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ABSTRACT

Atmospheric models exhibit complex dynamical behaviors and it is important to understand the dynamics of atmospheric
circulation so that strategies to control the circulation can be developed in the future. In this work, bifurcation analysis and
multiobjective nonlinear model predictive control is performed on the Lorenz-84 atmospheric circulation model. Bifurcation
analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be
considered and multiple objectives must be met simultaneously. The MATLAB program MATCONT was used to perform the
bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO in conjunction with
the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of a Hopf
bifurcation point and a limit point. The MNLMC converged to the utopia solution. The Hopf bifurcation point, which causes an
unwanted limit cycle, is eliminated using an activation factor involving the tanh function. The limit point (which cause multiple
steady-state solutions from a singular point) are very beneficial because it enables the Multiobjective nonlinear model predictive
control calculations to converge to the Utopia point (the best possible solution) in the model.
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Background

Atmospheric circulation dynamics represent one of the
most complex and fascinating systems on Earth, emerging from
the intricate interplay of physical laws, energy exchanges and
feedback loops that span across spatial and temporal scales. At
its core, atmospheric circulation is the global movement of air
that redistributes energy from regions of surplus, primarily near
the equator, to regions of deficit, primarily toward the poles.
This redistribution moderates’ temperatures, drives weather
systems and sustains climates that make life on Earth possible.
However, the underlying mechanisms are far from simple.
They are governed by nonlinear interactions between radiation,
pressure gradients, the rotation of the Earth, friction, latent heat

release and the thermodynamic properties of air and water vapor.
This complexity gives rise to emergent patterns such as jet
streams, trade winds, monsoons and cyclones, whose behavior is
predictable in some aspects yet chaotic in others. Understanding
atmospheric circulation therefore requires not only physics but
also mathematics, fluid dynamics and even chaos theory to
capture its multifaceted nature.

The driving force of atmospheric circulation begins with
solar radiation, which is unevenly distributed across the planet’s
surface. The equatorial regions receive more direct solar energy,
creating a surplus of heat, while higher latitudes receive less
energy due to the curvature of the Earth and the angle of incidence
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of sunlight. This imbalance sets the stage for atmospheric
motion as nature seeks equilibrium through the transport of
energy. Heated air near the equator rises, creating regions of low
pressure, while cooler, denser air from higher latitudes moves
in to replace it. In theory, this would create a simple one-cell
system per hemisphere, with air rising at the equator and sinking
at the poles. However, the Earth’s rotation and the conservation
of angular momentum complicate this simple picture.

The Coriolis effect, a consequence of the Earth’s rotation,
deflects moving air masses to the right in the Northern
Hemisphere and to the left in the Southern Hemisphere. This
effect fragments the idealized single-cell circulation into three
distinct cells per hemisphere: the Hadley cell, the Ferrel cell and
the Polar cell. Each cell represents a general pattern of rising,
poleward flow aloft, sinking and equatorward return flow near
the surface, but the reality is far more irregular. The Hadley
cell dominates tropical latitudes, where warm air rises near the
equator, diverges aloft and descends near 30 degrees latitude,
creating subtropical high-pressure zones associated with deserts.
The Ferrel cell, spanning midlatitudes, is indirectly driven and
acts more like a gear between the Hadley and Polar cells, with
surface westerlies resulting from the balance of forces rather
than direct thermal forcing. The Polar cell completes the system,
with cold air sinking at the poles and moving equatorward. Yet
these idealized structures are constantly perturbed by planetary
waves, ocean-atmosphere interactions and transient weather
systems.

Embedded within these circulation cells are jet streams,
narrow bands of fast-moving air in the upper atmosphere. Jet
streams arise from strong temperature gradients, particularly
near the boundaries of circulation cells and are intensified by
the Coriolis effect. The polar jet stream, for example, separates
cold polar air from warmer midlatitude air and plays a central
role in steering storm systems. These jets do not flow smoothly
around the globe but meander due to the presence of Rossby
waves, large-scale undulations in the westerlies caused by
the conservation of potential vorticity. These meanders can
amplify into blocking patterns that disrupt typical weather,
leading to prolonged heatwaves, cold spells or heavy rainfall.
The dynamics of jet streams and Rossby waves highlight the
nonlinear, quasi-chaotic nature of atmospheric circulation, where
small perturbations can cascade into large-scale anomalies with
significant societal impacts.

