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Background
Pneumonia is a serious respiratory infection that has been 

recognized as one of the leading causes of morbidity and 
mortality worldwide, affecting individuals across all age groups 
and socioeconomic backgrounds. It is defined as an infection that 
inflames the air sacs of the lungs, known as alveoli, which may 
fill with fluid or pus and hinder normal breathing. The causes 
of pneumonia are diverse, including bacteria, viruses, fungi and 
other microorganisms and the severity of the disease ranges from 
mild to life-threatening depending on the patient’s age, general 
health and access to medical care. Despite advances in medicine, 

pneumonia remains a major global health challenge, with 
significant impact in both developed and developing nations.

The clinical presentation of pneumonia can vary greatly 
depending on the pathogen involved, but common symptoms 
include cough, fever, chills, difficulty breathing, chest pain and 
fatigue. In bacterial pneumonia, symptoms often progress quickly 
with high fever and productive cough, while viral pneumonia 
may develop more gradually and is frequently accompanied 
by wheezing and muscle aches. In older adults and very young 
children, symptoms may be nonspecific, such as confusion, loss 
of appetite or irritability, making the diagnosis more difficult. 

 A B S T R A C T 
Pneumonia is an acute respiratory disease that poses a major threat to human health and causes millions of deaths every year.  

It is a global health challenge and effective strategies must be implemented to minimize the damage. Therefore, the dynamics of 
pneumonia transmission must be understood and control methods that are beneficial and cost-effective must be implemented.

In this work, bifurcation analysis and multiobjective nonlinear model predictive control is performed on two dynamic 
models involving pneumonia transmission.  Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear 
dynamics of any process. Several factors must be considered and multiple objectives must be met simultaneously. The MATLAB 
program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the 
optimization language PYOMO   in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON.  The 
bifurcation analysis revealed the existence of branch and limit points in the first model and a branch point in the second model. 
The MNLMPC converged to the utopia solution in both models. The branch and limit points (which cause multiple steady-state 
solutions from a singular point) are very beneficial because they enable the Multiobjective nonlinear model predictive control 
calculations to converge to the Utopia point (the best possible solution) in both models.
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This variability complicates the timely recognition of pneumonia 
and can delay treatment, particularly in settings with limited 
diagnostic resources. Severe cases can progress to respiratory 
failure, sepsis or systemic organ dysfunction, underlining the 
importance of rapid medical attention.

The causative agents of pneumonia are numerous, but the 
most common bacterial cause is Streptococcus pneumoniae, 
also called pneumococcus, which remains a leading cause 
of community-acquired pneumonia. Other bacteria such as 
Haemophilus influenzae and atypical organisms like Mycoplasma 
pneumoniae and Chlamydophila pneumoniae are also significant 
contributors. Viral causes are increasingly recognized, especially 
influenza virus, respiratory syncytial virus and coronaviruses, 
which have been highlighted in recent years due to the COVID-
19 pandemic. Fungal pneumonia, although less common, can be 
severe in immunocompromised patients, particularly those with 
conditions like HIV/AIDS or those undergoing chemotherapy. 
Because of the diverse spectrum of pathogens, treatment 
approaches must be tailored to the suspected cause, the patient’s 
medical history and local epidemiological patterns.

Risk factors for pneumonia are multifaceted and involve both 
host and environmental components. Age is a major determinant, 
with infants under two years and adults over sixty-five years 
particularly vulnerable due to weaker immune defenses. Chronic 
diseases such as asthma, chronic obstructive pulmonary disease, 
diabetes and heart failure increase susceptibility by impairing 
lung function or immune responses. Smoking is a well-established 
risk factor, as it damages the respiratory tract’s natural defenses 
and increases vulnerability to infection. Malnutrition, poor 
living conditions, overcrowding and lack of access to healthcare 
amplify the risk in low-income countries, where pneumonia is a 
leading cause of death in children under five years. On a global 
scale, pneumonia reflects the deep inequalities in healthcare 
access, with developing regions bearing the heaviest burden of 
mortality.

