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 A B S T R A C T 
The proliferation of various wireless communication technologies and devices has ushered in the big data era in large-scale 

wireless networks. Researchers face new challenges when working with big data from large-scale wireless networks compared to 
traditional computer systems. This is because big data has four essential characteristics: high value, real-time velocity, immense 
variety, and great volume. The goal of this article is to survey all the new stuff about big data analytics (BDA) methods for massive 
wireless networks. Data collecting, data preprocessing, data storage, and data analytics are the four distinct phases that make 
up the BDA life cycle. We next provide an exhaustive review of the technical solutions that have been created to address the 
difficulties associated with BDA for large-scale wireless networks, organised according to each stage of the BDA life cycle. We 
also explore the research questions that remain unanswered and provide an overview of the potential future possibilities in this 
exciting field.
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1. Introduction
With the proliferation of smartphones and other IoT devices, 

there has been a noticeable uptick in mobile data creation via 
wireless networks1. The cumulative growth of mobile networks 
from 2012 to 2017 was seventeen times higher, with data traffic 
increasing by 71% between 2016 and 2017. Wi-Fi offloaded 
54% of traffic from devices that enable cellular and Wi-Fi 
connectivity in 2017, and that number is projected to rise to 59% 
by 2022, according to recent studies2. This means that IEEE 
802.11 networks are the backbone of many different types of 
end-user networks. In most businesses, the wireless network is 
used by the majority of users to access internal services or the 
Internet. An example of a campus Wi-Fi network is the one at 
Universidade Federal Fluminense, which has 547 access points 
and 5 Internet gateways. The network can support over 60,000 
users, 5,000 users connected at once at its peak, and over 100 
Mb/s per gateway in terms of data generation.

The information gleaned from the tracking and administration 

of such a massive wireless network provides a treasure trove 
of details regarding users, connections, consumption, and 
movement patterns3. There are a number of differences between 
wired and wireless network monitoring. If you want to know 
how the wireless network is doing right now, you can’t use 
the same old wired methods-like measuring metrics after data 
has gone over the wired network-to do so. For instance, when 
using conventional approaches, it is impossible to differentiate 
between a network that is not actively transmitting frames and 
one that is severely overloaded. Since the measurement alters 
the wireless network’s status, suggestions for evaluating the 
network’s health take active measurements into account, but 
they also suggest adjusting the evaluated parameters.

There is a trade-off in the precision of the data collected 
when utilising indirect measurements, such as counting access 
points to gauge channel utilisation or collecting frames using 
sensors for spectrum analysis. In contrast, gathering network 
metadata does not change the status of the network and enables 
the development of context-aware apps, which in turn facilitates 
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monitoring on all fronts. Finding nearby access points, deducing 
their physical distance, and determining their radio coverage 
area are all made possible by passively scanning for beacons 
and adding data about the signal strength with which they were 
received. Essential network functions including service charge 
collection, threat identification and isolation, and problem 
mitigation are also made possible by data collecting. Wireless 
mobile networks enhance our knowledge of the network’s 
long-term dynamics by supplementing it with space-time user 
and network condition data, providing end-to-end visibility 
and intelligence. For example, geolocation4 or user positioning 
information5 might be helpful for assessing usage trends and 
identifying outliers.

In addition, by assessing the data given by the network, entities 
and activities inside the network are able to self-coordinate, 
leading to the development of more proactive and efficient 
networks. Analysing enormous amounts of data from large-scale 
wireless networks allows one to discover usage trends, create 
user profiles, detect defects or performance declines at specific 
network sites, and optimise channel allocation, among other 
things. This study is hindered by various aspects of the wireless 
environment, such as user mobility issues, background noise, 
and data redundancy. Volume, velocity, diversity, value, and 
truthfulness are five essential elements of big data processing 
that are affected by these traits6. 

Figure 1: Big data analytics is essential for wireless networks 
on a grand scale.

The desire for thorough analysis of such “big data” is driven 
by the necessity to derive useful and enlightening insights from 
the vast amounts of data produced daily. Specifically, we review 
the various wireless network types and their respective BDA 
explanations in (Figure 1). Lack of network intelligence and 
fast-reaction mechanisms, frequently associated with the limited 
perspective of flow management tools, has a negative effect on 
both the quality of experience (QoE) of large-scale wireless 
network users and the extraction of knowledge about users and 
networks7. Therefore, monitoring large-scale wireless networks 
requires real-time processing and rapid responses to adjust the 
network to peak demand and infrequent user concentrations.