Moisture further complicates circulation dynamics. Water
vapor is a potent greenhouse gas and its phase changes involve
latent heat exchanges that strongly influence atmospheric
motion. In the tropics, convection and the release of latent
heat drive towering cumulonimbus clouds and contribute to
the maintenance of the Hadley circulation. Monsoon systems
exemplify this coupling of heat and moisture, where seasonal
shifts in land-sea temperature contrast drive massive, periodic
reorganizations of atmospheric circulation and precipitation. The
South Asian monsoon, for instance, arises when the landmass
heats more rapidly than the surrounding ocean, creating a
pressure gradient that pulls moist oceanic air inland, where it
rises, cools and releases torrential rainfall. These systems are
sensitive to subtle changes in surface conditions, illustrating the
delicacy of feedbacks in circulation dynamics.

Atmospheric circulation is also deeply intertwined with
ocean circulation, forming the coupled climate system. Ocean
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currents redistribute heat, while sea surface temperatures
influence atmospheric pressure patterns and wind fields.
Phenomena such as El Niflo—Southern Oscillation (ENSO)
reveal the tight coupling between ocean and atmosphere. During
El Nifio events, weakened trade winds allow warm waters
to spread across the equatorial Pacific, altering convection
and triggering teleconnections that disrupt weather patterns
worldwide. Conversely, La Nifia events enhance trade winds and
intensify the normal circulation. These oscillations showcase
how atmospheric circulation is not confined to local scales but
resonates across the globe, producing variability that challenges
prediction.

The complexity of atmospheric circulation dynamics is
further underscored by the influence of turbulence and chaos.
On smaller scales, turbulent eddies mix heat, moisture and
momentum, shaping boundary layer processes that affect
everything from cloud formation to pollutant dispersion. On
larger scales, the nonlinear equations governing atmospheric
motion, particularly the Navier—Stokes equations adapted for
a rotating, stratified fluid, admit chaotic solutions. Edward
Lorenz’s pioneering work demonstrated how tiny differences
in initial conditions could lead to vastly different outcomes,
a phenomenon popularly known as the butterfly effect. This
sensitivity limits deterministic prediction of weather beyond a
few weeks, underscoring the inherent unpredictability within a
system governed by deterministic laws.

Despite this unpredictability at short timescales, atmospheric
circulation exhibits robust patterns on longer timescales, such as
the quasi-biennial oscillation in equatorial stratospheric winds or
the North Atlantic Oscillation in midlatitude pressure patterns.
These modes of variability reflect the system’s tendency to
self-organize around certain preferred states, even amid chaotic
fluctuations. Climate change introduces an additional layer of
complexity, as anthropogenic greenhouse gas emissions alter
radiative balances, surface temperatures and circulation patterns.
The expansion of the Hadley cell, shifts in jet stream behavior
and changes in monsoon dynamics are all observed or projected
responses to a warming world, with profound implications for
ecosystems and human societies.

To grapple with this complexity, scientists employ a range
of tools, from observational networks using satellites, balloons
and ground stations, to theoretical models and numerical
simulations. General circulation models (GCMs) attempt to
simulate the atmosphere by discretizing the governing equations
over a three-dimensional grid, incorporating processes such as
radiation, convection and cloud formation. Yet no model can
capture all scales of motion, leading to uncertainties, especially
in representing sub-grid processes like turbulence and cloud
microphysics. Advances in computational power and data
assimilation continue to refine predictions, but the fundamental
nonlinear, coupled nature of atmospheric circulation ensures that
uncertainty will always remain a part of the picture.

