
Architecture Design (MVVM + Clean Architecture)

Naga Satya Praveen Kumar Yadati*

Citation: Yadati NSPK. Architecture Design (MVVM + Clean Architecture). J Artif Intell Mach Learn & Data Sci 2023, 1(3), 703-
706. DOI: doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/177

Received: 02 September, 2023; Accepted: 18 September, 2023; Published: 20 September, 2023

*Corresponding author: Naga Satya Praveen Kumar Yadati, USA, E-mail: praveenyadati@gmail.com

Copyright: © 2023 Yadati NSPK., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/177

1. Introduction
In the realm of software development, choosing the right

architectural pattern is crucial for building applications that are
not only functional but also maintainable and scalable. MVVM
and Clean Architecture are two such patterns that have gained
widespread adoption. This paper will explore how these two
architectures can be combined to leverage their individual
strengths, providing a detailed guide for developers aiming to
implement this hybrid architecture.

1.1. Background

•	 MVVM: Originating from Microsoft, MVVM is designed
to provide a clear separation between the UI and business
logic. This separation facilitates unit testing and enhances
code maintainability.

•	 Clean Architecture: Proposed by Robert C. Martin,
Clean Architecture emphasizes the separation of concerns,
making the codebase easier to manage and scale. It divides

the software into layers, with each layer having a specific
responsibility.

1.2. Motivation

The motivation behind this paper is to bridge the gap between
theory and practice, offering developers a structured approach
to implementing a hybrid architecture that combines the best of
MVVM and Clean Architecture.

2. Understanding MVVM

2.1.	Definition	and	principles

MVVM (Model-View-ViewModel) is an architectural pattern
that facilitates a separation of concerns within an application. It
divides the application into three main components:

 A B S T R A C T

The evolution of software architecture has seen the adoption of patterns that enhance maintainability, scalability, and
testability. Two prominent paradigms in this evolution are the Model-View-ViewModel (MVVM) and Clean Architecture. This
paper delves into the intricacies of combining these two architectures to build robust applications, particularly in the context
of Android development. It aims to provide a comprehensive overview of both architectures, explore their synergy, and offer
practical insights into their implementation.

Keywords: MVVM, Clean Architecture, Android Development, Software Architecture, Model-View-ViewModel, Separation
of Concerns, Testability, Scalability, Maintainability, Data Binding, Presentation Logic, Business Logic, Data Layer, Use Cases,
Entities, Interface Adapters, Frameworks and Drivers, Dependency Injection, Repository Pattern, Unit Testing, User Interface
(UI), ViewModel, Modularity, Application Architecture, Code Reusability

https://doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/177
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/177

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3Yadati NSPK.,

2

1. Model: Represents the data and business logic.
2. View: Represents the UI components.
3. ViewModel: Acts as a bridge between the Model and the

View, handling the presentation logic.

2.2.	Benefits	of	MVVM

•	 Separation	of	Concerns: MVVM clearly separates the UI
from the business logic, making the code more modular and
easier to manage.

•	 Testability: The ViewModel, which contains the
presentation logic, can be easily unit tested without relying
on the UI.

•	 Data Binding: MVVM leverages data binding to
automatically synchronize the UI with the underlying data
model.

2.3.	Challenges	of	MVVM

•	 Complexity: For simpler applications, the overhead
introduced by MVVM can be overkill.

•	 Learning Curve: Developers need to understand the
intricacies of data binding and the interaction between the
View and ViewModel.

2.4.	Implementation	details

In an MVVM architecture, the ViewModel is responsible for
preparing the data for the View by interacting with the Model.
The View binds to properties in the ViewModel, allowing it to
automatically update in response to changes in the data. Here’s
a typical flow:

•	 User Interaction: The user interacts with the View.
•	 ViewModel	 Update: The ViewModel responds to the

interaction by updating the data.
•	 Model Interaction: The ViewModel interacts with the

Model to fetch or update data.
•	 UI	 Update: Data binding ensures that changes in the

ViewModel are reflected in the View.

3. Understanding Clean Architecture
3.1.	Definition	and	principles

Clean Architecture is an approach to software design that
emphasizes the separation of concerns through the use of layers.
Each layer has a specific responsibility and is isolated from the
others. The primary layers in Clean Architecture are:

•	 Entities: Represent the core business logic and rules.
•	 Use Cases: Contain the application-specific business rules.
•	 Interface	Adapters: Convert data from the format most

convenient for the use cases and entities to the format most
convenient for external agencies such as databases and the
UI.

