensiveness and difficulty in interpreting the final models.

There is a high degree of variability in the model 
performance and predictive accuracy of the provided papers. 
For example, the use of worn accelerometers in daily living 
provided no ability to predict future falls with AUCs indicating 
that they were no better than randomly guessing.20,23 The better 
performing sensory models seen in Sun, et al. and Lockhart, et 
al. may be an indication of the need to measure nonlinear gait 
variables to produce more accurate predictions. Beyond the fact 
that dynamic gait measurements can widely alter sensitive ML 
algorithms, the AUCs of these algorithms do not often exceed 
the 0.80 threshold.22,24 The performance of the ML algorithms is 
dependent upon the measuring devices, data acquisition settings, 
obtained datasets, ML classifiers, and resultant ML algorithms, 
all of which are very different among the sensory data articles 
meaning they are not easily comparable. On the other hand, the 
clinical EMR data-driven studies have more consistent outcomes 
despite differences. The 3 top ML classifiers with AUCs > 0.80 
are clinical data driven, and similar predictive features including 
age, history of falls, and mental status appear across clinical 
data papers.5,15,18 Even in the case of unstructured EMR data, the 
ML model performance was acceptable indicating that there is 
often ignored value in those notes that can be integrated into 
other clinical-data models.16 It can be safely concluded that the 
use of EMR data can be more consistently relied upon to reflect 
the parameters predictive of falls and can be easily collected 
as opposed to the time-intensive nature of measuring physical 
movement.

Underlying several of the ML algorithms used in the papers 
covered in this review, were several fall risk assessments such as 
the MFS, TUG, and BBS that were incorporated into the datasets. 
The MFS was not only incorporated into ML datasets producing 
excellent AUCs, but was also solely incorporated into a ML 
logistic regression model that performed relatively similarly to 
the other ML algorithms.4 The TUG was incorporated into two 
papers with varying results in the ML classifiers.20-25 Lastly, the 

BBS was also a reliable test contributing to an ML classifier 
with 75.5% prediction accuracy of fall risk, with the Efficient-
BBS produced by Eichler, et al., which included 4-6 of the most 
important BBS tasks, produced predictive accuracies of around 
97%.7 Imbalance of the dataset while utilizing accuracy however 
casts doubt upon the ML model performance. 7 Realistic adoption 
of these ML techniques and the underlying data is dependent 
upon the efficiency and applicability of these methods. One 
can see the ease of use in collecting standardized EMR data 
and its advantages over wearable kinematic sensors or motion 
capture for several reasons including less time investment from 
clinicians in data collection, easier interpretability of variables, 
and ability to be implemented across a wider range of healthcare 
settings who don’t have access to sensory equipment.

While the 15 articles addressed in this review address the 
topic of fall risk assessment, there still exists the gap between fall 
risk prediction and using that information to prevent falls. One 
study sought to explore this where they used their ML model to 
estimate the number of predicted fallers that would be enrolled 
in a multidisciplinary fall clinic.19 They assumed a relative risk 
reduction (RRR) for fall clinic referral (in reducing incidence of 
falls) based on a prior study and multiplied this RRR with the 
absolute risk from their ML model data to calculate a NNT.19 If 
there were no constraints on the number of referrals that could 
be made to the theoretical fall clinic, they estimated the NNT to 
be 2.6, but when considering a limit of 10 referrals per week, 
the NNT was 12.4.19 Referral of 12.4 patients to a fall clinic in 
order to prevent 1 fall may seem costly, but this should also be 
compared to the healthcare costs if that 1 patient did fall, which 
is estimated to be up to $62,521 in inpatient settings.26,27

As of now, the current state of ML in fall prevention literature 
equates fall detection studies with fall prevention studies 
implying that detection will automatically lead to prevention.9 
This is not what we are implying, because if the fall is detected 
the fall has happened. Instead, we are suggesting that the 
interventions used to prevent falls would be investigated using 
ML. The collection of these interventions as dataset variables 
among patients identified with high fall risk could provide 
insight into the significance of which variables help prevent falls 
in those patients. Therefore, ML can close this gap between fall 
risk assessment and fall prevention.

6. Conclusion
Overall, we identified promising results with regards to the 

use of ML techniques in fall risk assessment, with advantages 
in using clinical EMR data producing ML models with higher 
model performance and predictive accuracy. On the other hand, 
there is more variation within the realm of sensory data, as 
ML classifiers are often sensitive to small changes in data, and 
these data collection methods are more time-intensive and less 
applicable to the real world. Nevertheless, this study found that 
ML models have been proven to not only reliably predict fall 
risk across healthcare settings and clinicians could benefit from 
the use of these technologies.

7. Financial support and sponsorship
None

8. Conflicts of interest
None, consent for publication was obtained from all authors. 



J. Integrated Health | ISSN: 2583-5386 | Vol: 4 & Iss: 1Hoque F, et al.,

6

8. References
1.	 Landrigan CP, Parry GJ, Bones CB, at al. Temporal trends in rates 

of patient harm resulting from medical care [published correction 
appears in N Engl J Med. 2010 Dec 23;363(26):2573]. N Engl J 
Med, 2010;363:2124-2134. 

2.	 Florence CS, Bergen G, Atherly A, et al. Medical Costs of Fatal 
and Nonfatal Falls in Older Adults. J Am Geriatr Soc. 2018;66: 
693-698.

3.	 Kakara R, Bergen G, Burns E, et al. Nonfatal and Fatal 
Falls Among Adults Aged ≥65 Years - United States, 2020-
2021. MMWR Morb Mortal Wkly Rep. 2023;72:938-943.

