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Introduction
The examination of production data is made more difficult 

by significant imprecision found in empirical fitting models 
and correlations that are used to anticipate hydrocarbon flow in 
reservoirs with heterogeneous and anisotropic characteristics. 
The behavior of hydrocarbon reservoirs, both static and dynamic, 
influences the production of multiphase fluids through surface 
chokes1. In managing this challenge, understanding the complex 
relationships that exist between different variables by researchers 
has been made possible with the use of machine learning (ML) 

techniques. These machine learning techniques have produced 
more accurate prediction models that are useful in many domains, 
including reservoir characterization, drilling automation and 
the classification of lithofacies2. Machine learning, a subset of 
artificial intelligence can be used to generate an expert system 
that can be utilized in evaluating choke performance. A choke 
which is a component of a well is used to maintain flow rates in 
the face of changes in flow line pressure, thus limiting flowrates 
to prevent gas or water from coning, eliminate sand problems 
triggered by rapid drawdown and manage production rates to 
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The complexity of predicting hydrocarbon flow in anisotropic reservoir is exacerbated by imprecise empirical models, thus 

nurturing the view of utilizing multiple linear regression and artificial neural network models in this research work, taking into 
consideration production variables; tubing pressure, liquid flow rate, gas-oil ratio, oil specific gravity, water cut, line pressure, 
choke size and gas-liquid ratio in predicting choke size and flowrate under critical flow conditions. For critical flow rate represents 
a threshold above which solid and fines production increases significantly, which could lead to sand- related issues that can 
be exacerbated by factors like high flow rates and water coning, negatively impacting oil and gas production. At critical flow 
condition, the fluid velocity reaches the speed of sound, causing pressure waves to propagate through the flow at sonic velocity. 
The effectiveness of the waves beyond this point tends to be lost and changes due to downstream pressure no longer have an 
impact on flow rate. Thus, in applying machine learning in developing predictive models for flow rate and choke size, examining 
correlations between production variables and comparing predicted outcomes with actual data, a better performance model was 
observed for the artificial neural network model, with R² = 0.9451 for flow rate and R² = 0.9839 for choke size, which reflects the 
positive quality of the model. Also, the results showed a low error level per data point indicated by the mean absolute relative 
error of 14% for choke size and 27% for flow rate forecasting.
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prevent surface equipment from slugging. The wellhead choke 
in controlling the wellhead pressure, in turn influences the 
production rate and flowing bottom-hole pressure3.

Flow regimes that are largely governed by the pressure 
differential across the choke are subcritical and critical (choked) 
flow. The distinct behaviors between these regimes makes it 
crucial that one distinguishes between these regimes when 
estimating flow rates. Critical flow is recognized as when a 
fluid velocity reaches sonic speed and the pressure waves 
generated due to fluctuating pressures traverse the flow at the 
speed of sound. In this flowing condition, the waves are rendered 
ineffective as the fluid advances faster. The flow rate at this 
condition becomes independent of downstream pressure and is 
uninfluenced by shifts in downstream pressure4. It is noted to 
exist when the pressure upstream of the wellhead is at least 70% 
higher than the pressure downstream of the wellhead or when 
the ratio of downstream pressure to upstream pressure is 0.588.

Taking into consideration the view of controlling solid 
and fines production in a well production flow stream, critical 
flow rate is a production threshold rate above which uniform 
production of solids contained within the produced flow stream 
is observed. In reservoirs prone to sand or fines production it 
is essential to maintain sub- critical flow conditions as when 
the flow rate exceeds this threshold (i.e., becomes critical), the 
production of sand and fines increases substantially.