•	 Frameworks and Drivers: Contain the UI, database, web
frameworks, etc.

3.2.	Benefits	of	clean	architecture

•	 Maintainability: The separation of concerns makes the
codebase easier to maintain and modify.

•	 Scalability: The modular nature of Clean Architecture
allows for easy scaling of applications.

•	 Testability: Each layer can be tested independently,
improving the overall test coverage.

3.3.	Challenges	of	clean	architecture

•	 Complexity: Implementing Clean Architecture can
introduce complexity, particularly in smaller projects.

•	 Overhead: The additional layers can lead to more boilerplate
code and an increase in the initial setup time.

3.4.	Implementation	Details

In Clean Architecture, each layer is isolated from the others
through the use of interfaces. This ensures that changes in one
layer do not affect the others, promoting a more stable and
maintainable codebase. Here’s how the layers typically interact:

•	 UI Layer: Receives input from the user and passes it to the
Use Case layer.

•	 Use Case Layer: Contains the business logic and interacts
with the Entity layer.

•	 Entity Layer: Contains the core business rules and entities.
•	 Data Layer: Handles data persistence and retrieval, often

interacting with external systems such as databases or APIs.

4. Combining MVVM and Clean Architecture
4.1. Synergy between MVVM and Clean Architecture

Combining MVVM and Clean Architecture allows
developers to leverage the strengths of both patterns. MVVM
provides a clear separation of concerns between the UI and
the business logic, while Clean Architecture ensures a well-
structured and maintainable codebase.

4.2. Architectural overview

In the combined architecture, the ViewModel from MVVM
acts as the Interface Adapter in Clean Architecture. This allows
the ViewModel to handle the presentation logic while interacting
with the Use Case layer for business logic and the Entity layer
for core business rules.

4.3.	Benefits	of	the	combined	architecture

•	 Enhanced	 Separation	 of	 Concerns: The combination
provides a clear separation between the UI, presentation
logic, business logic, and data layers.

•	 Improved	 Testability: Each layer can be tested
independently, leading to higher test coverage and more
reliable code.

•	 Scalability and Maintainability: The modular nature
of the combined architecture makes it easier to scale and
maintain the application.

4.4.	Implementation	guidelines

•	 ViewModel: Acts as the Interface Adapter, handling the
presentation logic and interacting with the Use Case layer.

•	 Use Cases: Contain the application-specific business logic
and interact with the Entity layer.

•	 Entities: Represent the core business rules and entities.
•	 Data Layer: Handles data persistence and retrieval.

4.5.	Practical	example

• Consider an Android application for managing tasks. The
combined architecture can be implemented as follows:

•	 ViewModel: Handles user input and updates the UI. It
interacts with the Use Case layer to fetch or update tasks.

•	 Use Cases: Contain the business logic for managing tasks,

3

Yadati NSPK., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3

such as adding, deleting, and updating tasks.
•	 Entities: Represent the task objects and their associated

business rules.
•	 Data Layer: Manages the persistence of tasks, interacting

with a database or remote API.

5.	Implementation	Case	Study
5.1. Project Overview

This section will provide a detailed case study of
implementing the combined MVVM and Clean Architecture in
an Android application. The project will involve building a task
management application with features such as adding, updating,
deleting, and viewing tasks.

5.2. Requirements

•	 Add Task: Users can add new tasks with details such as
title, description, and due date.

•	 Update	Task: Users can update existing tasks.
•	 Delete Task: Users can delete tasks.
•	 View Tasks: Users can view a list of tasks.

5.3. Architectural Design

The architectural design will follow the combined MVVM
and Clean Architecture pattern, with each layer handling specific
responsibilities.

5.4.	Implementation	Details

•	 ViewModel: Handles the presentation logic and interacts
with the Use Case layer.

•	 Use Cases: Implement the business logic for adding,
updating, deleting, and viewing tasks.

•	 Entities: Represent the task objects and their associated
business rules.

•	 Data Layer: Manages data persistence, interacting with a
local database or remote API.

5.5.	Benefits	and	Drawbacks

Benefits

•	 Separation	 of	 Concerns: The clear separation between
the UI, presentation logic, business logic, and data layers
improves maintainability and scalability.

•	 Testability: Each layer can be tested independently, leading
to higher test coverage and more reliable code.

•	 Scalability: The modular nature of the combined
architecture allows for easy scaling of the application.

Drawbacks

•	 Complexity: Implementing the combined architecture can
introduce complexity, particularly for smaller projects.