Ultimately, atmospheric circulation dynamics illustrate
the beauty and difficulty of understanding complex systems.
What begins as the simple physical principle of uneven
solar heating unfolds into a network of interacting processes
spanning scales from turbulent eddies to planetary waves. The
system is simultaneously ordered and chaotic, predictable and
unpredictable, resilient and sensitive. It sustains climates, shapes
ecosystems and governs the weather patterns that societies
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depend on, yet it defies complete mastery. Appreciating this
complexity requires not only scientific rigor but also humility
in recognizing the limits of prediction. The atmosphere is a
dynamic, living system, constantly evolving under the laws
of physics yet producing emergent behaviors that continue to
challenge and inspire human inquiry.

Nicolis' discussed the solar variability and stochastic effects
on climate. Benzi, et al.> researched the stochastic resonance
in climate change. Nicolis® described the stochastic aspects of
climatic transitions in response to a periodic forcing. Lorenz’
showed that irregularity was a fundamental property of the
atmosphere. Shilnikov, et al.’ provided the bifurcation and
predictability analysis of a low-order atmospheric circulation
model. Roebber’, discussed the climate variability in a low-order
coupled atmosphere-ocean model. Pelino, et al.” demonstrated
the dissipation in Lie-Poisson systems and the Lorenz-84 model.
Broer, et al.® showed the existence of bifurcations and strange
attractors in the Lorenz-84 climate model with seasonal forcing.
Van Veen’, discussed the connection between the baroclinic flow
and the Lorenz-84 model. Niklas'® demonstrated the existence
of bifurcations and strange attractors in a climate-related system.
Persson'' discussed Hadley’s principle in understanding the trade
winds. Lucarini, et al.'> demonstrated the parametric smoothness
and self-scaling of the statistical properties of a minimal climate
model. Frierson, et al."® researched the width of the Hadley
cell in a simple and comprehensive general circulation model.
Freire, et al.'* discussed the multistability and intransitivity
in the Lorenz-84 low-order atmospheric circulation model.
Wang, et al.'> provided a dynamical analysis of the Lorenz-84
atmospheric circulation model.

Model Equations

In this model, x represents the strength of the globally
averaged westerly current, while y and z represent the strength
of the cosine and sine phases of a chain of superposed waves.
The model equations are

dx )
—=-y2-z"—ax+afc
P 1fc
dy
—=xy—-bxz—-y+gc
r y y+g
dz

—=bxy+xz—z
a7

fc and gc are the bifurcation and control variables, while a
and b have values of 0.25 and 4.

Bifurcation analysis

The MATLAB software MATCONT is used to perform
the bifurcation calculations. Bifurcation analysis deals with
multiple steady-states and limit cycles. Multiple steady states
occur because of the existence of branch and limit points.
Hopf bifurcation points cause limit cycles. A commonly used
MATLAB program that locates limit points, branch points and
Hopf bifurcation points is MATCONT!®!". This program detects
Limit points (LP), branch points (BP) and Hopf bifurcation
points(H) for an ODE system

dx
—=f(xa)
dt
x € R" Let the bifurcation parameter be & . Since the
gradient is orthogonal to the tangent vector,
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Thetangentplane atany point W= [W1 s Wy, Wy, Wysoon W, ]
must satisfy

Aw=0
Where A is

A=[of /éx |of / da]

where Of / Ox is the Jacobian matrix. For both limit and

branch points, the Jacobian matrix J =[0df /Ox] must be
singular.

For a limit point, there is only one tangent at the point of
singularity. At this singular point, there is a single non-zero
vector, y, where Jy=0. This vector is of dimension n. Since there

is only one tangent the vector y = (), ¥,, V5, V4,-..¥, ) must
align with W= (w,, w,,w;,w,,..w,) . Since

Jw=Aw=0

the n+1 ™ component of the tangent vector W, ;1 =0 ata
limit point (LP).

