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Background 
To minimize effluent contamination concentrations, 

wastewater treatment plants use the activated sludge process.  This 
process should be conducted efficiently, keeping all unnecessary 
expenses to a minimum. To achieve this goal, there has been 
a lot of modelling work to understand the various chemical 
reactions involved in this process.  Henze et al1, developed a 
general model for single-sludge wastewater treatment systems. 
Henze, et al2 extended and improved this earlier model.

Henze3, performed modelling work on the aerobic wastewater 
treatment processes taking into account environmental impacts. 
Gujer, et al4, further improved upon the models of Henze. Fikar, 
et al5, developed strategies to ensure the optimal operation of 
alternating activated sludge processes. Yoon, et al6, Critical 
operational parameters for zero sludge production in biological 
wastewater treatment processes combined with sludge 
disintegration.

Nelson, et al7, used continuation methods to determine the 
steady-state behavior of the activated sludge model (ASM1).

The activated sludge models are highly nonlinear and many 
factors must be taken into account to ensure that the process 
is conducted most efficiently. In this article, a combination 
of bifurcation analysis and multiobjective nonlinear model 
predictive control (MNLMPC) for the activated sludge model 
(ASM1)7 is performed.  The bifurcation analysis reveals the 
presence of branch points, which are very beneficial because 
they enable the MNLMPC calculations to converge to the Utopia 
point, which is the best possible solution.

This paper is organized as follows. First, the ASM1 model 
equations)7 are presented.  The numerical procedures (bifurcation 
analysis and multiobjective nonlinear model predictive control 
(MNLMPC) are then described. This is followed by the results 
and discussion and conclusions.

 A B S T R A C T 
The activated sludge process is highly nonlinear and many factors must be taken into account to ensure that the process 

is conducted most efficiently. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics 
of any process. Several factors must be considered and multiple objectives must be met simultaneously. Bifurcation analysis 
and multiobjective nonlinear model predictive control (MNLMPC) calculations are performed on the activated sludge model 
(ASM1). The MATLAB program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were 
performed using the optimization language PYOMO   in conjunction with the state-of-the-art global optimization solvers IPOPT 
and BARON. The bifurcation analysis revealed the existence of branch points in the model. The branch points were beneficial 
because they enabled the multiobjective nonlinear model predictive control calculations to converge to the Utopia point in both 
problems, which is the most beneficial solution. A combination of bifurcation analysis and multiobjective nonlinear model 
predictive control for the activated sludge model (ASM1) is the main contribution of this paper.
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ASM1 Model Equations
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The variables , , , , , , , ,S S BH BA O NO NH ND NDS X X X S S S S X  represent 
the concentrations of readily biodegradable soluble substrate, 
slowly biodegradable particulate substrate, active heterotrophic 
particulate mass, active autotrophic particulate mass, soluble 
oxygen, soluble nitrate and nitrite nitrogen, soluble ammonium 
nitrogen, soluble biodegradable organic material and particulate 
biodegradable organic nitrogen.

Bifurcation analysis

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. 
Hopf bifurcation points cause limit cycles. A commonly used 
MATLAB program that locates limit points, branch points and 
Hopf bifurcation points is MATCONT8,9. This program detects 
Limit points (LP), branch points (BP) and Hopf bifurcation 
points(H) for an ODE system.

( , )dx f x
dt
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nx R∈  Let the bifurcation parameter be α  Since the 
gradient is orthogonal to the tangent vector, 
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where /f x∂ ∂  is the Jacobian matrix. For both limit and 
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component of the tangent vector 1nw +  = 0 for a limit point (LP)
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 must be singular. At 
a Hopf bifurcation point,

det(2 ( , )@ ) 0x nf x Iα =
 @ indicates the BI alternate product while is the n-square 

identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult. More details can be found in Kuznetsov11,12.

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC)

Flores Tlacuahuaz, et al13, developed a multiobjective 
nonlinear model predictive control (MNLMPC) method that is 
rigorous and does not involve weighting functions or additional 
constraints. This procedure is used for performing the MNLMPC 

calculations Here 
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This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0

*( )
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i

t t
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t
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=

=

=∑  for all j) is obtained.

Pyomo14, is used for these calculations. Here, the differential 
equations are converted to a Nonlinear Program (NLP) using the 
orthogonal collocation method The NLP is solved using IPOPT15 
and confirmed as a global solution with BARON16.