The diagnosis of pneumonia typically involves a 
combination of clinical assessment, imaging and laboratory 
tests. Physicians often begin with a physical examination and 
patient history, noting symptoms such as fever, cough, chest 
pain and difficulty breathing. A chest X-ray remains the gold 
standard for confirming pneumonia, as it can reveal areas of 
lung consolidation where infection is present. Additional tests 
may include blood tests to assess inflammatory markers, sputum 
cultures to identify bacterial pathogens or polymerase chain 
reaction (PCR) tests for viral identification. In severe cases or 
in hospitalized patients, more advanced imaging and laboratory 
diagnostics may be used to tailor treatment. However, in many 
resource-limited settings, pneumonia is diagnosed and treated 
based primarily on symptoms and physical examination, which 
can lead to underdiagnosis or misdiagnosis.

Treatment of pneumonia depends on the underlying cause 
and the patient’s condition. Bacterial pneumonia is generally 
treated with antibiotics and early administration is crucial to 
prevent complications. The choice of antibiotic depends on the 
suspected pathogen, local resistance patterns and patient history, 
with common options including macrolides, beta-lactams and 
fluoroquinolones. Viral pneumonia often requires supportive 
care such as oxygen therapy, hydration and rest, though antiviral 
medications may be used in cases like influenza or severe COVID-
19. Fungal pneumonia requires antifungal therapy, which can be 

lengthy and complex. Supportive measures such as supplemental 
oxygen, intravenous fluids and mechanical ventilation may be 
necessary in severe cases. Despite the availability of effective 
therapies, challenges such as antibiotic resistance, lack of access 
to essential medicines and delayed healthcare-seeking behaviors 
remain significant barriers to improving outcomes.

Prevention of pneumonia has advanced greatly with the 
development of vaccines and public health interventions. 
The pneumococcal conjugate vaccine and pneumococcal 
polysaccharide vaccine have been widely adopted and are 
highly effective in reducing infections caused by Streptococcus 
pneumoniae. Vaccines against influenza and pertussis also 
indirectly reduce pneumonia incidence, particularly in 
vulnerable groups such as children, older adults and individuals 
with chronic illnesses. Childhood immunization programs have 
significantly lowered pneumonia-related mortality in many 
countries, although disparities in vaccine coverage persist. 
Beyond vaccination, preventive strategies include smoking 
cessation, improved nutrition, access to clean water, reduced 
air pollution and better management of chronic diseases. In 
hospitals, infection control measures such as hand hygiene 
and vaccination of healthcare workers help reduce nosocomial 
pneumonia.

The global burden of pneumonia remains high and it is 
considered one of the most important infectious diseases 
from a public health perspective. According to the World 
Health Organization, pneumonia is responsible for millions of 
hospitalizations and hundreds of thousands of deaths annually, 
especially among children under five and elderly populations. In 
low- and middle-income countries, the burden is exacerbated by 
limited access to healthcare, insufficient vaccination programs 
and high prevalence of risk factors such as malnutrition and 
indoor air pollution. Pneumonia also places a heavy economic 
burden on health systems and families, due to medical costs, lost 
productivity and long-term health complications. The COVID-
19 pandemic further emphasized the destructive potential of viral 
pneumonia, highlighting weaknesses in healthcare preparedness 
and reinforcing the need for robust global health strategies.

Research into pneumonia continues to evolve, with scientists 
studying novel diagnostic tools, antimicrobial therapies 
and vaccine technologies. Point-of-care tests that rapidly 
identify causative pathogens could revolutionize pneumonia 
management by enabling more precise treatment and reducing 
unnecessary antibiotic use. Efforts are also being directed 
toward addressing antimicrobial resistance, which threatens to 
undermine the effectiveness of standard therapies. New vaccines 
and improved formulations are being developed to broaden 
protection, while public health initiatives aim to strengthen 
surveillance and reduce inequalities in access to preventive care. 
Pneumonia is also closely studied in relation to climate change, 
as environmental factors such as air quality and shifting weather 
patterns influence respiratory health and disease incidence.