Sand-related issues adversely affect the recovery rate in 
oil and gas production. High flowrate, which is influenced by 
drawdown, as well as the occurrence of gas or water coning 
are the main causes of these issues. Sand-related concerns can 
lead to substantial annual financial losses for producers through 
triggering damage to subsea and downhole equipment, surface 
production facilities and an increased risk of catastrophic failure. 
In regard to this, creating a dependable estimating model that 
can analyze a choke effectiveness is imperative. This model 
would leverage on algorithms trained on machine learning for 
prediction of optimum flow rate and choke size by taking into 
consideration a variety of fluid parameters. By doing this, these 
challenges can be tackled effectively and the system can be 
optimized.

High viscosity reservoir fluids, in juxtaposition to low 
viscosity fluids, enact a substantial frictional drag force on the 
formation particles, making them a significant fluid feature as 
sand production could result from this viscous drag in heavy 
oil reservoirs with high specific gravity. Further, more sand is 
produced correspondingly to the rise in water cut. The reason for 
this is that as the connate water tends to adhere to the produced 
water, the surface tension force declines, decreasing the 
cohesiveness between particles. Additionally, when the water cut 
rises, the relative permeability of oil reduces, necessitating an 
elevated differential pressure to produce the hydrocarbon fluid at 
the same rate. Shear force through the formation sand particles 
becomes stronger owing to the elevation of differential pressure 
near the well bottomhole. Sand production may originate from 
the increased strains since they could lead to instability in the 
sand arch encircling the perforation5.

An important consideration, that impacts both the rate of 
production and the entire cumulative recovery of hydrocarbons 
is precisely figuring out the most suitable choke size. The daily 
production volume of hydrocarbon is significantly affected by the 
choke size. Production can be enhanced and wellhead pressure 
and bottomhole flowing pressure can be optimally minimized at 
the same time by increasing the choke size6,7.

In addition, water coning arises when the drawdown in the 
immediate area of the well transcends the gravitational gradient 
due to the differences in density between water and hydrocarbons. 
Water advances vertically upward from the free water level in 
the area near the well, which is where this phenomenon usually 
occurs. This phenomenon contributes to liquid loading8.

Basically, a lot of methods for figuring out flow rates through 
chokes have been published, however, it appears to be clear that 
there is still yet any approach that can predict flow characteristics 
with a high level of accuracy all through the whole range of 
typical operating circumstances found in the oil and gas sector 
(Table 1). Thus, it is evident that developing a model with the 
various production variables considered using machine learning 
approach to forecast choke performance is essential9.

Table 1: Summary of literature review and gap analysis.

Authors and year 
of publication

Findings Gap analysis

10 Employed in this research work is the use of gray- box modeling to achieve 
an oil rate prediction with error ranging from 1.8% to 40.6%. 

This analysis didn’t take into consideration 
water cut and oil specific gravity.

11 This research work used stacked ensemble supervised machine learning to 
predict flow rate with a mean absolute percentage error of 8.1%.

This work didn’t take into consideration water 
cut.

12 It was inferred in this research work that random forest (RF) model accurately 
replicates the actual rates under both critical and subcritical flow conditions, 
whereas support vector machine (SVM) model generally captured the oil 
rate trends but occasionally missed abrupt changes in the trend.

This work didn’t take into consideration oil 
specific gravity and temperature.

13 In using a linear regression approach for forecasting oil production, a mean 
absolute error of 0, MSE of 0.2 and RMSE of 0.3 was achieved.

Parameter such as water cut was not 
considered.

14 In comparing the various models developed using multiple linear 
regression, polynomial linear regression, support vector method, decision 
tree regression, random forest, XGBoost, recurrent neural network and 
artificial neural network, it was noted that an outstanding R2 value of 0.96 
for XGBoost, 0.97 for ANN and 0.98 for RNN was achieved.

The analysis didn’t consider oil specific 
gravity.

15 The simple plotting technique proposed was able to predict well gas rate 
using choke opening and wellhead flowing pressure with an absolute 
average percent deviation of 5%. 

Factors such as water- cut and gas liquid ratio 
was not taken into consideration.
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Where  is the predicted outcome,  is the observed outcome 

and  is the average of observed outcomes 
24

.