The steps of the algorithm are as follows

Optimize 
0

( )
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i
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t
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=

=

∑  and obtain *
jq  at various time intervals 

ti. The subscript i is the index for each time step. 
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and get the control values for 

various times.

Implement the first obtained control values.

Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 
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optimal control problem will involve the minimization 

of 
0 0 0

2 2 2( ( )) ( ( )) ( ( ))
i f i f i f

i i i

t t t t t t

BH i BA i ND i
t t t

X t X t X t
= = =
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+ +∑ ∑ ∑  was 

minimized subject to the equations governing the model. This 
led to a value of zero (the Utopia solution.

Figure 1: Branch points for ASM1 model.

The various concentration profiles for this MNLMPC 
calculation are shown in (Figures 2a-2d).

Figure 2a: SNO profile MNLMPC particulate concentration 
minimization.

Figure 2b: SNH profile MNLMPC particulate concentration 
minimization.

Figure 2c: SNO profile MNLMPC particulate concentration 
minimization.

Sridhar17, proved that the MNLMPC calculations to converge 
to the Utopia solution when the bifurcation analysis revealed the 
presence of limit and branch points. This was done by imposing 
the singularity condition on the co-state equation18. If the 
minimization of 1q  lead to the value 

*
1q  and the minimization 

of  lead to the value 
*
2q  The MNLPMC calculations 

will minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + −  . The 
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the optimal control co-state equation18 is
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iλ  is the Lagrangian multiplier. ft  is the final time. The 
first term in this equation is 0 and hence 
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At a limit or a branch point, for the set of ODE ( , )dx f x u
dt
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xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0i
d
dt
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vector [ ]iλ  where ( ) 0i
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λ =  . This coupled with the boundary 

condition ( ) 0i ftλ =  will lead to [ ] 0iλ =  This makes the problem 
an unconstrained optimization problem and the only solution is 
the Utopia solution.

Results and Discussion
The bifurcation analysis on the ASM1 model 

revealed the existence of two branch points at
( , , , , , , , , , )S S BH BA O NO NH ND NDS X X X S S S S X d   values of (200, 
56.179, 0, 0,9.65, 1, 15, 9, 0, 0.179) and (200.000000 56.179, 
0, 0,9.36, 1, 15, 9, 0,0.343).  These branch points are indicated 
in (Figure 1). The presence of the branch points is beneficial 
because they allow the MNLMPC calculations to attain the 
Utopia solution for several objective functions.

Three MNLMPC calculations were performed. In the first 
case, the particulate variables (active heterotrophic particulate 
mass, active autotrophic particulate mass and particulate 
biodegradable organic nitrogen) were minimized. In this 
case,  

0 0 0
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t t t t t t
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t t t
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∑ ∑ ∑  was   minimized 

individually and each of them led to a value of 0.  The overall 
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Figure 2d: XBH, XBA, XND profile MNLMPC particulate 
concentration minimization.

Figure 2e: dilution rate MNLMPC particulate concentration 
minimization.

Figure 2f: Dilution rate (with Savitzky Golay filter) MNLMPC 
particulate concentration minimization

In the second case, the variables representing the 
soluble materials (soluble nitrate and nitrite nitrogen, 
soluble ammonium nitrogen and soluble biodegradable 
organic material) were minimized. In this case,  

0 0 0

( ), ( ), ( )
i f i f i f

i i i

t t t t t t

NO i NH i ND i
t t t

S t S t S t
= = =

= = =
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individually, leading to values of 0.4121, 4.722 and 0.019971.  The 
overall optimal control problem will involve the minimization of 

0 0 0
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i i i

t t t t t t

NO i NH i ND i
t t t

S t S t S t
= = =

= = =

− + − + −∑ ∑ ∑  

was minimized subject to the equations governing the model. 
This led to a value of zero (the Utopia solution.

The various concentration profiles for this MNLMPC 
calculation are shown in (Figures 3a-3d).

Figure 3a: SNO profile MNLMPC soluble material concentration 
minimization.

Figure 3b: SNH profile MNLMPC soluble material 
concentration minimization.

Figure 3c: SND profile MNLMPC soluble material concentration 
minimization.

Figure 3d: XBH, XBA, XND profile MNLMPC soluble material 
concentration minimization.

The obtained control profile of s exhibited noise (Figure 
3e).  This was remedied using the Savitzky-Golay Filter. The 
smoothed-out version of this profile is shown in (Figure 3f).
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Figure 3e: dilution rate MNLMPC soluble material concentration 
minimization.