Pneumonia remains a major infectious disease with wide-
ranging clinical, social and economic consequences. It represents 
a complex interaction between host factors, pathogens and 
environmental conditions and while effective prevention and 
treatment strategies exist, they are not equitably accessible 
across the globe. Vaccination, early diagnosis, appropriate 
treatment and public health interventions have already saved 
countless lives, but sustained efforts are needed to reduce the 
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0.002;  0.95;  0.0025;  0.005;  0.2;
0.008; 0.01; 0.057;  0.05;  0.0115;  0.2;  0.75;
1.2;  0.1; 0.475;  1;

p
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ε τ φ χ
υ µ α ρ β η
γ δ ξ π

= = = = =
= = = = = = =
= = = =

u1, u2 and u3 are the control parameters.

Model 2: Almutairi, et al.10

In this model, (sv, vv, cv, tv, iv, rv) represent the susceptible, 
vaccinated, carrier, treated, infected and recovered individuals.

The model equations are 
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The base parameter values are
10.09; 0.01096; 0.04; 0.0287;  0.5;  0.0115; 0.02; 0.36;
0.00095;  0.0002; 0.0621; 0.36; 0.07.
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Λ = = = = = = = =
= = = = =

 

u1, u2 and u3 are control parameters

Bifurcation analysis

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles.  Multiple steady states 
occur because of the existence of branch and limit points.  
Hopf bifurcation points cause limit cycles.  A commonly used 
MATLAB program that locates limit points, branch points and 
Hopf bifurcation points is MATCONT11,12.  This program detects 
Limit points (LP), branch points (BP) and Hopf bifurcation 
points(H) for an ODE system

( , )dx f x
dt

α=

 nx R∈  Let the bifurcation parameter be α  . Since the 
gradient is orthogonal to the tangent vector,  

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    
must satisfy 

0Aw =
Where A is 

[ / | / ]A f x f α= ∂ ∂ ∂ ∂

global burden further. Addressing pneumonia is not only a 
matter of medical importance but also one of social justice, 
as the disease disproportionately affects the most vulnerable 
populations. Continued advances in research, healthcare 
access and preventive measures hold the promise of reducing 
pneumonia-related suffering and mortality worldwide. Through 
a combination of scientific progress and equitable health 
strategies, the global community can make significant strides 
toward controlling one of the world’s most persistent respiratory 
threats.

Melegaro, et al.1 provided estimations for   the transmission 
parameters of pneumococcal carriage in households. Van 
der Poll, et al.2 discussed the pathogenesis, treatment and 
prevention of pneumococcal pneumonia.  Ongala, et al.3, 
developed a control strategy for pneumonia and provided a 
probabilistic estimation of the basic reproduction number 
Ngari and co-workers4,5 developed and improved dynamic 
models for childhood pneumonia.  Cherazard, et al.6 discussed 
the prevalence, mechanisms and clinical implications of 
antimicrobial-resistant Streptococcus pneumoniae.  Tilaahun, 
et al.7, modelled and developed optimal control techniques of 
pneumonia disease with cost-effective strategies. Kizito, et al.8 
developed a mathematical model of treatment and vaccination 
interventions for pneumococcal pneumonia infection dynamics. 
Mumbu9, modelled the dynamics and performed stability analysis 
of pneumonia disease infection with parameter uncertainties. 
Almutairi, et al.10 discussed optimal control strategies for a 
mathematical model of pneumonia infection.  This work aims 
to perform bifurcation analysis and multiobjective nonlinear 
control (MNLMPC) studies in two pneumonia transmission 
models, which are discussed in Tilaahun, et al.7 (model 1) and 
Almutairi, et al.10 (model 2). The paper is organized as follows. 
First, the model equations are presented, followed by a discussion 
of the numerical techniques involving bifurcation analysis and 
multiobjective nonlinear model predictive control (MNLMPC). 
The results and discussion are then presented, followed by the 
conclusions.

Model Equations

In this section the model equations for two dynamic 
pneumonia models7,10 is presented.

Model 1: Tilaahun, et al.7

In this model, (sv, vv, cv, iv, rv) represents the susceptible, 
vaccinated, carrier, infected and recovered population.

The dynamic model equations are
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The base model parameters are
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where  /f x∂ ∂  is the Jacobian matrix.  For both limit and 
branch points, the Jacobian matrix  [ / ]J f x= ∂ ∂   must be 
singular.

