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Background
Atmospheric circulation dynamics represent one of the 

most complex and fascinating systems on Earth, emerging from 
the intricate interplay of physical laws, energy exchanges and 
feedback loops that span across spatial and temporal scales. At 
its core, atmospheric circulation is the global movement of air 
that redistributes energy from regions of surplus, primarily near 
the equator, to regions of deficit, primarily toward the poles. 
This redistribution moderates’ temperatures, drives weather 
systems and sustains climates that make life on Earth possible. 
However, the underlying mechanisms are far from simple. 
They are governed by nonlinear interactions between radiation, 
pressure gradients, the rotation of the Earth, friction, latent heat 

release and the thermodynamic properties of air and water vapor. 
This complexity gives rise to emergent patterns such as jet 
streams, trade winds, monsoons and cyclones, whose behavior is 
predictable in some aspects yet chaotic in others. Understanding 
atmospheric circulation therefore requires not only physics but 
also mathematics, fluid dynamics and even chaos theory to 
capture its multifaceted nature.

The driving force of atmospheric circulation begins with 
solar radiation, which is unevenly distributed across the planet’s 
surface. The equatorial regions receive more direct solar energy, 
creating a surplus of heat, while higher latitudes receive less 
energy due to the curvature of the Earth and the angle of incidence 

 A B S T R A C T 
Atmospheric models exhibit complex dynamical behaviors and it is important to understand the dynamics of atmospheric 

circulation so that strategies to control the circulation can be developed in the future. In this work, bifurcation analysis and 
multiobjective nonlinear model predictive control is performed on the Lorenz-84 atmospheric circulation model. Bifurcation 
analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be 
considered and multiple objectives must be met simultaneously.  The MATLAB program MATCONT was used to perform the 
bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO   in conjunction with 
the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of a Hopf 
bifurcation point and a limit point. The MNLMC converged to the utopia solution. The Hopf bifurcation point, which causes an 
unwanted limit cycle, is eliminated using an activation factor involving the tanh function. The limit point (which cause multiple 
steady-state solutions from a singular point) are very beneficial because it enables the Multiobjective nonlinear model predictive 
control calculations to converge to the Utopia point (the best possible solution) in the model.
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of sunlight. This imbalance sets the stage for atmospheric 
motion as nature seeks equilibrium through the transport of 
energy. Heated air near the equator rises, creating regions of low 
pressure, while cooler, denser air from higher latitudes moves 
in to replace it. In theory, this would create a simple one-cell 
system per hemisphere, with air rising at the equator and sinking 
at the poles. However, the Earth’s rotation and the conservation 
of angular momentum complicate this simple picture.

The Coriolis effect, a consequence of the Earth’s rotation, 
deflects moving air masses to the right in the Northern 
Hemisphere and to the left in the Southern Hemisphere. This 
effect fragments the idealized single-cell circulation into three 
distinct cells per hemisphere: the Hadley cell, the Ferrel cell and 
the Polar cell. Each cell represents a general pattern of rising, 
poleward flow aloft, sinking and equatorward return flow near 
the surface, but the reality is far more irregular. The Hadley 
cell dominates tropical latitudes, where warm air rises near the 
equator, diverges aloft and descends near 30 degrees latitude, 
creating subtropical high-pressure zones associated with deserts. 
The Ferrel cell, spanning midlatitudes, is indirectly driven and 
acts more like a gear between the Hadley and Polar cells, with 
surface westerlies resulting from the balance of forces rather 
than direct thermal forcing. The Polar cell completes the system, 
with cold air sinking at the poles and moving equatorward. Yet 
these idealized structures are constantly perturbed by planetary 
waves, ocean-atmosphere interactions and transient weather 
systems.