For a branch point, there must exist two tangents at the
singularity. Let the two tangents be z and w. This implies that

Az=0
Aw=0

Consider a vector v that is orthogonal to one of the tangents
(say w). v can be expressed as a linear combination of z and

w(v=aqz+ fw).Since Az=Aw=0 ; Av=0 and since
A

w and v are orthogonal, w' v =0. Hence Bv = S 0

which implies that B is singular. w

A
Hence, for a branch point (BP) the matrix B = , | must
be singular. w

At a Hopf bifurcation point,

det2f (r,2)@1 ) =0

@ indicates the bialternate product while 7 is the n-square
identity matrix. Hopf bifurcations cause limit cycles and should
be eliminated because limit cycles make optimization and control
tasks very difficult. More details can be found in Kuznetsov'®2°.

Hopf bifurcations cause limit cycles. The tanh activation

function (where a control value u is replaced by) (¢ tanhu / £)

is used to eliminate spikes in the optimal control profiles®'-*.
Sridhar® explained with several examples how the activation
factor involving the tanh function also eliminates the Hopf
bifurcation points. This was because the tanh function increases
the oscillation time period in the limit cycle.

Multiobjective Nonlinear Model Predictive Control
(MNLMPC)

The rigorous multiobjective nonlinear model predictive
control (MNLMPC) method developed by Flores Tlacuahuaz,
et al.?® was used.



Sridhar LN.,

z, :tj’

i

Consider a problem where the variables dz q, (¢,) (=1,
2..n) have to be optimized simultaneously for a dygamic problem
dx
—=F(x,u
"~ (x,u)

¢ f being the final time value and n the total number of

objective variables and u the control parameter. ~ The single

objective optimal control problem is solved individually
t=t;

optimizing each of the variables Z q; (ti) The optimization
lizo

L=t

of ij(ti) will lead to the values q;
ti:O

multiobjective optimal control (MOOC) problem that will be

solved is

Then, the

min(i(i q,(t)—q;))’

i=0

dx
subject to — = F(x,u);
) "~ (x,u)

This will provide the values of u at various times. The first
obtained control value of u is implemented and the rest are
discarded. This procedure is repeated until the implemented and
the first obtained control values are the same or if the Utopia

L=ty

point where ( Z q j (ti) = C]j for all j) is obtained.

lico

Pyomo?’ is used for these calculations. Here, the differential
equations are converted to a Nonlinear Program (NLP) using
the orthogonal collocation method The NLP is solved using
IPOPT? and confirmed as a global solution with BARON?.

The steps of the algorithm are as follows

L=ty *

Optimize Z q, (ti) and obtain ¢ ;.

n_ L=l

Y
Minimize (Z ( Z q; (f ,-) -9, )) and get the control values
J=l i
at various times.

Implement the first obtained control values.

Repeat steps 1 to 3 until there is an insignificant difference
between the implemented and the first obtained value of the

control variables or if the Utopia point is achieved. The Utopia
=t

point is when Z q; (ti) = q: for all j.

lizo

Sridhar®® demonstrated that when the bifurcation analysis
revealed the presence of limit and branch points the MNLMPC
calculations to converge to the Utopia solution. For this, the
singularity condition, caused by the presence of the limit or
branch points was imposed on the co-state equation'. If the
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minimization of q, lead to the value ql* and the minimization

of q, lead to the value q; The MNLPMC calculations

*\2 *\2
will minimize the function (¢,—¢,)" +(¢,—¢,) The

multiobjective optimal control problem is

min (g -4+ -2 subjectto 2 = F(x.u)

Differentiating the objective function results in
d . . o d . o d .
7((% -4 )2 + (qz _qz)z) = 2(% -4 )7(ql -4 )+ 2(q2 _qz)*(qz _qz)
dx, dx, dx,

The Utopia pointrequires that both (¢, — qf) and (g, — q; )
are zero. Hence

d * 2 * 2
—((¢,-9,)" +(¢,-¢,)")=0
dx,
The optimal control co-state equation is
d d *\2 *\2
E(&) = —d—xi((ql —-q,) +(q,—q,))—f A A@E,)=0