For a limit point, there is only one tangent at the point of 
singularity. At this singular point, there is a single non-zero 
vector, y, where Jy=0. This vector is of dimension n. Since there 
is only one tangent the vector

1 2 3 4( , , , ,... )ny y y y y y=  must align with  

1 2 3 4ˆ ( , , , ,... )nw w w w w w=  . Since

 ˆ 0Jw Aw= =
the n+1 th component of the tangent vector 1nw +  = 0 at  a 

limit point (LP).

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w.  This implies that

0
0

Az
Aw

=
=

Consider a vector v that is orthogonal to one of the tangents 
(say w). v can be expressed as a linear combination of z and w 
( v z wα β= + ). Since 0Az Aw= =  ; 0Av =  and since w 
and v are orthogonal,

0Tw v = . Hence 0T

A
Bv v

w
 

= = 
 

 which implies that B is 
singular. 

Hence, for a branch point (BP) the matrix 
T

A
B

w
 

=  
 

 must 
be singular. 

At a Hopf bifurcation point,

det(2 ( , )@ ) 0x nf x Iα =

 @ indicates the bialternate product while nI  is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult.  More details can be found in Kuznetsov13-15.

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC)

The rigorous multiobjective nonlinear model predictive 
control (MNLMPC) method developed by Flores Tlacuahuaz, 
et al.16 was used. 

Consider a problem where the variables  
0

( )
i f

i

t t

j i
t

q t
=

=

∑ (j=1, 

2..n) have to be optimized simultaneously for a dynamic problem   

( , )dx F x u
dt

=

 ft  being the final time value and n the total number of 
objective variables and u the control parameter.     The single 
objective optimal control problem is solved individually 

optimizing each of the variables 
0

( )
i f
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t t

j i
t

q t
=

=

∑    The optimization 

of 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  will lead to the values *
jq .  Then, the 

multiobjective optimal control (MOOC)   problem that will be 
solved is 

0

* 2

1
min( ( ( ) ))
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t tn

j i j
j t

q t q

dxsubject to F x u
dt

=

=

=

−

=

∑ ∑

This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j) is obtained.

Pyomo17 is used for these calculations.  Here, the differential 
equations are converted to a Nonlinear Program (NLP) using 
the orthogonal collocation method   The NLP is solved using 
IPOPT18 and confirmed as a global solution with BARON19. 

The steps of the algorithm are as follows  

•	 Optimize 
0

( )
i f

i

t t

j i
t

q t
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=

∑  and obtain *
jq .

•	 Minimize 
0

* 2

1
( ( ( ) ))
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i
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q t q
=

=

=

−∑ ∑ and get  the control 
values at various times.

•	 Implement the first obtained control values 

•	 Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of 
the control variables or if the Utopia point is achieved. The 

Utopia point is when 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j.

 Sridhar20 demonstrated that when the bifurcation analysis 
revealed the presence of limit and branch points the MNLMPC 
calculations to converge to the Utopia solution.  For this, the 
singularity condition, caused by the presence of the limit or 
branch points was imposed on the co-state equation21.   If the 

minimization  of   1q  lead to the value 
*
1q  and the minimization 

of 2q  lead to the value 
*
2q   The MNLPMC calculations 

will minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The 
multiobjective optimal control problem is

* 2 * 2
1 1 2 2min ( ) ( ) ( , )dxq q q q subject to F x u

dt
− + − =

Differentiating the objective function results in

* 2 * 2 * * * *
1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )

i i i

d d dq q q q q q q q q q q q
dx dx dx

− + − = − − + − −

The Utopia point requires that both *
1 1( )q q−  and 

*
2 2( )q q−  are zero.  Hence
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* 2 * 2
1 1 2 2(( ) ( ) ) 0

i

d q q q q
dx

− + − =

The optimal control co-state equation is

* 2 * 2
1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d q q q q f t
dt dx

λ λ λ= − − + − − =

iλ  is the Lagrangian multiplier. ft  is the final time.  The 
first term in this equation is 0 and hence

( ) ; ( ) 0i x i i f
d f t
dt

λ λ λ= − =

At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  

xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0i
d
dt

λ <  . In between there 

is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to  [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem and 
the optimal solution is the Utopia solution.  