Embedded within these circulation cells are jet streams, 
narrow bands of fast-moving air in the upper atmosphere. Jet 
streams arise from strong temperature gradients, particularly 
near the boundaries of circulation cells and are intensified by 
the Coriolis effect. The polar jet stream, for example, separates 
cold polar air from warmer midlatitude air and plays a central 
role in steering storm systems. These jets do not flow smoothly 
around the globe but meander due to the presence of Rossby 
waves, large-scale undulations in the westerlies caused by 
the conservation of potential vorticity. These meanders can 
amplify into blocking patterns that disrupt typical weather, 
leading to prolonged heatwaves, cold spells or heavy rainfall. 
The dynamics of jet streams and Rossby waves highlight the 
nonlinear, quasi-chaotic nature of atmospheric circulation, where 
small perturbations can cascade into large-scale anomalies with 
significant societal impacts.

Moisture further complicates circulation dynamics. Water 
vapor is a potent greenhouse gas and its phase changes involve 
latent heat exchanges that strongly influence atmospheric 
motion. In the tropics, convection and the release of latent 
heat drive towering cumulonimbus clouds and contribute to 
the maintenance of the Hadley circulation. Monsoon systems 
exemplify this coupling of heat and moisture, where seasonal 
shifts in land-sea temperature contrast drive massive, periodic 
reorganizations of atmospheric circulation and precipitation. The 
South Asian monsoon, for instance, arises when the landmass 
heats more rapidly than the surrounding ocean, creating a 
pressure gradient that pulls moist oceanic air inland, where it 
rises, cools and releases torrential rainfall. These systems are 
sensitive to subtle changes in surface conditions, illustrating the 
delicacy of feedbacks in circulation dynamics.

Atmospheric circulation is also deeply intertwined with 
ocean circulation, forming the coupled climate system. Ocean 

currents redistribute heat, while sea surface temperatures 
influence atmospheric pressure patterns and wind fields. 
Phenomena such as El Niño–Southern Oscillation (ENSO) 
reveal the tight coupling between ocean and atmosphere. During 
El Niño events, weakened trade winds allow warm waters 
to spread across the equatorial Pacific, altering convection 
and triggering teleconnections that disrupt weather patterns 
worldwide. Conversely, La Niña events enhance trade winds and 
intensify the normal circulation. These oscillations showcase 
how atmospheric circulation is not confined to local scales but 
resonates across the globe, producing variability that challenges 
prediction.

The complexity of atmospheric circulation dynamics is 
further underscored by the influence of turbulence and chaos. 
On smaller scales, turbulent eddies mix heat, moisture and 
momentum, shaping boundary layer processes that affect 
everything from cloud formation to pollutant dispersion. On 
larger scales, the nonlinear equations governing atmospheric 
motion, particularly the Navier–Stokes equations adapted for 
a rotating, stratified fluid, admit chaotic solutions. Edward 
Lorenz’s pioneering work demonstrated how tiny differences 
in initial conditions could lead to vastly different outcomes, 
a phenomenon popularly known as the butterfly effect. This 
sensitivity limits deterministic prediction of weather beyond a 
few weeks, underscoring the inherent unpredictability within a 
system governed by deterministic laws.

Despite this unpredictability at short timescales, atmospheric 
circulation exhibits robust patterns on longer timescales, such as 
the quasi-biennial oscillation in equatorial stratospheric winds or 
the North Atlantic Oscillation in midlatitude pressure patterns. 
These modes of variability reflect the system’s tendency to 
self-organize around certain preferred states, even amid chaotic 
fluctuations. Climate change introduces an additional layer of 
complexity, as anthropogenic greenhouse gas emissions alter 
radiative balances, surface temperatures and circulation patterns. 
The expansion of the Hadley cell, shifts in jet stream behavior 
and changes in monsoon dynamics are all observed or projected 
responses to a warming world, with profound implications for 
ecosystems and human societies.

To grapple with this complexity, scientists employ a range 
of tools, from observational networks using satellites, balloons 
and ground stations, to theoretical models and numerical 
simulations. General circulation models (GCMs) attempt to 
simulate the atmosphere by discretizing the governing equations 
over a three-dimensional grid, incorporating processes such as 
radiation, convection and cloud formation. Yet no model can 
capture all scales of motion, leading to uncertainties, especially 
in representing sub-grid processes like turbulence and cloud 
microphysics. Advances in computational power and data 
assimilation continue to refine predictions, but the fundamental 
nonlinear, coupled nature of atmospheric circulation ensures that 
uncertainty will always remain a part of the picture.