ﬂ’i is the Lagrangian multiplier. f , is the final time. The

first term in this equation is 0 and hence

d
) ==L A () =0

Atalimit or abranch point, for the set of ODE ? = f(x,u)
t

fx is singular. Hence there are two different vectors-values for

[l,] where di(}ti) >0 and di(ﬂi) <0 . In between there
t t

1S a vector [ﬂ,l] where di(ﬂ,i) =( . This coupled with the
t

boundary condition ﬂ,l (t f) =() will lead to [/11] =( This
makes the problem an unconstrained optimization problem and
the optimal solution is the Utopia solution.

Results and Discussion

When gc is the bifurcation parameter, a limit point and
a Hopf bifurcation point were found at (x,y,z,gc) values of
(0.655829, 0.038196, 0.291134, 0.776882)and (1.000144, 0,
0.011785, 0.047146). (Figure 1a). The limit cycle caused by
this Hopf bifurcation point is shown in (Figures 1b and 1c).
When gc was modified to gctanh(gc)/2.5, the Hopf bifurcation
point disappears, but a limit point occurs at (X,y,z,gc) values of
(0.089735, 0.443953, 0.175062, 1.339446).

The other parameters were a=1/4; b=4; fc=1.0007.

When fc is the bifurcation parameter, a limit point and a
Hopf bifurcation point were found at (x,y,z,gc) values of label
(10.786788, 0.021428, 0.316296, 1.188797 ) and ( 1.053891,
-0.003032, 0.237177, 1.278940 ) (Figure 2a). The limit cycle
caused by this Hopf bifurcation point is shown in (Figure 2b).
When fc was modified to fctanh(ge)/0.1, the Hopf bifurcation
point disappears (Figure 2c).
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Hopf (gc)
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Figure 1la: Bifurcation diagram when gc is the bifurcation
parameter (Hopf point occurs)
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Figure 1b: Limit cycle when gc is the bifurcation parameter

Hopf disappears at gctanh(gc)/2.5
06

05 L
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03 L
02 |

01 L

-0.1

Figure 1c: Bifurcation diagram when gc is modified to
gctanh(gc)/2.5 (Hopf point disappears).

The other parameters were a=1/4; b=4; gc=1.

In both cases, the use of the tanh activation factor eliminated
the limit cycle causing Hopf bifurcation, validating the analysis
in Sridhar®.

For the MNLMPC calculations in model 1,
t‘-:t/ t[:t/ ti:tf
Z x(t,), Z »(2,), Z z(¢,) were minimized individually
= lizo fico

and each of them led to a value of 0. The overall optimal
control problem will involve the minimization of
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t=t;

(S x0)) +( v +(S 2t

was minimized subject to the equations governing the model.
This led to a value of zero the Utopia.

Hopf (fc)
35

25 [

0.5

fc

Figure 2a: Bifurcation diagram when fc is the bifurcation
parameter (Hopf point occurs).

Limit cycle(fc)

Figure 2b: Limit cycle when fc is the bifurcation parameter.

Hopf disappears at fc(tanh(fc))/0.1

95 |

85 |

Figure 2¢: When fc was modified to fctanh(gc)/0.1, the Hopf
bifurcation point disappears.

The MNLMPC values of the control variables, fc and gc,
were 0.8132 and 0.363. The various MNMPC figures are shown
in (Figures 3a-3d). The profiles of x y z fc and gc exhibited
noise and this was remedied using the Savitzky-Golay filter. The
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modified profiles of x, y, z, fc and gc were xsg, ysg, zsg.. fcsg
and gcsg.

o 20 40 60 80 100
t

Figure 3a: MNLMPC; x, y, z profiles.

[ 20 40 60 80 100
t

Figure 3b: MNLMPC; xsg, ysg, zsg profiles.
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Figure 3c: MNLMPC; fc, fesg profiles.
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Figure 3d: MNLMPC; gc, gesg profiles.
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The presence of the limit and branch points is beneficial
because it allows the MNLMPC calculations to attain the Utopia
solution, validating the analysis of Sridhar™®.