Results and Discussion
The bifurcation analysis of model 1(u1 is the bifurcation 

parameter) revealed a limit and a branch point at (sv, vv, cv, iv, 
rv, u1) values of (37.890795, 21.122761, 3.827876, 1.599404, 
2.581193, 0.742103) and (51.219512, 48.780488, 0.0, 0.0,   0.0, 
0.715564). This is shown in (Figure 1a).

Figure 1a: Bifurcation Analysis of Model 1.

For theMNLMPC calculations in model 1, sv(0) is set to 5000.

0 0

( ), ( )
i f i f

i i

t t t t

i i
t t

iv t cv t
= =

= =

∑ ∑  were    minimized individually and each 

of them led to a value 0.   The overall optimal control problem 

will involve the minimization of 
0 0

2 2( ( )) ( ( ))
i f i f

i i

t t t t

i i
t t

iv t cv t
= =

= =

+∑ ∑
was minimized subject to the equations governing the model. 
This led to a value of zero (the Utopia 

The MNLMPC values of the control variables, u1, u2 u3 
were 0.2901, 0.2218. 0.1039.  The various MNMPC Figures 
are shown in (Figures 1b-1e).  The control profiles u1, u2, u3 
(Figure 1d) exhibited noise and this was remedied using the 
Savitzky-Golay filter (Figure 1e). It is seen that the presence 

of the limit and branch points is beneficial because it allows the 
MNLMPC calculations to attain the Utopia solution, validating 
the analysis of Sridhar20.

Figure 1b: MNLMPC of Model 1 cv, iv profiles.

Figure 1c: MNLMPC of Model 1 vv, rv, sv profiles.

Figure 1d: MNLMPC of Model 1 control profiles (noise 
exhibited).

Figure 1e: MNLMPC of Model 1 control profiles (noise 
eliminated).
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The bifurcation analysis of model 2(u2 is the bifurcation 
parameter) revealed a limit and a branch point at (sv, vv, cv, 
tv, iv, rv, u2) values of (161.958266, 50288.041734, 0, 0, 0, 0, 
0.064177) (Figure 2a).

Figure 2a: Bifurcation Analysis of Model 2.

For theMNLMPC calculations in model 2, sv(0) is set to 
5000.

0 0

( ), ( )
i f i f

i i

t t t t

i i
t t

iv t cv t
= =

= =

∑ ∑  were    minimized individually and each 

of them led to a values 0.   The overall optimal control problem 

will involve the minimization of 
0 0

2 2( ( )) ( ( ))
i f i f

i i

t t t t

i i
t t

iv t cv t
= =

= =

+∑ ∑
was minimized subject to the equations governing the model. 
This led to a value of zero the Utopia.

The MNLMPC values of the control variables, u1, u2 u3 
were 0.08173, 0.00968. 0.18883.  The various MNMPC figures 
are shown in (Figures 2b-2f).  The control profiles u1, u2, u3 
(Figure 2e) exhibited noise and this was remedied using the 
Savitzky-Golay filter (Figure 2f). It is seen that the presence 
of the limit and branch points is beneficial because it allows the 
MNLMPC calculations to attain the Utopia solution, validating 
the analysis of Sridhar20.

Figure 2b: MNLMPC of Model 2 vv, tv, sv profiles.

Figure 2c: MNLMPC of Model 2 iv, rv profiles.

Figure 2d: MNLMPC of Model 2 CV profile.

Figure 2e: MNLMPC of Model 2 control profiles (noise 
exhibited).

Figure 2f: MNLMPC of Model 2 control profiles (noise 
eliminated).
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Conclusions
Bifurcation analysis and multiobjective nonlinear control 

(MNLMPC) studies in two dynamic pneumonia transmission 
models. The bifurcation analysis revealed the existence of a 
branch and limit point in the birst model and a branch point in 
the second model. The branch and limit points (which cause 
multiple steady-state solutions from a singular point) are very 
beneficial because they enable the Multiobjective nonlinear 
model predictive control calculations to converge to the Utopia 
point (the best possible solution) in the models.    A combination 
of bifurcation analysis and Multiobjective Nonlinear Model 
Predictive Control (MNLMPC) for dynamic pneumonia 
transmission models is the main contribution of this paper.
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