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ABSTRACT

Pneumonia is an acute respiratory disease that poses a major threat to human health and causes millions of deaths every year.
It is a global health challenge and effective strategies must be implemented to minimize the damage. Therefore, the dynamics of
pneumonia transmission must be understood and control methods that are beneficial and cost-effective must be implemented.

In this work, bifurcation analysis and multiobjective nonlinear model predictive control is performed on two dynamic
models involving pneumonia transmission. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear
dynamics of any process. Several factors must be considered and multiple objectives must be met simultaneously. The MATLAB
program MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the
optimization language PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The
bifurcation analysis revealed the existence of branch and limit points in the first model and a branch point in the second model.
The MNLMPC converged to the utopia solution in both models. The branch and limit points (which cause multiple steady-state
solutions from a singular point) are very beneficial because they enable the Multiobjective nonlinear model predictive control
calculations to converge to the Utopia point (the best possible solution) in both models.
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pneumonia remains a major global health challenge, with
significant impact in both developed and developing nations.

Background

Pneumonia is a serious respiratory infection that has been

recognized as one of the leading causes of morbidity and
mortality worldwide, affecting individuals across all age groups
and socioeconomic backgrounds. It is defined as an infection that
inflames the air sacs of the lungs, known as alveoli, which may
fill with fluid or pus and hinder normal breathing. The causes
of pneumonia are diverse, including bacteria, viruses, fungi and
other microorganisms and the severity of the disease ranges from
mild to life-threatening depending on the patient’s age, general
health and access to medical care. Despite advances in medicine,

The clinical presentation of pneumonia can vary greatly
depending on the pathogen involved, but common symptoms
include cough, fever, chills, difficulty breathing, chest pain and
fatigue. In bacterial pneumonia, symptoms often progress quickly
with high fever and productive cough, while viral pneumonia
may develop more gradually and is frequently accompanied
by wheezing and muscle aches. In older adults and very young
children, symptoms may be nonspecific, such as confusion, loss
of appetite or irritability, making the diagnosis more difficult.
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This variability complicates the timely recognition of pneumonia
and can delay treatment, particularly in settings with limited
diagnostic resources. Severe cases can progress to respiratory
failure, sepsis or systemic organ dysfunction, underlining the
importance of rapid medical attention.

The causative agents of pneumonia are numerous, but the
most common bacterial cause is Streptococcus pneumoniae,
also called pneumococcus, which remains a leading cause
of community-acquired pneumonia. Other bacteria such as
Haemophilus influenzae and atypical organisms like Mycoplasma
pneumoniae and Chlamydophila pneumoniae are also significant
contributors. Viral causes are increasingly recognized, especially
influenza virus, respiratory syncytial virus and coronaviruses,
which have been highlighted in recent years due to the COVID-
19 pandemic. Fungal pneumonia, although less common, can be
severe in immunocompromised patients, particularly those with
conditions like HIV/AIDS or those undergoing chemotherapy.
Because of the diverse spectrum of pathogens, treatment
approaches must be tailored to the suspected cause, the patient’s
medical history and local epidemiological patterns.

Risk factors for pneumonia are multifaceted and involve both
host and environmental components. Age is a major determinant,
with infants under two years and adults over sixty-five years
particularly vulnerable due to weaker immune defenses. Chronic
diseases such as asthma, chronic obstructive pulmonary disease,
diabetes and heart failure increase susceptibility by impairing
lung function or immune responses. Smoking is a well-established
risk factor, as it damages the respiratory tract’s natural defenses
and increases vulnerability to infection. Malnutrition, poor
living conditions, overcrowding and lack of access to healthcare
amplify the risk in low-income countries, where pneumonia is a
leading cause of death in children under five years. On a global
scale, pneumonia reflects the deep inequalities in healthcare
access, with developing regions bearing the heaviest burden of
mortality.

The diagnosis of pneumonia typically involves a
combination of clinical assessment, imaging and laboratory
tests. Physicians often begin with a physical examination and
patient history, noting symptoms such as fever, cough, chest
pain and difficulty breathing. A chest X-ray remains the gold
standard for confirming pneumonia, as it can reveal areas of
lung consolidation where infection is present. Additional tests
may include blood tests to assess inflammatory markers, sputum
cultures to identify bacterial pathogens or polymerase chain
reaction (PCR) tests for viral identification. In severe cases or
in hospitalized patients, more advanced imaging and laboratory
diagnostics may be used to tailor treatment. However, in many
resource-limited settings, pneumonia is diagnosed and treated
based primarily on symptoms and physical examination, which
can lead to underdiagnosis or misdiagnosis.