Conclusions

Bifurcation analysis and multiobjective nonlinear control
(MNLMPC) studies on the Lorenz-84 atmospheric circulation
model. The bifurcation analysis revealed the existence of Hopf
bifurcation points and limit points. The Hopf bifurcation point,
which causes an unwanted limit cycle, is eliminated using an
activation factor involving the tanh function. The limit points
(which cause multiple steady-state solutions from a singular
point) are very beneficial because they enable the Multiobjective
nonlinear model predictive control calculations to converge to
the Utopia point (the best possible solution) in the models. A
combination of bifurcation analysis and Multiobjective Nonlinear
Model Predictive Control (MNLMPC) for the Lorenz-84
atmospheric circulation model is the main contribution of this

paper.
Data availability statement

All data used is presented in the paper.
Conflict of interest

The author, Dr. Lakshmi N Sridhar, has no conflict of interest.

Acknowledgement

Dr. Sridhar thanks Dr. Carlos Ramirez and Dr. Suleiman for
encouraging him to write single-author papers

References

1. Nicolis C. Solar variability and stochastic effects on climate.
Solar Physics 1981;74(2):473-478.

2. Benzi R, Parisi G, Sutera A, Vulpiani A. Stochastic resonance in
climate change. Tellus 1982;34:10-16.

3. Nicolis C. Stochastic aspects of climatic transitions-response to
a periodic forcing. Tellus 1982;34:1-9.

4. Lorenz EN. Irregularity: a fundamental
atmosphere. Tellus A 1984;36(2):98-110.

property of the

5. Shilnikov A, Nicolis G, Nicolis C. Bifurcation and predictability
analysis of a low-order atmospheric circulation model. Int J
Bifurcation and Chaos in App Sci Eng 1995;5(6):1701-1711.

6. Roebber PJ. Climate variability in a low-order coupled
atmosphere-ocean model. Tellus A 1995;47(4):473-494.

7. Pelino V, Pasini A. Dissipation in Lie-Poisson systems and the
Lorenz-84 model. Physics Letters A: General, Atomic and Solid-
State Physics 2001;291(6):389-396.

8. BroerH, Sim’o C, Vitolo R. Bifurcations and strange attractors in
the Lorenz-84 climate model with seasonal forcing. Nonlinearity
2002;15(4):1205-1267.

9. Van Veen L. Baroclinic flow and the Lorenz-84 model. Int J
Bifurcation and Chaos in App Sci Eng 2003;13(8):2117-2139.

10. Niklas L. Bifurcations and strange attractors in a climate-related
system. Differential Equations and Control Processes 2005;1:1-
53.

11. Persson A. Hadley’s principle: understanding and
misunderstanding the trade winds. History of Meteorology
2006;3:17-42.

12. Lucarini V, Speranza A, Vitolo R. Parametric smoothness and
self-scaling of the statistical properties of a minimal climate