Mean relative error (MRE)

The mean relative error delineates the variance between the 
predicted value and the actual value and is capable of assuming 
positive as well as negative values. When forecasts diverge 
significantly from the actual value, yet are evenly dispersed 
between overestimations and underestimations, this discrepancy 
tends to approach zero, despite each individual prediction being 
notably inaccurate.

Mean of absolute relative error

The mean of the absolute relative error will be low only when 
the error associated with each data point is minimal. 

Standard deviation

The standard deviation provides insight into the degree of 
dispersion among the relative errors; however, if all predictions 
consistently overestimate by, for instance, 20 – 25%, the standard 
deviation will be minimal4.

Results and Discussion
The input parameter for the model were tubing pressure 

(Pwh), water cut, gas- oil ratio (GOR), gas- liquid ratio (GLR), 
oil specific gravity (OSG) while the output parameters were flow 
rate and choke size25-27.

16 In utilizing artificial intelligence techniques such as artificial neural 
networks, fuzzy logic (FL), support vector machines and functional 
networks in estimating choke size, fuzzy logic was considered to yield the 
best result with a R2 value of 1.000 for training and 0.810 for testing.

The analysis didn’t not take into consideration 
water- cut.

17 The model developed using artificial neural network indicated an average 
absolute percent error of 3.7% in the prediction of choke size and 6.7% in 
the prediction of flow rate.

The analysis didn’t take into consideration 
water- cut.

18 A comparative analysis of flow rate prediction performance among 
traditional empirical methods, machine learning techniques and deep 
learning algorithms was carried out with the results highlighting that deep 
learning algorithm surpassed other models with an R2 value of 0.9969.

The analysis didn’t not take into consideration 
water- cut.

19 Using artificial neural network, a model for estimating flow rate was 
developed and a correlation coefficient value of 0.89 for critical flow rate 
and 0.92 for subcritical flow rate was achieved.

The analysis didn’t take into consideration oil 
specific gravity.

20 ANN models delivered more accurate predictions compared to empirical 
correlations, with coefficients of determination (R²) of 0.9653 for the Gilbert 
model and 0.9951 for the modified Gilbert model.

Water cut wasn’t considered

1 Test results indicate that the stacked generalization architecture outperformed 
other prominent methods considered for production forecasting

Water cut wasn’t considered.

21 A new empirical model, derived from the Choubineh et al. model, was 
developed to forecast the liquid production rate of chokes in Niger Delta oil 
wells achieving an R² of 0.982.

Water cut wasn’t considered

22 Adaboost-SVR model showed outstanding performance over other models 
proposed, achieving an Average Absolute Percent Relative Error (AAPRE) 
of 5.15% and a correlation coefficient of 0.9784.

Water cut wasn’t considered

Materials and Methods
In this study, a dataset of 701 production variables; flow 

rate, gas- liquid ratio, oil specific gravity, choke size, upstream 
pressure, downstream pressure, gas- oil ratio and water cut were 
considered in the development of machine learning models 
using MATLAB software.

Assumption; for the purpose of these research work, the 
pressure ratio at which critical flow occurs is taken as 0.588 as 
indicated in the work of Hamzeh, et al23.

Multiple linear regression

A multiple linear regression model is developed with the use 
of a MATLAB software.

Exploratory analysis: Processing the data involves carrying 
out exploratory analysis which include assessing whether there 
is a linear relationship between the independent and dependent 
variables which can be examined using scatter plots. Cross plot 
also known as scatter plot can be used to show the proximity of 
the data points, indicating their level of agreement17,24.

Artificial neural network

Another tool that will be employed for this study is artificial 
neural network. The data set for an artificial neural network 
are partitioned into training, validation and testing data. The 
partitioning ratio intended for this study is 80% training, 10% 
validation and 10% testing17.