While huge data streaming processing methods may work 
in some situations, they are absolutely necessary for real-time 
network analysis. Data sets that may include an unlimited 
amount of samples and attributes are what big data streaming 
processing is all about. In characteristics space, samples come 
in an infinite number of ways and at any time. We are thus in the 

dark regarding the universe of data attributes and the statistical 
distribution of the traits. Instead of using a massive data 
processing platform to sequentially handle a handful of well-
known datasets, stream processing takes a different approach. 

There is an increase in processing latency and the amount 
of memory needed to store data when using batch processing. 
As a result, there are no memory restrictions when it comes to 
streaming data processing, and the processing delay for each 
data sample is reduced. In a streaming data scenario, there is an 
endless amount of samples and processing each new one requires 
very little latency, thus regular machine learning algorithms can’t 
search the training dataset. Hence, streaming data processing 
solutions such as Apache Spark Streaming8 and Apache Flink9 
provide two distinct types of streaming data processing: micro-
batch processing and sample-by-sample processing. 

Concept drifts in real-time input data can cause learning 
mistakes in machine learning systems10. Thus, it is important for 
machine learning apps to be cognizant of the attribute distribution 
statistics in the input data and to monitor any changes to these 
statistics. 

2. Literature Review
As a subset of ad hoc networks, wireless sensor networks 

(WSNs) enable a distributed network of sensor nodes to 
wirelessly collect, process, and transmit environmental data to a 
master node (the “sink”)11. 

The field, also known as the area of interest, is the geographical 
region in which the sensor nodes function. Wireless sensor 
networks (WSNs) allow sensor nodes to self-organize in order 
to gather data about their surrounding environment. Depending 
on the application in question, the data transmission can be 
done on an as-needed basis or at predetermined intervals. A 
node with two or more network interfaces is termed a sink, and 
it is used to connect the end-user’s network to the WSN. This 
end-user’s network could be a local area network or the Internet. 
For example, the user can specify the data type to be gathered 
by requesting it from other network nodes through the sink. For 
clarity’s sake, Figure 2 shows the basic layout of a WSN.

Recovering the data acquired by the sensors is the job of 
the randomly deployed sensor nodes in an area of interest and 
the sink at the zone’s conclusion. The sink often gathers data 
from the network and processes it, allowing it to provide the 
user only relevant information. On top of that, it may take user 
commands and run them on the internal network. The acquired 
data is processed and analysed by the user.

Figure 2: The general architecture of a wireless sensor network 
(WSN).
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2.1. Hardware architecture of a wireless sensor

Wireless sensors are tiny electronic devices that can measure 
physical quantities (such as light, temperature, or pressure) and 
transmit that data either directly to a data centre or through other 
sensor nodes that function as routers12. Thanks to advancements 
in microelectronics, software, and wireless transmission 
technologies, tiny, inexpensive microsensors with a volume of 
just a few cubic millimetres can now function in a network13. 
According to14, there are six components that make up a sensor 
node (Figure 3):

Figure 3: Architecture of a wireless sensor.

•	 Unit for acquisitions: Here we have a sensor and an ADC, 
the two main components. This sensor takes digital readings 
of several environmental variables and converts them into 
analogue signals. The ADC is responsible for digitising 
analogue signals. Unit for processing data. A data-storage 
unit and a processor are also part of this, with the processor 
handling data-processing and the control processes that 
enable the sensor to work with the others to complete 
acquisition duties. 

•	 The unit responsible for communication: Its purpose is 
to transmit and receive data. It has a set of antennas and 
a receiver. In our situation, it enables radio frequency 
(radio wave) communication inside the network. Other 
transmission modes, such as optical and infrared, do exist, 
though. 

•	 Power source: An essential part of every sensor design is 
the power source. It powers all the other units in the system. 
This is a unique issue for this kind of network since it usually 
correlates to a battery that supplies power to the sensor. The 
recent development of solar-panel power units, however, 
offers hope for a solution to the problem of shortening the 
lifespan of sensors14. 

•	 Mobile device: As an optional step, this is utilised to 
relocate the node in order to finish processing the task. 

•	 A	system	that	can	find	its	way: As an optional extra, 
it gives the application and/or routing the location data 
they need. 

2.2. Types of WSNs

Figure 4 shows the various kinds of WSNs that can 
be deployed in different environments, such as on land, 
underground, or underwater:

Figure 4: Types of WSNs.