https://ui.adsabs.harvard.edu/abs/1981SoPh...74..473N
https://ui.adsabs.harvard.edu/abs/1981SoPh...74..473N
https://a.tellusjournals.se/articles/10.3402/tellusa.v34i1.10782
https://a.tellusjournals.se/articles/10.3402/tellusa.v34i1.10782
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1982.tb01786.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2153-3490.1982.tb01786.x
https://a.tellusjournals.se/articles/1930/files/submission/proof/1930-1-43827-1-10-20220930.pdf
https://a.tellusjournals.se/articles/1930/files/submission/proof/1930-1-43827-1-10-20220930.pdf
https://labs.ni.gsu.edu/ashilnikov/research/new_lorenz.pdf
https://labs.ni.gsu.edu/ashilnikov/research/new_lorenz.pdf
https://labs.ni.gsu.edu/ashilnikov/research/new_lorenz.pdf
https://a.tellusjournals.se/articles/10.3402/tellusa.v47i4.11534
https://a.tellusjournals.se/articles/10.3402/tellusa.v47i4.11534
https://ouci.dntb.gov.ua/en/works/4LOPvKw7/
https://ouci.dntb.gov.ua/en/works/4LOPvKw7/
https://ouci.dntb.gov.ua/en/works/4LOPvKw7/
https://research.rug.nl/en/publications/bifurcations-and-strange-attractors-in-the-lorenz-84-climate-mode
https://research.rug.nl/en/publications/bifurcations-and-strange-attractors-in-the-lorenz-84-climate-mode
https://research.rug.nl/en/publications/bifurcations-and-strange-attractors-in-the-lorenz-84-climate-mode
https://www.worldscientific.com/doi/abs/10.1142/S0218127403007904?srsltid=AfmBOop6XLZ4IeV6FKjPYC8DjOUqlH5Lkxl2jgydI-IPKWPBViriKpeA
https://www.worldscientific.com/doi/abs/10.1142/S0218127403007904?srsltid=AfmBOop6XLZ4IeV6FKjPYC8DjOUqlH5Lkxl2jgydI-IPKWPBViriKpeA
https://ysuatmsymp.github.io/papers/Others/JSpick/JSpick_06.pdf
https://ysuatmsymp.github.io/papers/Others/JSpick/JSpick_06.pdf
https://ysuatmsymp.github.io/papers/Others/JSpick/JSpick_06.pdf
https://ui.adsabs.harvard.edu/abs/2007PhyD..234..105L/abstract
https://ui.adsabs.harvard.edu/abs/2007PhyD..234..105L/abstract

Sridhar LN.,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

model: what beyond the mean field theories? Physica D:
Nonlinear Phenomena 2007;234(2):105-123.

Frierson DMW, Lu J, Chen G. Width of the Hadley cell in simple
and comprehensive general circulation models. Geophysical
Research Letters 2007;34(18).

Freire JG, Bonatto C, DaCamara CC, Gallas JA. Multistability,
phase diagrams and intransitivity in the Lorenz-84 low-order
atmospheric circulation model. Chaos 2008;18(3):8.

Hu W, Uang Y, Guoguang W. Dynamical Analysis of the
Lorenz-84 Atmospheric Circulation Model. J App Mathematics
2014:1-15.

Dhooge A, Govearts W, Kuznetsov AY. MATCONT: A Matlab
package for numerical bifurcation analysis of ODEs. ACM
transactions on Mathematical software 2003;29(2):141-164.

Dhooge A, Govaerts W, Kuznetsov YA, Mestrom W, Riet AM.
CL_MATCONT; A continuation toolbox in Matlab 2004.

Kuznetsov YA. Elements of applied bifurcation theory. Springer,
NY 1998.

Kuznetsov YA. Five lectures on numerical bifurcation analysis.
Utrecht University, NL 2009.

Govaerts WJF. Numerical Methods for Bifurcations of Dynamical
Equilibria. SIAM 2000.

Dubey SR, Singh SK, Chaudhuri BB. 2022 Activation functions
in deep learning: A comprehensive survey and benchmark.
Neurocomputing 2022;503:92-108.

Kamalov AF, Safaraliev NM, Cherukuri AK, Zgheib R.
Comparative analysis of activation functions in neural networks.
28th IEEE Int Conf on Electronics, Circuits and Systems
(ICECS) 2021:1-6.

23.

24.

25.

26.

27.

28.

29.

30.

31.

J Petro Chem Eng | Vol: 3 & Iss: 3

Szandata T. Review and Comparison of Commonly Used
Activation Functions for Deep Neural Networks. ArXiv 2020.

Sridhar LN. Bifurcation Analysis and Optimal Control of the
Tumor Macrophage Interactions. Biomed J Sci Tech Res
2023;53(5).

Sridhar LN. Elimination of oscillation causing Hopf bifurcations
in engineering problems. J App Math 2024;2(4):1826.

Flores-Tlacuahuac, A. Pilar Morales, Toledo MR. Multiobjective
Nonlinear model predictive control of a class of chemical
reactors. | & EC research 2012:5891-5899.