Measures of evaluation 

R—squared (R2)

A higher R2 value indicates a better performing model and 
also the goodness of fit of the model.
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Multiple linear regression and artificial neural network 
techniques were applied to develop a model for flow rate and 
choke size respectively28.

Multiple linear regression

(Figure 1), is a plot that visualizes the connections and 
correlations between the features. The diagonal of the plot 
represents the data frequency for each set. The correlation 
coefficient between all of the data features ranges from -1 for the 
strong inverse relationship and 1 for a strong direct relationship. 
Water cut and tubing pressure showed the strongest correlation, 
indicating a strong direct relationship as an increase in water 
cut generally leads to higher tubing pressures due to changes in 
fluid density, viscosity and flow patterns29,30. While oil specific 
gravity and tubing pressure showed weak direct correlation as 
higher specific gravity oils result in higher hydrostatic pressure 
and potentially increased frictional losses, leading to higher 
overall tubing pressure. Also, oil specific gravity and flow rate 
showed an inverse relationship, as high oil specific gravity leads 
to increased pressure drops and flow resistance resulting to low 
flow rate in an oil well31.

 Correlation Matrix
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Figure 1: A correlation matrix plot of data features.

In addition, choke size and flow rate showed very low 
direct correlation which is indicative that increasing the choke 
size generally increases the flow rate but careful management 
is necessary to avoid reservoir damage, excessive water or gas 
production and equipment wear32. Also, the low correlation 
could be indicative that the flowrate is dependent on the 

reservoir energy. For instance, artificial lift is needed when the 
reservoir energy has depleted, which is indicated by a decline 
in tubing pressure. As observed in the correlation matrix plot, 
tubing pressure has a strong inverse relationship with choke 
size, indicative that choke size can influence tubing pressure33,34. 
That is an increase in choke size can lead to a decrease in tubing 
pressure and a decrease in choke size can lead to an increase in 
tubing pressure.

In (Table 2), it is indicated that most of the parameters 
showed a nearly normal distribution (Pwh, choke size, water cut), 
while GOR, GLR and flow rate showed positive skewness and 
OSG showed negative skewness. High values of skewness and 
kurtosis for GLR, GOR and flow rate represent an asymmetric 
distribution for these variables with most of the data shifted to 
the lower end35.

The result contained in (Table 3), indicates that the regression 
is significant because the p-value = 8.72e-257 of the F-statistic 
is less than 0.05. Also, the R-squared value:0.821 indicates 
82% of the total variation in predicting choke size is explained 
by the regression. Standard error (SE), which is a measure of 
unexplained variation is within the range of 0.073169 to 0.1983. 
The p-values of the various features (wellhead pressure, water 
cut, gas- oil ratio, gas- liquid ratio, oil specific gravity) were less 
than 0.05, which indicates that they contribute significantly in 
the prediction of choke size36,37.

The result contained in (Table 4), indicates that the 
regression is significant because the p-value = 1.8e-74 of the 
F- statistic is less than 0.05. Also, the R-squared value: 0.399 
indicates that 40% of the total variation in predicting flow rate 
is explained by the regression. Standard error (SE), which is a 
measure of unexplained variation is within the range of 54.006 to 
146.37. The p-values of the various features (wellhead pressure, 
water cut, gas- liquid ratio, oil specific gravity) were less than 
0.05, which indicates that they contribute significantly in the 
prediction of flow rate.

Artificial neural network

(Figure 2), shows the result of an artificial neural network 
model with a level of accuracy upon confirming the performance 
of the model with additional testing data set to be (R= 0.9839), 
indicating a high degree of correlation between the predicted 
and actual values, meaning that as one variable changes, the 
other tends to change in a similar manner. It also indicates that 
the model effectively captured the underlying patterns in the 
data and could produce output that closely aligns with the actual 
observations. The goodness of fit of the model, shown on the 
regression plot indicates a very strong positive linear increasing 
trend as majority of the data aligns to the 45o line for the training 
and testing data set for prediction of choke size. The high R- 
value reflects positively on the quality of the model indicating 
that the ANN architecture, as well as the chosen parameters and 
features, are appropriate.