•	 Overhead: The additional layers can lead to more boilerplate
code and an increase in the initial setup time.

6. Conclusion
Combining MVVM and Clean Architecture provides a

robust framework for building maintainable, scalable, and
testable applications. While the initial setup and complexity may
be higher, the long-term benefits in terms of maintainability,
scalability, and testability make it a worthwhile investment.

This paper has provided a comprehensive overview of both
architectures, explored their synergy, and offered practical
insights into their implementation, serving as a valuable resource
for developers looking to implement this hybrid architecture.

7.	References

1. Martin RC. Clean architecture: A craftsman’s guide to software
structure and design. Prentice Hall 2017.

2. Microsoft Documentation. Model-View-ViewModel (MVVM)
Pattern. 2012.

3. Android Developers. Guide to app architecture. Developers.

4. Uncle Bob. Clean code and clean architecture. Clean Code.

5. Fowler M. Patterns of enterprise application architecture.
Addison-Wesley Professional 2002.

6. Allen G. Modern android development with jetpack compose.
Packt Publishing 2020.

7. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns:
Elements of reusable object-oriented software. Addison-Wesley
1994.

8. Brown K. Advanced android development: Bringing MVVM to
android development. O’Reilly Media 2018.

9. Boyar Y, Powell A. Android architecture components: A
comprehensive guide. Google I/O 2018.

10. Beck K. Test driven development: By example. Addison-Wesley
2002.

11. McCabe TJ. A complexity measure. IEEE Transactions on
software engineering 1976;2: 308-320.

12. Bass L, Clements P, Kazman R. Software architecture in
practice. Addison-Wesley Professional 2003.

13. Hevery M. A guide to writing testable code. Google testing blog
2008.

14. Koskimies K, Mikkonen T. Understanding software engineering.
John Wiley & Sons 2005.

15. Johnson R, Hoeller J, Arendsen A, Harrop R, Risberg T.
Professional Java Development with the Spring Framework.
Wrox 2004.

16. Evans E. Domain-Driven design: Tackling complexity in the
heart of software. Addison-Wesley 2003.

17. Burns C, Vignesh M. MVVM in android: Managing the view-
model relationship. Manning Publications 2021.

18. Steele GL Jr. Common Lisp: The Language 2nd edition. Digital
Press 1990.

19. Apple Inc. Swift Programming Language. Apple Books 2015.

20. Knuth DE. The Art of Computer Programming, Volumes 1-3
Boxed Set 3rd edition. Addison-Wesley Professional 1997.

21. Sutter H. Exceptional C++ Style: 40 New engineering puzzles,
programming problems, and solutions. Addison-Wesley
Professional 2004.