Ultimately, atmospheric circulation dynamics illustrate 
the beauty and difficulty of understanding complex systems. 
What begins as the simple physical principle of uneven 
solar heating unfolds into a network of interacting processes 
spanning scales from turbulent eddies to planetary waves. The 
system is simultaneously ordered and chaotic, predictable and 
unpredictable, resilient and sensitive. It sustains climates, shapes 
ecosystems and governs the weather patterns that societies 
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The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    
must satisfy 

0Aw =
Where A is

[ / | / ]A f x f α= ∂ ∂ ∂ ∂

where  /f x∂ ∂  is the Jacobian matrix.  For both limit and 
branch points, the Jacobian matrix  [ / ]J f x= ∂ ∂   must be 
singular.

For a limit point, there is only one tangent at the point of 
singularity. At this singular point, there is a single non-zero 
vector, y, where Jy=0. This vector is of dimension n. Since there 

is only one tangent the vector 1 2 3 4( , , , ,... )ny y y y y y=  must 

align with  1 2 3 4ˆ ( , , , ,... )nw w w w w w=  . Since

ˆ 0Jw Aw= =

the n+1 th component of the tangent vector 1nw +  = 0 at a 
limit point (LP).

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w.  This implies that

0
0

Az
Aw

=
=

Consider a vector v that is orthogonal to one of the tangents 
(say w). v can be expressed as a linear combination of z and 

w ( v z wα β= + ). Since 0Az Aw= =  ; 0Av =  and since 

w and v are orthogonal, 0Tw v = . Hence 0T

A
Bv v

w
 

= = 
 

 
which implies that B is singular.

Hence, for a branch point (BP) the matrix 
T

A
B

w
 

=  
 

 must 
be singular.

At a Hopf bifurcation point,

det(2 ( , )@ ) 0x nf x Iα =

@ indicates the bialternate product while 
nI  is the n-square 

identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult.  More details can be found in Kuznetsov18-20.

Hopf bifurcations cause limit cycles. The tanh activation 

function (where a control value u is replaced by) ( tanh / )u u ε   
is  used to eliminate spikes in the optimal control profiles21-24. 
Sridhar25 explained with several examples how the activation 
factor involving the tanh function also eliminates the Hopf 
bifurcation points. This was because the tanh function increases 
the oscillation time period in the limit cycle. 

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC)

The rigorous multiobjective nonlinear model predictive 
control (MNLMPC) method developed by Flores Tlacuahuaz, 
et al.26 was used.

depend on, yet it defies complete mastery. Appreciating this 
complexity requires not only scientific rigor but also humility 
in recognizing the limits of prediction. The atmosphere is a 
dynamic, living system, constantly evolving under the laws 
of physics yet producing emergent behaviors that continue to 
challenge and inspire human inquiry.

Nicolis1 discussed the solar variability and stochastic effects 
on climate. Benzi, et al.2 researched the stochastic resonance 
in climate change. Nicolis3 described the stochastic aspects of 
climatic transitions in response to a periodic forcing. Lorenz4 
showed that irregularity was a fundamental property of the 
atmosphere. Shilnikov, et al.5 provided the bifurcation and 
predictability analysis of a low-order atmospheric circulation 
model. Roebber6, discussed the climate variability in a low-order 
coupled atmosphere-ocean model. Pelino, et al.7 demonstrated 
the dissipation in Lie-Poisson systems and the Lorenz-84 model. 
Broer, et al.8 showed the existence of bifurcations and strange 
attractors in the Lorenz-84 climate model with seasonal forcing.  
Van Veen9, discussed the connection between the baroclinic flow 
and the Lorenz-84 model. Niklas10 demonstrated the existence 
of bifurcations and strange attractors in a climate-related system. 
Persson11 discussed Hadley’s principle in understanding the trade 
winds. Lucarini, et al.12 demonstrated the parametric smoothness 
and self-scaling of the statistical properties of a minimal climate 
model. Frierson, et al.13 researched the width of the Hadley 
cell in a simple and comprehensive general circulation model. 
Freire, et al.14 discussed the multistability and intransitivity 
in the Lorenz-84 low-order atmospheric circulation model. 
Wang, et al.15 provided a dynamical analysis of the Lorenz-84 
atmospheric circulation model.