•	 Terrestrial:  These WSNs are expected to be deployed 
in a terrestrial space. These networks scatter hundreds of 
thousands of sensors across an area, either randomly or 
according to a predefined pattern. Despite its greater utility 
in environmental monitoring and natural occurrences, this 
kind of WSN poses a threat to the network›s long-term 
viability in energy management15. 

•	 Subterranean: Extremely specialised sensor nodes make 
up these networks, and their installation and upkeep are 
notoriously difficult and expensive. Typically, sensor nodes 
in such a network would be buried. In order to keep tabs on 
soil conditions, they are useful in agricultural settings and 
mines. However, in this network architecture, data detected 
by underground nodes is relayed to the base station by a 
ground node16. 

•	 Below the surface: Submarine networks are one kind of 
wireless sensor network. This type of network continues 
to be an intriguing research problem due of the hostile 
environment in which they are deployed. Compared to 
sensors located on land, these nodes are more costly, have 
acoustic wireless communication, a limited bandwidth, 
frequent signal loss, and frequent synchronisation and 
propagation delays17. 

•	 Moving images: Data including photos, movies, and 
audio can be tracked and monitored by these WSNs. These 
little devices have built-in cameras and microphones. 
Data processing and compression in such a network type 
consume a lot of power because of the high bandwidth and 
quality of service requirements. The installation of these 
sensors necessitates prior preparation18. 

•	 Portable: This latest WSN variant makes use of mobile 
nodes that are capable of self-organization and can move 
around inside the network. The nodes spread to collect 
data after first deployment. Additionally, there is a hybrid 
network that uses both stationary and mobile sensors19,20. 

3. Big Data Collection in LS-WSNS
A WSN relies on a clearly defined architecture to gather data. 

Deciding on the best possible design is the main challenge. Here 
we outline the many literature-proposed designs for identifying 
those that work with large-scale WSNs. References presented 
several data-collecting network designs in their study. These 
designs are primarily based on two approaches: one that relies 
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on a static network and another that relies on network mobility. 
Figure 5 depicts the various data-collection topologies proposed 
in the literature.

Figure 5: Various approaches to WSN design.

3.1. Static Architectures

The literature typically encounters this classical technique. 
It is a method of collecting data that involves placing a network 
of sensors in a target area. There are no dynamic components in 
this architecture’s network. Conversely, there are two possible 
approaches to network deployment: deterministic and random.

3.2. Static-Sink and static-sensor architecture

A vast network of sensors that can independently gather and 
transmit data about their surroundings makes up this design. 
These sensor nodes’ locations aren’t always set in stone. You 
have the option to scatter them around the target region at 
random. A high density is a hallmark of this design style, which 
ensures that every pair of network nodes will have access to at 
least one path. In addition, the network’s lifespan is reduced, 
which is a big negative of this design. The issue of nearby sensor 
nodes’ fast battery drain was reported to the washbasin. The 
nonuniform energy usage in the network originates from the data 
relay from the source sensor to the washbasin. Because they get 
the greatest requests for data transfer to the washbasin, nearby 
sensor nodes quickly run out of juice, rendering the washbasin 
inoperable. The network’s lifetime is diminished due to this 
circumstance. Uses of this design include the Habitat Monitoring 
on GDI (Great Duck Island) programmes, the VOLCANO and 
GLACSWEB apps, and others.

3.3. Architecture with sensor nodes and several static sinks

The new design, which differs from the previous one by 
including sensor nodes and numerous static sinks (see Figure 
6), aims to extend the lifetime of the network by increasing the 
number of sinks. But the problem of sensor nodes’ batteries 
dying while they’re far from sinks is still there. It is still difficult 
to choose amongst the several sinks, which are the sensor nodes 
in this design.

3.4. Architecture based on mobility

Several works have included mobility into WSNs to increase 
network lifetime and decrease latency. Thanks to its many 
benefits, such as improved connection, lower deployment costs, 
reliability, and energy efficiency, mobility in WSNs is a great 
asset. Despite the fact that mobility increases the lifetime of 

networks, it poses a number of problems for sensor networks. 
See Figure 7 for a list of these difficulties. They include things 
like contact detection, location, energy consumption, reliability 
of data transfer, quality of service, and mobility-oriented power 
management.

Figure 6: Design including many static sinks and sensor nodes.

Figure 7: Travelling in a WSN: Difficulties.

Many different kinds of mobility have been proposed for 
WSNs, such as static-sink designs with mobile sensor nodes, 
mobile-sink and sensor node designs, sensor designs, hybrid 
designs, and other static-sink designs with sensors and mobile 
sinks.