Treatment of pneumonia depends on the underlying cause
and the patient’s condition. Bacterial pneumonia is generally
treated with antibiotics and early administration is crucial to
prevent complications. The choice of antibiotic depends on the
suspected pathogen, local resistance patterns and patient history,
with common options including macrolides, beta-lactams and
fluoroquinolones. Viral pneumonia often requires supportive
care such as oxygen therapy, hydration and rest, though antiviral
medications may be used in cases like influenza or severe COVID-
19. Fungal pneumonia requires antifungal therapy, which can be
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lengthy and complex. Supportive measures such as supplemental
oxygen, intravenous fluids and mechanical ventilation may be
necessary in severe cases. Despite the availability of effective
therapies, challenges such as antibiotic resistance, lack of access
to essential medicines and delayed healthcare-seeking behaviors
remain significant barriers to improving outcomes.

Prevention of pneumonia has advanced greatly with the
development of vaccines and public health interventions.
The pneumococcal conjugate vaccine and pneumococcal
polysaccharide vaccine have been widely adopted and are
highly effective in reducing infections caused by Streptococcus
pneumoniae. Vaccines against influenza and pertussis also
indirectly reduce pneumonia incidence, particularly in
vulnerable groups such as children, older adults and individuals
with chronic illnesses. Childhood immunization programs have
significantly lowered pneumonia-related mortality in many
countries, although disparities in vaccine coverage persist.
Beyond vaccination, preventive strategies include smoking
cessation, improved nutrition, access to clean water, reduced
air pollution and better management of chronic diseases. In
hospitals, infection control measures such as hand hygiene
and vaccination of healthcare workers help reduce nosocomial
pneumonia.

The global burden of pneumonia remains high and it is
considered one of the most important infectious diseases
from a public health perspective. According to the World
Health Organization, pneumonia is responsible for millions of
hospitalizations and hundreds of thousands of deaths annually,
especially among children under five and elderly populations. In
low- and middle-income countries, the burden is exacerbated by
limited access to healthcare, insufficient vaccination programs
and high prevalence of risk factors such as malnutrition and
indoor air pollution. Pneumonia also places a heavy economic
burden on health systems and families, due to medical costs, lost
productivity and long-term health complications. The COVID-
19 pandemic further emphasized the destructive potential of viral
pneumonia, highlighting weaknesses in healthcare preparedness
and reinforcing the need for robust global health strategies.

Research into pneumonia continues to evolve, with scientists
studying novel diagnostic tools, antimicrobial therapies
and vaccine technologies. Point-of-care tests that rapidly
identify causative pathogens could revolutionize pneumonia
management by enabling more precise treatment and reducing
unnecessary antibiotic use. Efforts are also being directed
toward addressing antimicrobial resistance, which threatens to
undermine the effectiveness of standard therapies. New vaccines
and improved formulations are being developed to broaden
protection, while public health initiatives aim to strengthen
surveillance and reduce inequalities in access to preventive care.
Pneumonia is also closely studied in relation to climate change,
as environmental factors such as air quality and shifting weather
patterns influence respiratory health and disease incidence.

Pneumonia remains a major infectious disease with wide-
ranging clinical, social and economic consequences. It represents
a complex interaction between host factors, pathogens and
environmental conditions and while effective prevention and
treatment strategies exist, they are not equitably accessible
across the globe. Vaccination, early diagnosis, appropriate
treatment and public health interventions have already saved
countless lives, but sustained efforts are needed to reduce the
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global burden further. Addressing pneumonia is not only a
matter of medical importance but also one of social justice,
as the disease disproportionately affects the most vulnerable
populations. Continued advances in research, healthcare
access and preventive measures hold the promise of reducing
pneumonia-related suffering and mortality worldwide. Through
a combination of scientific progress and equitable health
strategies, the global community can make significant strides
toward controlling one of the world’s most persistent respiratory
threats.