4.	 Lindberg DS, Prosperi M, Bjarnadottir RI, et al. Identification 
of important factors in an inpatient fall risk prediction model 
to improve the quality of care using EHR and electronic 
administrative data: A machine-learning approach. Int J Med 
Inform. 2020;143:104272. 

5.	 Kim YJ, Choi KO, Cho SH, Kim SJ. Validity of the Morse Fall 
Scale and the Johns Hopkins Fall Risk Assessment Tool 
for fall risk assessment in an acute care setting. J Clin Nurs. 
2022;31(23-24):3584-3594. 

6.	 Nightingale CJ, Mitchell SN, Butterfield SA. Validation of the 
Timed Up and Go Test for Assessing Balance Variables in Adults 
Aged 65 and Older. J Aging Phys Act. 2019;27(2):230-233. 

7.	 Eichler N, Raz S, Toledano-Shubi A, Livne D, Shimshoni I, 
Hel-Or H. Automatic and Efficient Fall Risk Assessment Based 
on Machine Learning. Sensors (Basel). 2022;22(4):1557. 
Published 2022 Feb 17. 

8.	 Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell 
JP. Introduction to Machine Learning, Neural Networks, and 
Deep Learning. Transl Vis Sci Technol. 2020;9(2):14. Published 
2020 Feb 27. 

9.	 Usmani S, Saboor A, Haris M, Khan MA, Park H. Latest 
Research Trends in Fall Detection and Prevention Using 
Machine Learning: A Systematic Review. Sensors (Basel). 
2021;21(15):5134. Published 2021 Jul 29.

10.	 Bitkina OV, Park J, Kim HK. Application of artificial intelligence in 
medical technologies: A systematic review of main trends. Digit 
Health. 2023;9:20552076231189331. Published 2023 Jul 18.

11.	 Lyu Z, Wang L, Gao X, Ma Y. The Identification of Elderly 
People with High Fall Risk Using Machine Learning 
Algorithms. Healthcare (Basel). 2022;11(1):47. Published 2022 
Dec 23.

12.	 Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. 
Preferred reporting items for systematic reviews and 
meta-analyses: the PRISMA statement. Ann Intern Med. 
2009;151(4):264-W64.

13.	 Lo Y, Lynch SF, Urbanowicz RJ, et al. Using Machine Learning 
on Home Health Care Assessments to Predict Fall Risk. Stud 
Health Technol Inform. 2019;264:684-688.

14.	 Chu WM, Kristiani E, Wang YC, et al. A model for predicting 
fall risks of hospitalized elderly in Taiwan-A machine learning 
approach based on both electronic health records and 
comprehensive geriatric assessment. Front Med (Lausanne). 
2022;9:937216. 

15.	 Ye C, Li J, Hao S, et al. Identification of elders at higher risk 
for fall with statewide electronic health records and a machine 
learning algorithm. Int J Med Inform. 2020;137:104105. 

16.	 Dormosh N, Schut MC, Heymans MW, et al. Predicting future 
falls in older people using natural language processing of 
general practitioners’ clinical notes. Age Ageing. 2023;52(4): 
046.

17.	 Lathouwers E, Dillen A, Díaz MA, et al. Characterizing fall 
risk factors in Belgian older adults through machine learning: 
a data-driven approach. BMC Public Health. 2022;22(1):2210. 
Published 2022 Nov 29.

18.	 Ikeda T, Cooray U, Hariyama M, et al. An Interpretable Machine 
Learning Approach to Predict Fall Risk Among Community-
Dwelling Older Adults: a Three-Year Longitudinal Study. J Gen 
Intern Med. 2022;37(11):2727-2735. 

19.	 Patterson BW, Engstrom CJ, Sah V, et al. Training and 
Interpreting Machine Learning Algorithms to Evaluate Fall Risk 
After Emergency Department Visits. Med Care. 2019;57(7):560-
566. 

20.	 Roshdibenam V, Jogerst GJ, Butler NR, Baek S. Machine 
Learning Prediction of Fall Risk in Older Adults Using Timed Up 
and Go Test Kinematics. Sensors (Basel). 2021;21(10):3481. 

21.	 Noh B, Youm C, Goh E, et al. XGBoost based machine learning 
approach to predict the risk of fall in older adults using gait 
outcomes. Sci Rep. 2021;11(1):12183. Published 2021 Jun 9.

22.	 Sun R, Hsieh KL, Sosnoff JJ. Fall Risk Prediction in Multiple 
Sclerosis Using Postural Sway Measures: A Machine Learning 
Approach. Sci Rep. 2019;9(1):16154. Published 2019 Nov 6.

23.	 Kelly D, Condell J, Gillespie J, et al. Improved screening of 
fall risk using free-living based accelerometer data. J Biomed 
Inform. 2022;131:104116.

24.	 Patel A, Hoque F. Inpatient Falls: Risk Factors and Prevention 
Strategies in Healthcare. J Integrated Health 2025;4(1): 
373-376.

25.	 Lockhart TE, Soangra R, Yoon H, et al. Prediction of fall risk 
among community-dwelling older adults using a wearable 
system. Sci Rep. 2021;11(1):20976. Published 2021 Oct 25.

26.	 Mishra AK, Skubic M, Despins LA, et al. Explainable Fall 
Risk Prediction in Older Adults Using Gait and Geriatric 
Assessments. Front Digit Health. 2022;4:869812.

27.	 Dykes PC, Curtin-Bowen M, Lipsitz S, et al. Cost of Inpatient 
Falls and Cost-Benefit Analysis of Implementation of an 
Evidence-Based Fall Prevention Program. JAMA Health Forum. 
2023;4(1):e225125. 


	_GoBack
	OLE_LINK2