3.5. Static sink architecture and moving sensor nodes

The mobility of the sensors is a unique feature of this design. 
A lot of research in recent years has focused on this strategy. 
This design drastically cuts down on the amount of sensors 
needed to be deployed due to the mobility of the sensors. This 
architecture allows for direct communication. This design aids 
in keeping the network covered well. With this design, energy 
consumption can be evenly distributed among sensors, and the 
washbasin may gather a substantial amount of data. Projects like 
COW and CENWITS adopt this design, in which sensor nodes 
are mobile but the washbasin remains stationary.

3.6. Architecture with a mobile sink and static sensor nodes

The washbasin can be moved about in this arrangement, but 
the nodes themselves stay put. It is possible to start collecting 
data after the sink has arrived at a designated sensor node and the 
sensor has detected it. This layout has a major flaw: the sensor 
nodes are unable to locate the washbasin. But it’s a fascinating 
notion to employ mobile agents to get data from the sensors. 
According to21, agents like MULEs (Mobile Ubiquitous LAN 
Extensions), mobile sinks, and mobile data collectors move in 
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a predetermined pattern or at random to collect data from the 
sensors. Mobile agents are used by the permanent sensor nodes 
to collect data. 

These agents on the move can take the form of people, 
machines, animals, or even cars. One benefit of this design is that 
it allows for greater connectivity to the WSN placed in a region 
of interest by removing the constraint of high density. According 
to References23, a WSN architecture like this one helps keep data 
integrity and prevents collusion in densely populated networks 
of wireless sensors.

3.7. Architecture with a mobile sink and mobile sensor nodes

Both the sensor node and the sink levels are considered 
for mobility in this architecture. This architecture provides 
advantages similar to those of the mobile sink and static sensor 
node systems. Several projects in both academia and business 
have utilised this layout. Using this layout, researchers in Kenya 
tracked zebras as they rode in a vehicle from the Sweetwaters 
Reserve to Mpala in central Kenya, with the use of sensors 
attached to the animals.

When it came to environmental monitoring, this study was 
among the first to include node and sink mobility in tandem. 
Naturally, we bring up this zebra tracking project (ZebraNet)24 as 
an example of an application that uses this design.

3.8. Architecture with sensors and multiple static sinks

This design is unique in comparison to all the others that 
have been showcased thus far. A dense network of sensor nodes 
is used in conjunction with several sinks. One of the network 
sinks takes in data from the sensor nodes and sends it on to the 
consumers. Selecting the washbasin is a major challenge with 
this design. Reference25 adds to the impression of the solution’s 
complexity by suggesting a multi-to-many architecture for 
routing optimisation. Another obvious flaw with this idea is its 
lack of evolution. In fact, adding sinks is not something that can 
be automated as the sensor network expands; otherwise, we risk 
reverting to the issues of a single-sink architecture. Also, the 
end user and the sensor nodes can’t connect directly with this 
solution.

3.9. Architecture with sensors and multiple mobile sinks

The only real difference between this method and the last 
one is that in this one the sinks can move about. One possible 
option is to use a single WSN to house multiple mobile sinks. 
The solution’s inability to easily route sensor data is a major 
drawback. In an effort to address this, the authors of26 proposed 
a method to enhance routing efficiency.

3.10. Hybrid architectures

A multisink architecture is another option. Using a number 
of mobile receivers to gather data instead of a few static ones 
could significantly extend the lifespan of the WSN. The goal 
of other efforts involving many mobile sinks was to either 
increase the global network’s lifetime or decrease the energy 
consumption of sensors. A lack of scalability is a common 
source of these proposals. The reason behind expanding the 
sensor network is to circumvent the challenges associated with 
single-sink architectures, which cannot be solved automatically. 
Additionally, there is no way for the user to establish a direct 
connection with the sensor using this technique.

4. Comparison of Data-Collection Architectures in the 
Context of LS-WSNS

Each of the designs discussed here has its own set of pros 
and cons; this is mostly due to the fact that our objectives inform 
the design of these structures. Apart from that, LS-WSNs have 
a dense network of sensors spread out across a large area. 
Accordingly, we conclude that fewer nodes need to be deployed 
if mobility benefits sensor nodes rather than sensor networks, 
even when the benefits outweigh the disadvantages. This leads 
us to the conclusion that LS-WSNs are not a good fit for this type 
of design. No matter how much power the sensor and static-sink 
networks use, they are modified to accommodate the growing 
network. Getting this network’s energy consumption under 
control is still a major hurdle. This can only be achieved by 
modifying the various methods employed within the framework 
of so-called traditional WSNs so that they can cope more 
effectively with a sensor-rich setting.