Melegaro, et al.' provided estimations for the transmission
parameters of pneumococcal carriage in households. Van
der Poll, et al.? discussed the pathogenesis, treatment and
prevention of pneumococcal pneumonia. Ongala, et al’,
developed a control strategy for pneumonia and provided a
probabilistic estimation of the basic reproduction number
Ngari and co-workers*® developed and improved dynamic
models for childhood pneumonia. Cherazard, et al.® discussed
the prevalence, mechanisms and clinical implications of
antimicrobial-resistant Streptococcus pneumoniae. Tilaahun,
et al.”, modelled and developed optimal control techniques of
pneumonia disease with cost-effective strategies. Kizito, et al.®
developed a mathematical model of treatment and vaccination
interventions for pneumococcal pneumonia infection dynamics.
Mumbu’, modelled the dynamics and performed stability analysis
of pneumonia disease infection with parameter uncertainties.
Almutairi, et al.'"’ discussed optimal control strategies for a
mathematical model of pneumonia infection. This work aims
to perform bifurcation analysis and multiobjective nonlinear
control (MNLMPC) studies in two pneumonia transmission
models, which are discussed in Tilaahun, et al.” (model 1) and
Almutairi, et al.'” (model 2). The paper is organized as follows.
First, the model equations are presented, followed by a discussion
of the numerical techniques involving bifurcation analysis and
multiobjective nonlinear model predictive control (MNLMPC).
The results and discussion are then presented, followed by the
conclusions.

Model Equations

In this section the model equations for two dynamic
pneumonia models”!? i

is presented.
Model 1: Tilaahun, et al.”

In this model, (sv, vv, cv, iv, 1v) represents the susceptible,
vaccinated, carrier, infected and recovered population.

The dynamic model equations are

d(dStv) = ((1*P)7r)+(¢vv)+(5rv)f(gvsv) 7((U+,u)sv)

d(d\;") =(pr)+(vsv) —(gVVV)—((qﬁer)v\;)

d(dc;v) =(p)gv((é'vv)+sv)+((l—q)(l—u2)77iv)—((u3+;(+y+ﬂ)cv)
d((iitV) _ (17p)gv((gvv)+sv)+((u3+;()cv) 7((u2+77+,u+a)jv)
d(df:’) :(ﬁcv)+((u2+(qr7))iv)—((,u+5)rv)

nY=sv+vw+cv+iv+ry;

gvz((lul)g“((ycv)Jriv)]

nyv

The base model parameters are
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£=0.002; 7=0.95; $=0.0025; y =0.005; p=0.2;
v=0.008; £=0.01;& =0.057; p=0.05; f=0.0115; n=0.2; ¢ =0.75;
y=12; 6=0.1;£=0475, 7 =1,

ul, u2 and u3 are the control parameters.
Model 2: Almutairi, et al.'’

In this model, (sv, vv, cv, tv, iv, 1v) represent the susceptible,
vaccinated, carrier, treated, infected and recovered individuals.

The model equations are

¥=A+(}/W)—av—(y+p)sv
d(vv) = psv+orv— uvy

dt
d(cv) =av—(,u+5+g+u2)cv

dt
%z(u2+5)cv+(riv)—(,u+9)tv
dE;IV) =gcv—(y+r+a+k+u3)iv
dg;v) =6’tv+(k+u3)iv—(,u+0'+7)rv
av:ﬂ(l—ul)svzv

(1+miv)

The base parameter values are
A =10.09;6=0.01096;0 = 0.04; f =0.0287; m=0.5; k =0.0115;6 =0.02; = 0.36;
7 =0.00095; 1 =0.0002; p=0.0621;0 =0.36;7 =0.07.

ul, u2 and u3 are control parameters
Bifurcation analysis

The MATLAB software MATCONT is used to perform
the bifurcation calculations. Bifurcation analysis deals with
multiple steady-states and limit cycles. Multiple steady states
occur because of the existence of branch and limit points.
Hopf bifurcation points cause limit cycles. A commonly used
MATLAB program that locates limit points, branch points and
Hopf bifurcation points is MATCONT!2, This program detects
Limit points (LP), branch points (BP) and Hopf bifurcation
points(H) for an ODE system