22. Bloch J. Effective Java 2nd edition. Addison-Wesley 2008.

23. Fowler M, Beck K. Refactoring: Improving the design of existing
code. Addison-Wesley 1999.

24. Subramaniam V, Hunt A. Practices of an agile developer:
Working in the real world. Pragmatic Bookshelf 2006.

25. Lewis J, Loftus W. Java Software Solutions 10th edition.
Pearson 2019.

26. Sedgewick R, Wayne K. Algorithms 4th edition. Addison-Wesley
Professional 2011.

https://dl.acm.org/doi/10.5555/3175742
https://dl.acm.org/doi/10.5555/3175742
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://developer.android.com/topic/architecture'
http://cleancoder.com/products
https://martinfowler.com/books/eaa.html
https://martinfowler.com/books/eaa.html
https://www.javier8a.com/itc/bd1/articulo.pdf
https://www.javier8a.com/itc/bd1/articulo.pdf
https://www.javier8a.com/itc/bd1/articulo.pdf
https://www.oreilly.com/library/view/test-driven-development/0321146530/
https://www.oreilly.com/library/view/test-driven-development/0321146530/
https://ieeexplore.ieee.org/document/1702388
https://ieeexplore.ieee.org/document/1702388
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/
https://iamgodsom.wordpress.com/wp-content/uploads/2014/08/wrox-professional-java-development-with-the-spring-framework.pdf
https://iamgodsom.wordpress.com/wp-content/uploads/2014/08/wrox-professional-java-development-with-the-spring-framework.pdf
https://iamgodsom.wordpress.com/wp-content/uploads/2014/08/wrox-professional-java-development-with-the-spring-framework.pdf
https://www.oreilly.com/library/view/domain-driven-design-tackling/0321125215/
https://www.oreilly.com/library/view/domain-driven-design-tackling/0321125215/
https://dl.acm.org/doi/10.5555/95411
https://dl.acm.org/doi/10.5555/95411
https://developer.apple.com/swift/
https://dl.acm.org/doi/10.5555/521463
https://dl.acm.org/doi/10.5555/521463
https://www.pearson.com/en-us/subject-catalog/p/exceptional-c-style-40-new-engineering-puzzles-programming-problems-and-solutions/P200000009314/9780201760422
https://www.pearson.com/en-us/subject-catalog/p/exceptional-c-style-40-new-engineering-puzzles-programming-problems-and-solutions/P200000009314/9780201760422
https://www.pearson.com/en-us/subject-catalog/p/exceptional-c-style-40-new-engineering-puzzles-programming-problems-and-solutions/P200000009314/9780201760422
https://www.oreilly.com/library/view/effective-java-2nd/9780137150021/
https://silab.fon.bg.ac.rs/wp-content/uploads/2016/10/Refactoring-Improving-the-Design-of-Existing-Code-Addison-Wesley-Professional-1999.pdf
https://silab.fon.bg.ac.rs/wp-content/uploads/2016/10/Refactoring-Improving-the-Design-of-Existing-Code-Addison-Wesley-Professional-1999.pdf
https://pragprog.com/titles/pad/practices-of-an-agile-developer/
https://pragprog.com/titles/pad/practices-of-an-agile-developer/
https://www.pearson.com/en-us/subject-catalog/p/java-software-solutions-foundations-of-program-design/P200000003342/9780137920846
https://www.pearson.com/en-us/subject-catalog/p/java-software-solutions-foundations-of-program-design/P200000003342/9780137920846
https://algs4.cs.princeton.edu/home/
https://algs4.cs.princeton.edu/home/

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 3Yadati NSPK.,

4

27. Larman C. Applying UML and patterns: An introduction to
object-oriented analysis and design and iterative development
(3rd edn.). Prentice Hall 2004.

28. Pilone D, Pitman N. UML 2.0 in a Nutshell. O’Reilly Media 2005.

29. Meyer B. Object-Oriented software construction 2nd edition.
Prentice Hall 1997.

30. Hunt A, Thomas D. The pragmatic programmer: Your journey to
mastery. Addison-Wesley 1999.

31. Pressman RS. Software engineering: A practitioner’s approach
7th edition. McGraw-Hill Education 2009.

32. Sommerville I. Software engineering 10th edition. Pearson
2015.

33. Hiltzik MA. Dealers of Lightning: Xerox PARC and the dawn of
the computer age. HarperBusiness 1999.

34. Armstrong D. The quarks of object-oriented development.
Springer 2006.

35. McConnell S. Code Complete 2nd editon. Microsoft Press 2004.

36. Nagy K. MVVM architecture for android developers: A practical
guide. Leanpub 2021.

37. Misfeldt A, Hendrickson E, Kolawa A. Exploring test automation
patterns. Wiley 2004.

38. Parnas DL. On the criteria to be used in decomposing systems
into modules. Communications of the ACM 1972;15: 1053-1058.

https://personal.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf
https://personal.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf
https://personal.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf
https://www.oreilly.com/library/view/uml-20-in/0596007957/
https://bertrandmeyer.com/wp-content/upLoads/OOSC2.pdf
https://bertrandmeyer.com/wp-content/upLoads/OOSC2.pdf
https://www.oreilly.com/library/view/the-pragmatic-programmer/9780135956977/
https://www.oreilly.com/library/view/the-pragmatic-programmer/9780135956977/
https://www.mlsu.ac.in/econtents/16_EBOOK-7th_ed_software_engineering_a_practitioners_approach_by_roger_s._pressman_.pdf
https://www.mlsu.ac.in/econtents/16_EBOOK-7th_ed_software_engineering_a_practitioners_approach_by_roger_s._pressman_.pdf
https://powerunit-ju.com/wp-content/uploads/2021/06/Sommerville-Software-Engineering-10ed.pdf
https://powerunit-ju.com/wp-content/uploads/2021/06/Sommerville-Software-Engineering-10ed.pdf
https://dl.acm.org/doi/pdf/10.1145/1113034.1113040
https://dl.acm.org/doi/pdf/10.1145/1113034.1113040
https://people.engr.tamu.edu/slupoli/notes/ProgrammingStudio/supplements/Code%20Complete%202nd.pdf
https://dl.acm.org/doi/10.1145/361598.361623
https://dl.acm.org/doi/10.1145/361598.361623

	_GoBack