William HE, Laird CD, Watson JP, et al. Siirola. Pyomo -
Optimization Modeling in Python Second Edition 67.

Wachter A, Biegler L. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear
programming. Math Program 2006;106:25-57.

Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut
approach to global optimization. Mathematical Programming
2005;103(2):225-249.

Sridhar LN. Coupling Bifurcation Analysis and Multiobjective
Nonlinear Model Predictive Control. Austin Chem Eng
2024;10(3):1107.

Upreti, Simant Ranjan. Optimal control for chemical engineers.
Taylor and Francis 2013.


https://ui.adsabs.harvard.edu/abs/2007PhyD..234..105L/abstract
https://ui.adsabs.harvard.edu/abs/2007PhyD..234..105L/abstract
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GL031115
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GL031115
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007GL031115
https://pubs.aip.org/aip/cha/article-abstract/18/3/033121/341846/Multistability-phase-diagrams-and-intransitivity?redirectedFrom=fulltext
https://pubs.aip.org/aip/cha/article-abstract/18/3/033121/341846/Multistability-phase-diagrams-and-intransitivity?redirectedFrom=fulltext
https://pubs.aip.org/aip/cha/article-abstract/18/3/033121/341846/Multistability-phase-diagrams-and-intransitivity?redirectedFrom=fulltext
https://EconPapers.repec.org/RePEc:hin:jnljam:296279
https://EconPapers.repec.org/RePEc:hin:jnljam:296279
https://EconPapers.repec.org/RePEc:hin:jnljam:296279
https://dl.acm.org/doi/10.1145/779359.779362
https://dl.acm.org/doi/10.1145/779359.779362
https://dl.acm.org/doi/10.1145/779359.779362
https://dl.acm.org/doi/10.1145/952532.952567
https://dl.acm.org/doi/10.1145/952532.952567
https://link.springer.com/book/10.1007/978-1-4757-3978-7
https://link.springer.com/book/10.1007/978-1-4757-3978-7
https://epubs.siam.org/doi/10.1137/1.9780898719543
https://epubs.siam.org/doi/10.1137/1.9780898719543
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neucom.2022.06.111
https://repository.cud.ac.ae/items/090fd9c5-a9bf-42cc-a7f0-4c70e246e723
https://repository.cud.ac.ae/items/090fd9c5-a9bf-42cc-a7f0-4c70e246e723
https://repository.cud.ac.ae/items/090fd9c5-a9bf-42cc-a7f0-4c70e246e723
https://repository.cud.ac.ae/items/090fd9c5-a9bf-42cc-a7f0-4c70e246e723
https://arxiv.org/abs/2010.09458
https://arxiv.org/abs/2010.09458
https://biomedres.us/fulltexts/BJSTR.MS.ID.008470.php
https://biomedres.us/fulltexts/BJSTR.MS.ID.008470.php
https://biomedres.us/fulltexts/BJSTR.MS.ID.008470.php
https://ojs.acad-pub.com/index.php/JAM/article/view/1826
https://ojs.acad-pub.com/index.php/JAM/article/view/1826
https://www.paginaspersonales.unam.mx/files/1002/Publica_20120601235954.pdf
https://www.paginaspersonales.unam.mx/files/1002/Publica_20120601235954.pdf
https://www.paginaspersonales.unam.mx/files/1002/Publica_20120601235954.pdf
https://link.springer.com/book/10.1007/978-3-030-68928-5
https://link.springer.com/book/10.1007/978-3-030-68928-5
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://dl.acm.org/doi/abs/10.1007/s10107-005-0581-8
https://dl.acm.org/doi/abs/10.1007/s10107-005-0581-8
https://dl.acm.org/doi/abs/10.1007/s10107-005-0581-8
https://library.oapen.org/bitstream/20.500.12657/41676/1/9781439838952.pdf
https://library.oapen.org/bitstream/20.500.12657/41676/1/9781439838952.pdf