Table 2: Data Statistical Analysis.

GOR Pwh Choke size Water cut GLR OSG Flow rate

No. of data points 701 701 701 701 701 701 701

Maximum 0.0029 2397 48 99.3789 0.0013 1.0703 2174
Minimum 5.2910e-06 221.7799 12 0.0914 3.3113e-06 0.9293 8786
Skewness 3.3803 0.6555 0.2549 0.0072 5.9990 -1.3431 2.1414
Kurtosis 15.0216 2.6388 3.0105 2.8599 100.2508 2.8482 9.9848
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Table 3: Result of multiple linear regression model for choke 
size prediction.

Estimated Coefficients:

  Estimate SE tStat pValue   

(Intercept) 25.805 0.073169 352.67 0

x1 (Pwh) -7.8652 0.1983 -39.663 1.13E-180

x2 (water cut) 3.186 0.18754 16.989 2.13E-54

x3 (GOR) 1.2627 0.10869 11.618  1.22E-28

x4 (GLR) -0.38085 0.11686         -3.2591        0.0011723

x5 (OSG) 0.4359 0.078052        5.5847  3.36E-08

Number of observations: 701, Error degrees of freedom: 695
Root Mean Squared Error: 1.94
R-squared: 0.821, Adjusted R-Squared: 0.82
F-statistic vs. constant model: 637, p-value = 8.72e-257

Table 4: Result of multiple linear regression model for flowrate 
prediction.

Estimated Coefficients:

Estimate SE tStat pValue

    (Intercept) 12365 54.006 228.95 0

    x1 (Pwh) 1100.2 146.37 7.5166 1.7375e-13

    x2 (water cut) -1194.4 138.42 -8.6285 4.2095e-17

    x3 (GOR) -143.24 80.223 -1.7855 0.074614

    x4 (GLR) 183.74 86.254 2.1302 0.033504

    x5 (OSG) -934.85 57.611 -16.227 1.8821e-50

Number of observations: 701, Error degrees of freedom: 695
Root Mean Squared Error: 1.43e+03
R-squared: 0.399, Adjusted R-Squared: 0.395
F-statistic vs. constant model: 92.3, p-value = 1.8e-74
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Figure 2: Regression plot for prediction of choke size.

(Figure 3), shows the result of an artificial neural network 
model with a level of accuracy upon confirming the performance 
of the model with additional testing data set to be (R= 0.9451), an 
indication of a very strong positive linear relationship between 
the predicted and actual values, which also highly reflects 
positively on the quality of the model that the ANN architecture, 
as well as the chosen parameters and features, are appropriate. 
The goodness of fit of the model, shown on the regression plot 
indicates a strong positive linear increasing trend as majority of 
the data aligns with the 45° line.
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Figure 3: Regression plot for prediction of flowrate.

Evaluating the performance of the ANN models: 

Table 5: Dataset for evaluation of model.

SET Flow rate Choke 
size Pwh Water Cut GOR GLR OSG

1 11095.22 18 2372 98.795181 0.001 1.20E-05 1.063251

2 12770.83 20 1983 96.644295 0.000708 2.38E-05 0.929329

3 11442.42 22 1536 92.805755 0.0004 2.88E-05 1.069258

4 10868.79 24 1158 70 0.000295 8.84E-05 1.069965

5 12076.44 26 923 50.877193 0.000301 0.000148 1.060071

6 13284.08 28 766 49.056604 0.000259 0.000132 1.065724

7 11472.61 30 627 47.058824 0.000309 0.000163 1.069965

8 8981.849 32 499 48.421053 0.000299 0.000154 1.069117

9 12438.73 34 459 46.808511 0.000283 0.000151 1.04318

Table 6: Summary of result.
SET Flow rate 

(actual)
Flow rate 
(Predicted)