% - f(na)

x € R" Let the bifurcation parameter be & . Since the
gradient is orthogonal to the tangent vector,

The tangent plane atany point W= [Wl s Wy s Wy Wyyoon W, ]
must satisfy

Aw=0
Where A is

A=[of /ox |of /da]
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where Of / Ox is the Jacobian matrix. For both limit and

branch points, the Jacobian matrix J =[9f / Ox]
singular.

must be

For a limit point, there is only one tangent at the point of
singularity. At this singular point, there is a single non-zero
vector, y, where Jy=0. This vector is of dimension n. Since there
is only one tangent the vector
must align with

V=31 Y2 V3> Vaserrdy)

w=(w,w,,w,,w,,..w,) .Since

Jw=Aw=0

the n+1 * component of the tangent vector W, =0 at a
limit point (LP).

For a branch point, there must exist two tangents at the
singularity. Let the two tangents be z and w. This implies that

Az =0
Aw=0
Consider a vector v that is orthogonal to one of the tangents
(say w). v can be expressed as a linear combination of z and w
(v=az+ pw).Since Az=Aw=0; Av=0 and since w
and v are orthogonal,

A
w'v=0. Hence Bv:{ T}v =(0 which implies that B is
singular. w

A
Hence, for a branch point (BP) the matrix B = [ r} must
be singular. w

At a Hopf bifurcation point,

det2f (x,a)@1,)=0

@ indicates the bialternate product while 7 is the n-square
identity matrix. Hopf bifurcations cause limit cycles and should
be eliminated because limit cycles make optimization and control
tasks very difficult. More details can be found in Kuznetsov'*-'°.

Multiobjective Nonlinear Model Predictive Control
(MNLMPC)

The rigorous multiobjective nonlinear model predictive
control (MNLMPC) method developed by Flores Tlacuahuaz,
et al.'® was used.

t=t,
Consider a problem where the variables Z q, (¢,)G=1,

tig
2..n) have to be optimized simultaneously for a dynamic problem

dx
—=F(x,u
7 (x, )

t s being the final time value and n the total number of
objective variables and u the control parameter. ~ The single
objective optimal control problem is solved individually

t=t;
optimizing each of the variables Z q; (ti) The optimization

t=t; tio

of qu(fi) will lead to the values q;.

lizo

Then, the
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multiobjective optimal control (MOOC) problem that will be
solved is

n t,-:t/

min(® (> ¢,()~q;))’

J=l iy

subject to % =F(x,u);

This will provide the values of u at various times. The first
obtained control value of u is implemented and the rest are
discarded. This procedure is repeated until the implemented and

the first obtained control values are the same or if the Utopia
4=t

point where ( Z q, (ti) ={; forallj) is obtained.

lizo

Pyomo'” is used for these calculations. Here, the differential
equations are converted to a Nonlinear Program (NLP) using
the orthogonal collocation method The NLP is solved using
IPOPT'® and confirmed as a global solution with BARON".
The steps of the algorithm are as follows

L=t
e Optimize Z q; (fi) and obtain ¢ ;.

lizo

n L=l

*  Minimize (Z(z 4; (ti)_qj))2 and get the control

values at varitis times.
*  Implement the first obtained control values

*  Repeat steps 1 to 3 until there is an insignificant difference
between the implemented and the first obtained value of
the control variables or if the Utopia point is achieved. The

t=t;
%
Utopia point is when Z q, (t,') ={; forallj.

lizo

Sridhar®® demonstrated that when the bifurcation analysis
revealed the presence of limit and branch points the MNLMPC
calculations to converge to the Utopia solution. For this, the
singularity condition, caused by the presence of the limit or
branch points was imposed on the co-state equation®’. If the

minimization of {; lead to the value ¢, and the minimization
*
of ¢, lead to the value ¢, The MNLPMC calculations

*\2 *\2
will minimize the function (¢, —¢,)" +(¢,—¢,)
multiobjective optimal control problem is

The

. * * d
min (¢, —¢,)* +(q,—q,)* subject to 7);=F (x,u)