Model Equations

In this model, 𝑥 represents the strength of the globally 
averaged westerly current, while 𝑦 and 𝑧 represent the strength 
of the cosine and sine phases of a chain of superposed waves. 
The model equations are

22dx y z ax afc
dt
dy xy bxz y gc
dt
dz bxy xz z
dt

= − − − +

= − − +

= + −

fc and gc are the bifurcation and control variables, while a 
and b have values of 0.25 and 4. 

Bifurcation analysis

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles.  Multiple steady states 
occur because of the existence of branch and limit points.  
Hopf bifurcation points cause limit cycles.  A commonly used 
MATLAB program that locates limit points, branch points and 
Hopf bifurcation points is MATCONT16,17.  This program detects 
Limit points (LP), branch points (BP) and Hopf bifurcation 
points(H) for an ODE system

( , )dx f x
dt

α=
nx R∈  Let the bifurcation parameter be α  . Since the 

gradient is orthogonal to the tangent vector,  
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Consider a problem where the variables  
0

( )
i f

i

t t

j i
t

q t
=

=

∑ (j=1, 
2..n) have to be optimized simultaneously for a dynamic problem

( , )dx F x u
dt

=

 ft  being the final time value and n the total number of 
objective variables and u the control parameter.     The single 
objective optimal control problem is solved individually 

optimizing each of the variables 
0

( )
i f

i

t t

j i
t

q t
=

=

∑    The optimization 

of 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  will lead to the values *
jq   .  Then, the 

multiobjective optimal control (MOOC)   problem that will be 
solved is

0

* 2

1
min( ( ( ) ))

( , );

i f

i

t tn

j i j
j t

q t q

dxsubject to F x u
dt

=

=

=

−

=

∑ ∑

This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j) is obtained.

Pyomo27 is used for these calculations.  Here, the differential 
equations are converted to a Nonlinear Program (NLP) using 
the orthogonal collocation method   The NLP is solved using 
IPOPT28 and confirmed as a global solution with BARON29.

The steps of the algorithm are as follows  

Optimize 

0

( )
i f

i

t t

j i
t

q t
=

=

∑  and obtain *
jq .

Minimize 
0

* 2

1
( ( ( ) ))

i f

i

t tn

j i j
j t

q t q
=

=

=

−∑ ∑ and get the control values 

at various times.

Implement the first obtained control values.

Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 

point is when 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j.

 Sridhar30 demonstrated that when the bifurcation analysis 
revealed the presence of limit and branch points the MNLMPC 
calculations to converge to the Utopia solution.  For this, the 
singularity condition, caused by the presence of the limit or 
branch points was imposed on the co-state equation31.   If the 

minimization  of   1q  lead to the value *
1q  and the minimization 

of 2q  lead to the value *
2q   The MNLPMC calculations 

will minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The 
multiobjective optimal control problem is

* 2 * 2
1 1 2 2min ( ) ( ) ( , )dxq q q q subject to F x u

dt
− + − =

Differentiating the objective function results in

* 2 * 2 * * * *
1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )

i i i

d d dq q q q q q q q q q q q
dx dx dx

− + − = − − + − −

The Utopia point requires that both *
1 1( )q q−  and *

2 2( )q q−  
are zero.  Hence

* 2 * 2
1 1 2 2(( ) ( ) ) 0

i

d q q q q
dx

− + − =

The optimal control co-state equation is

* 2 * 2
1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d q q q q f t
dt dx

λ λ λ= − − + − − =

iλ  is the Lagrangian multiplier. ft  is the final time.  The 
first term in this equation is 0 and hence

( ) ; ( ) 0i x i i f
d f t
dt

λ λ λ= − =

At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  

xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0i
d
dt

λ <  . In between there 

is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to  [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem and 
the optimal solution is the Utopia solution.