Choke size 
(actual)

Choke size 
(Predicted)

1 11095.22 11084.11 18 18.4

2 12770.83 12872.3 20 20.2

3 11442.42 11673 22 21.8

4 10868.79 10515 24 24

5 12076.44 12750 26 26.1

6 13284.08 12800 28 28.3

7 11472.61 11400 30 30.2

8 8981.849 9555 32 32

9 12438.73 12150 34 31.7

In terms of model validation, it can be inferred that with an 
R value of 0.9839, the choke size model is likely generalizing 
well to unseen data. This means that the model is not only fitting 
the training data well but could also make predictions on new, 
unseen data as shown in (Figure 4). Also, with an R value of 
0.9451, the flowrate model is likely generalizing well to unseen 
data. This means that the model is not only fitting the training 
data well but could also make predictions on new, unseen data 
as shown in (Figure 5).

As observed in (Table 7), the artificial neural network model 
for choke size with R= 0.9839, showed high level of accuracy in 
predicting the target output compared to the models for flowrate 
with R= 0.9451 (Table 8). Also, the mean of absolute relative 



J Petro Chem Eng  | Vol: 3 & Iss: 1Oshogbunu O, et al.,

6

error for choke size is 1.4% and for flow rate is 2.7%, which 
is an indication that the error associated with each data point is 
low.

Figure 4: Evaluation of actual Vs predicted choke size.

Figure 5: Evaluation of actual Vs predicted flow rate.

Table 7: Statistical evaluation of ANN models.
Model R Mean Relative Error Mean of Absolute Relative Error (%) Standard deviation (%)

CHOKE SIZE 0.9839 -0.256175 1.43206 2.589974

FLOWRATE 0.9451 0.52964015 2.719349 3.598931

Table 8: Comparison of ANN models developed with previous works.
ANN models R2 (0.9839), MARE (1.4%), SD (2.5%) for choke size prediction model

R2 (0.9451), MARE (2.7%), SD (3.5%) for flowrate prediction model

Authors Result achieved

Hossein et al. (2021) R2 (0.9644); AAPD (5.396); SD (697.9) using artificial nueral network for flow rate prediction

Al-Khalifa et al. (2013) R2 (0.991); Average absolute percent error (3.7%); SD (5.56), for choke size prediction and   R2 (0.986); Average absolute percent 
error (6.7%); SD (10.5), for flow rate prediction.

Hamzeh et al. (2018) R2 (0.997); AAPD (7.33–8.51), SD (288.77–563.85), for flowrate prediction.

Conclusion

This study presents the application of machine learning 
(multiple linear regression and artificial neural network) 
techniques taking into consideration production variables such 
as tubing pressure, liquid flow rate, gas-oil ratio, oil specific 
gravity, water cut, line pressure, choke size and gas-liquid ratio 
in developing a model for predicting flow rate and choke size 
from which it can be deduced that, Artificial neural network 
models with an accuracy of R= 0.9451 for flow rate model and 
R= 0.9839 for choke size model was noted to be better than 
multiple linear regression models with R= 0.399 for flowrate 
model and R= 0.821 for choke size model. Also, upon evaluation 
of the ANN model in predicting choke size and flowrate, the 
mean of absolute relative error 1.4% for choke size and 2.7% for 
flow rate was gotten which is an indication that the measure of 
error associated with each data point is low.

Recommendation

The research employed 2 techniques in the development of 
a model for prediction of choke size and flow rate, therefore 
further studies could include other machine learning techniques.

A representative dataset with high measure of data accuracy 
and low error associated with each data point could be employed 
in achieving a model with a level of accuracy (R= 1.0000), as 
these would result to high level of accuracy of the model in 
predicting values.

Contribution to knowledge

This study has encouraged the understanding of how various 
production variables influences choke performance via the 
correlation matrix.
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