Figure 3f: dilution rate (with Savitzky Golay filter )   MNLMPC 
soluble material concentration minimization.

In the third case, In the second case, the variables representing 
the soluble materials( soluble nitrate and nitrite nitrogen, soluble 
ammonium nitrogen and soluble biodegradable organic material)  
and the  particulate variables (active heterotrophic particulate 
mass, active autotrophic particulate mass and particulate 
biodegradable organic nitrogen) were clubbed together as 

totalS  

and totalX  . In this case,  
0 0

( ), ( )
i f i f

i i

t t t t

total i total i
t t

S t X t
= =

= =

∑ ∑  was minimized 

individually, leading to values of 10.8079 and 0.01647.  The 
overall optimal control problem will involve the minimization 

of 
0 0

2 2( ( ) 10.8079) ( ( ) 0.01647)
i f i f

i i

t t t t

total i total i
t t

S t X t
= =

= =

− + −∑ ∑  

was minimized subject to the equations governing the model. 
This led to a value of zero (the Utopia solution).   The various 
concentration profiles for this MNLMPC calculation are shown 
in (Figures 4a-4d).  The obtained control profile of s exhibited 
noise (Figure 4e).  This was remedied using the Savitzky-Golay 
Filter. The smoothed-out version of this profile is shown in 
(Figure 4f).

Figure 4a: SNO profile MNLMPC X and S concentration 
minimization.

Figure 4b: SNH profile MNLMPC X and S concentration 
minimization.

Figure 4c: SND profile MNLMPC X and S concentration 
minimization.

Figure 4d: XBH, XBA, XND profile MNLMPC X and S 
concentration minimization.

Figure 4e: dilution rate MNLMPC X and S concentration 
minimization.

In all the cases, the MNLMPC calculations converged to the 
Utopia solution, validating the analysis of Sridhar (2024), which 
showed that the presence of a limit or branch point enables 
the MNLMPC calculations to reach the best possible (Utopia) 
solution.
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Figure 4f: dilution rate (with Savitzky Golay filter) MNLMPC 
X and S concentration minimization.

Conclusion
Bifurcation analysis and Multiobjective nonlinear model 

predictive control calculations were performed on the activated 
sludge model (ASM1). The bifurcation analysis revealed the 
existence of branch points.  The branch points (which produced 
multiple steady-state solutions originating from a singular point) 
are very beneficial as they caused the multiojective nonlinear 
model predictive calculations to converge to the Utopia point 
(the best possible solution) in both models.  A combination 
of bifurcation analysis and multiobjective nonlinear model 
predictive control for the activated sludge model (ASM1) is the 
main contribution of this paper.

Data Availability Statement
All data used is presented in the paper.

Conflict of Interest 
The author, Dr. Lakshmi N Sridhar has no conflict of interest.

Acknowledgement 
Dr. Sridhar thanks Dr. Carlos Ramirez and Dr. Suleiman for 

encouraging him to write single-author papers.

References

1.	 Henze M,  Grady Jr CPL, Gujer W, Marais GVR, Matsuo T. A 
general model for single-sludge wastewater treatment systems. 
Water Res 1987;21(5):505-515.

2.	 Henze M, Gujer W, Mino T, Matsuo T, Wentzel MC, Marais GVR. 
Activated sludge model no 2. IAWQ Scientific and Technical 
Reports 3, IAWQ 1995.

3.	 Henze M. Modelling of aerobic wastewater treatment processes, 
in: Environmental Processes I: Wastewater Treatment, second 
edition, in: H.-J. Rehm, G. Reed (Eds.), Biotechnology: A Multi-
volume comprehensive Treatise 1999;11:417-427.

4.	 Gujer W,  Henze M, Loosdrecht M, Mino T. Activated sludge 
model No 3, Water Sci. Technol 1999;39(1):183-193.

5.	 Fikar M, Chachuat B, Latifi MA. Optimal operation of alternating 
activated sludge processes. Control Eng Pract 2005;13:853-
861.

6.	 Yoon SH, Lee S. Critical operational parameters for zero 
sludge production in biological wastewater treatment processes 
combined with sludge disintegration. Water Res 2005;39:3738-
3754.

7.	 Nelson MI, Sidhu HS. Analysis of the activated sludge model. 
Applied Mathematics Letters 2009;22(5):629-635.

8.	 Dhooge A, Govearts W, Kuznetsov AY. MATCONT: A Matlab 
package for numerical bifurcation analysis of ODEs. ACM 
transactions on Mathematical software 2003;29(2):141-164.