Results and Discussion

When gc is the bifurcation parameter, a limit point and 
a Hopf bifurcation point were  found at (x,y,z,gc) values of  
(0.655829, 0.038196,  0.291134,  0.776882)and  (1.000144, 0, 
0.011785, 0.047146). (Figure 1a).  The limit cycle caused by 
this Hopf bifurcation point is shown in (Figures 1b and 1c).  
When gc was modified to gctanh(gc)/2.5,  the Hopf bifurcation 
point disappears, but a limit point occurs at (x,y,z,gc) values of  
(0.089735, 0.443953, 0.175062,  1.339446).

The other parameters were a=1/4; b=4;  fc=1.0007.

When fc is the bifurcation parameter, a limit point and a 
Hopf bifurcation point were  found at (x,y,z,gc) values of label 
( 0.786788, 0.021428, 0.316296,  1.188797 ) and ( 1.053891, 
-0.003032, 0.237177, 1.278940 ) (Figure 2a). The limit cycle 
caused by this Hopf bifurcation point is shown in (Figure 2b). 
When fc was modified to fctanh(gc)/0.1,  the Hopf bifurcation 
point disappears (Figure 2c).
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Figure 1a: Bifurcation diagram when gc is the bifurcation 
parameter (Hopf point occurs)
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Figure 1b: Limit cycle when gc is the bifurcation parameter
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Figure 1c: Bifurcation diagram when gc is modified to 
gctanh(gc)/2.5 (Hopf point disappears).

The other parameters were a=1/4; b=4;   gc=1.

In both cases, the use of the tanh activation factor eliminated 
the limit cycle causing Hopf bifurcation, validating the analysis 
in Sridhar25.

For the MNLMPC calculations in model 1,  

0 0 0

( ), ( ), ( )
i f i f i f

i i i

t t t t t t

i i i
t t t

x t y t z t
= = =

= = =

∑ ∑ ∑  were minimized individually 

and each of them led to a value of   0.   The overall optimal 
control problem will involve the minimization of 

0 0 0

2 2 2( ( )) ( ( )) ( ( ))
i f i f i f

i i i

t t t t t t

i i i
t t t

x t y t z t
= = =

= = =

+ +∑ ∑ ∑

was minimized subject to the equations governing the model. 
This led to a value of zero the Utopia.
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Figure 2a: Bifurcation diagram when fc is the bifurcation 
parameter (Hopf point occurs).
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Figure 2b: Limit cycle when fc is the bifurcation parameter.
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Figure 2c: When fc was modified to fctanh(gc)/0.1,  the Hopf 
bifurcation point disappears.

The MNLMPC values of the control variables, fc and gc, 
were 0.8132 and 0.363.  The various MNMPC figures are shown 
in (Figures 3a-3d).  The profiles of x y z fc and gc exhibited 
noise and this was remedied using the Savitzky-Golay filter. The 
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modified profiles of x, y, z, fc and gc were xsg, ysg, zsg.. fcsg 
and gcsg.

Figure 3a: MNLMPC; x, y, z profiles.

Figure 3b: MNLMPC; xsg, ysg, zsg profiles.

Figure 3c: MNLMPC; fc, fcsg profiles.

Figure 3d: MNLMPC; gc, gcsg profiles.

The presence of the limit and branch points is beneficial 
because it allows the MNLMPC calculations to attain the Utopia 
solution, validating the analysis of Sridhar30.

Conclusions
Bifurcation analysis and multiobjective nonlinear control 

(MNLMPC) studies on the Lorenz-84 atmospheric circulation 
model.  The bifurcation analysis revealed the existence of Hopf 
bifurcation points and limit points.  The Hopf bifurcation point, 
which causes an unwanted limit cycle, is eliminated using an 
activation factor involving the tanh function.  The limit points 
(which cause multiple steady-state solutions from a singular 
point) are very beneficial because they enable the Multiobjective 
nonlinear model predictive control calculations to converge to 
the Utopia point (the best possible solution) in the models.    A 
combination of bifurcation analysis and Multiobjective Nonlinear 
Model Predictive Control (MNLMPC) for the Lorenz-84 
atmospheric circulation model is the main contribution of this 
paper.
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