4.1. Data Transferring in LS-WSNs

The data collected by the nodes needs to go to a central 
location in the network called a sink. Using routing, we can 
determine the most efficient way to send data from the sensor 
nodes to the sink while minimising energy consumption. 
Connecting the washbasin to a faraway user is also possible by 
another wide transmission technology, such Wimax, LTE, or 
even a satellite. The user can specify the kind of data that needs 
to be harvested and the sink node can transmit the request to 
other nodes in the network.

Many different routing protocols have been suggested 
for use in LS-WSNs, which is still an active field of study. 
Numerous papers have recently been published on the topic of 
routing methods for WSNs. The network architecture and the 
intended action are the two primary criteria for categorising 
these protocols27,28 (Figure 8).

Figure 8: Classification of WSN routing protocols.

4.2. Network structure-based routing protocols

Data routing relies heavily on the distribution of routing 
protocols in accordance with the topology of the network. In 
terms of how networks are structured, there are primarily three 
types of protocols. Below are the protocols:

•	 Direct routing: Here, all sensor nodes are likewise 
referred to as “data centric,” and they all have identical 
responsibilities. This is the original approach used for data 
routing in the WSN. It can only work if all the nodes in 
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the network work together. The massive number of nodes 
makes it impractical to assign a unique identity to each one, 
thus instead, data properties are defined using a naming 
scheme based on attributes (attribute, value). Their ease of 
use is one of their many benefits; this makes it possible to 
set up connections with no out-of-pocket expense, as each 
node simply needs data from its immediate neighbours. 
Since all traffic must flow via the nodes in close proximity 
to the base station in order to reach the latter, this drains their 
energy supplies. Hierarchical routing is a way to organise 
data. The establishment of clusters (shared regions) is the 
foundation of this method. Data collected by nodes in a 
cluster should first be directed to their respective area heads, 
known as the Cluster Heads (CH), who should then process 
the data and send it on to the next destination. If the CH is 
unable to immediately access the station, basic information 
should be forwarded to the next zone leader. By applying 
aggregate functions to the cluster’s data, CHs are able to 
integrate it, which reduces communication and energy 
costs by minimising the number of messages flowing on 
the network. One drawback is that the network is too big. 
Furthermore, CH election becomes resource hungry and 
crucial as network size increases. 

•	 Routing Based on Location: It is critical for the WSN 
data-routing algorithms to be able to pinpoint exactly where 
the sensor nodes are on the collecting region. The shortest 
routes between two nodes can be constructed using this 
location data by calculating the positions of the sensors 
and the distances between them. Because it eliminates the 
need for sensor nodes to employ random or probabilistic 
methods to search for routes, this routing solution is more 
energy-efficient. Furthermore, the nodes’ locations (and, 
by extension, their regions) allow for the restriction of 
broadcast requests to certain regions rather than the entire 
network, drastically cutting down on transmissions. One 
drawback is the high energy consumption of the satellite 
tracking systems that are required to be installed on sensor 
nodes, such GPS. 

5. Conclusions
There is a vast array of possible uses for wireless sensor 

networks (WSNs). Implementing these networks within the Big 
Data framework showcases their ability to tackle and surpass 
inherent restrictions to meet unique needs. Big Data refers to the 
expectation of a diverse dataset that is continuously generated 
by the Internet of Things (IoT) to a degree that it cannot be 
gathered, managed, or analysed by conventional methods.

The features of such data present an intriguing challenge for 
the gathering and processing of such data via low-power wireless 
sensor networks (LS-WSNs). A more effective strategy for the 
collecting of Big Data is proposed in this study, which is the 
result of a complete review that we did. Given this background, 
we set out to solve the issue of big data collection by publishing 
horizontal overviews of WSNs and big data. Soon after, we 
covered the numerous approaches to data transportation and 
the different designs for gathering Big Data. Furthermore, 
the challenges of Big Data collection in LS-WSNs have been 
investigated. In an effort to inspire and guide scholars of the 
future, we provided a comprehensive assessment of the open 
questions along with the associated barriers. In order to offer 
direction, this study relied on a systematic assessment of the 

viewpoints of different authors dealing with the gathering of Big 
Data in LS-WSNs.
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