9.	 Dhooge A, Govaerts W, Kuznetsov YA, et al. CL_MATCONT A 
continuation toolbox in Matlab 2004.

10.	 Kuznetsov YA. Laminar-Turbulent Bifurcation Scenario in 3D 
Rayleigh-Benard Convection Problem. Elements of applied 
bifurcation theory. Springer, NY 1998. 

11.	 Kuznetsov YA. Five lectures on numerical bifurcation analysis. 
Utrecht University, NL 2009. 

12.	 Govaerts wJF. Numerical Methods for Bifurcations of Dynamical 
Equilibria. SIAM 2000.

13.	 Flores-Tlacuahuac A. Pilar Morales and Martin Riveral Toledo 
Multiobjective Nonlinear model predictive control of a class of 
chemical reactors. I & EC res 2012:5891-5899.

14.	 William EH, Laird CD, Watson JP, et al. Pyomo - Optimization 
Modeling in Python Second Edition 67.

15.	 Wächter A, Biegler L. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear 
programming. Math Program 2006;106:25-57.

16.	 Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut 
approach to global optimization. Mathematical Programming 
2005;103(2):225-249.

17.	 Sridhar LN. Coupling Bifurcation Analysis and Multiobjective 
Nonlinear Model Predictive Control. Austin Chem Eng 
2024a;10(3):1107.

18.	 Ranjan US. Optimal control for chemical engineers. Taylor and 
Francis 2013.

https://www.sciencedirect.com/science/article/abs/pii/0043135487900583
https://www.sciencedirect.com/science/article/abs/pii/0043135487900583
https://www.sciencedirect.com/science/article/abs/pii/0043135487900583
https://www.sciencedirect.com/science/article/abs/pii/027312239500175M
https://www.sciencedirect.com/science/article/abs/pii/027312239500175M
https://www.sciencedirect.com/science/article/abs/pii/027312239500175M
https://www.sciencedirect.com/science/article/abs/pii/S0967066104002126
https://www.sciencedirect.com/science/article/abs/pii/S0967066104002126
https://www.sciencedirect.com/science/article/abs/pii/S0967066104002126
https://doi.org/10.1016/j.aml.2008.05.003
https://doi.org/10.1016/j.aml.2008.05.003
https://dl.acm.org/doi/10.1145/779359.779362
https://dl.acm.org/doi/10.1145/779359.779362
https://dl.acm.org/doi/10.1145/779359.779362
https://www.researchgate.net/publication/235982873_MatCont_and_CL_MatCont_Continuation_Toolbox_in_sc_MATLAB
https://www.researchgate.net/publication/235982873_MatCont_and_CL_MatCont_Continuation_Toolbox_in_sc_MATLAB
https://www.scirp.org/reference/referencespapers?referenceid=1947272
https://www.scirp.org/reference/referencespapers?referenceid=1947272
https://www.scirp.org/reference/referencespapers?referenceid=1947272
https://webspace.science.uu.nl/~kouzn101/NBA/nba.pdf
https://webspace.science.uu.nl/~kouzn101/NBA/nba.pdf
https://books.google.co.in/books/about/Numerical_Methods_for_Bifurcations_of_Dy.html?id=I1M5ZISH9SsC&redir_esc=y
https://books.google.co.in/books/about/Numerical_Methods_for_Bifurcations_of_Dy.html?id=I1M5ZISH9SsC&redir_esc=y
https://pubs.acs.org/doi/abs/10.1021/ie201742e
https://pubs.acs.org/doi/abs/10.1021/ie201742e
https://pubs.acs.org/doi/abs/10.1021/ie201742e
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-005-0581-8
https://link.springer.com/article/10.1007/s10107-005-0581-8
https://link.springer.com/article/10.1007/s10107-005-0581-8
https://austinpublishinggroup.com/chemical-engineering/fulltext/ace-v11-id1107.pdf
https://austinpublishinggroup.com/chemical-engineering/fulltext/ace-v11-id1107.pdf
https://austinpublishinggroup.com/chemical-engineering/fulltext/ace-v11-id1107.pdf
https://www.taylorfrancis.com/books/oa-mono/10.1201/b13045/optimal-control-chemical-engineers-simant-ranjan-upreti
https://www.taylorfrancis.com/books/oa-mono/10.1201/b13045/optimal-control-chemical-engineers-simant-ranjan-upreti

	_Hlk178688116
	_Hlk198405977