Differentiating the objective function results in

L (-a +gy-0P)=2g -4~ -4)

dx. E

i i

* * d
(% —q )+2(Q2 - qz)
dx,

The Utopia point requires that both (ql —ql* ) and

(qz - QZ) are zero. Hence
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((¢,-9,)" +(q,-¢,))=0
dx,
The optimal control co-state equation is

d d *\2 *\2 . —
E(/li)=_d_xi((q1_q1) +(Q2_qz) )_fxﬂ,-, ﬂ,-(tf)—o

ﬂ’i is the Lagrangian multiplier. ¢ f is the final time. The

first term in this equation is 0 and hence
i(ﬂu)——fﬂ,'ﬂ»(t )=0
dt i i Uy

Atalimitorabranch point, for the set of ODE ? = f(x,u)
t

fx is singular. Hence there are two different vectors-values for

[ﬂl] where %(,1[) >0 and %(ﬂ,i) <0 . In between there

is a vector [ll] where di( 2)=0 . This coupled with the
A

boundary condition /1,(1‘ f) =0 will lead to M,] =0 This
makes the problem an unconstrained optimization problem and
the optimal solution is the Utopia solution.

Results and Discussion

The bifurcation analysis of model 1(ul is the bifurcation
parameter) revealed a limit and a branch point at (sv, vv, cv, iv,
rv, ul) values of (37.890795, 21.122761, 3.827876, 1.599404,
2.581193,0.742103) and (51.219512, 48.780488, 0.0, 0.0, 0.0,
0.715564). This is shown in (Figure 1a).

150 -

100

v

50 BP

0 -l
80

60

20 0.5
sv 0 0 ul

Figure 1a: Bifurcation Analysis of Model 1.
For theMNLMPC calculations in model 1, sv(0) is set to 5000.

ti=t, ti=t,
Z iv(t,), Z cv(t;) were minimized individually and each
tico tico

of them led to a value 0. The overall optimal control problem
ti=t; ti=t,

will involve the minimization of (Z iv(t))* + (Z ov(t))’
lico tico

was minimized subject to the equations governing the model.

This led to a value of zero (the Utopia

The MNLMPC values of the control variables, ul, u2 u3
were 0.2901, 0.2218. 0.1039. The various MNMPC Figures
are shown in (Figures 1b-1e). The control profiles ul, u2, u3
(Figure 1d) exhibited noise and this was remedied using the
Savitzky-Golay filter (Figure 1e). It is seen that the presence

J Petro Chem Eng | Vol: 3 & Iss: 3

of the limit and branch points is beneficial because it allows the
MNLMPC calculations to attain the Utopia solution, validating
the analysis of Sridhar®.

0.00020

0.00015

0.00010

0.0000s

[ z P 3 8 10
t

Figure 1b: MNLMPC of Model 1 cv, iv profiles.
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Figure 1¢: MNLMPC of Model 1 vv, rv, sv profiles.
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Figure 1d: MNLMPC of Model 1 control profiles (noise
exhibited).
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Figure le: MNLMPC of Model 1 control profiles (noise
eliminated).
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The bifurcation analysis of model 2(u2 is the bifurcation
parameter) revealed a limit and a branch point at (sv, vv, cv,
tv, iv, rv, u2) values of (161.958266, 50288.041734, 0, 0, 0, 0,
0.064177) (Figure 2a).

x10%
5.02886 -
5.02884

5.02882

Vv

5.0288

5.02878 -

sv 161.94 o w2

Figure 2a: Bifurcation Analysis of Model 2.

For theMNLMPC calculations in model 2, sv(0) is set to
5000.

L=t;
z iv(t,), z cv(t,) were minimized individually and each
ticg ticg
of them led to a values 0. The overall optimal control problem
t=t;

=ty

i L=ty

will involve the minimization of (Z iv(tl_))2 + (z ov(t, ))2
ticg tig

was minimized subject to the equations governing the model.

This led to a value of zero the Utopia.

The MNLMPC values of the control variables, ul, u2 u3
were 0.08173, 0.00968. 0.18883. The various MNMPC figures
are shown in (Figures 2b-2f). The control profiles ul, u2, u3
(Figure 2e) exhibited noise and this was remedied using the
Savitzky-Golay filter (Figure 2f). It is seen that the presence
of the limit and branch points is beneficial because it allows the
MNLMPC calculations to attain the Utopia solution, validating
the analysis of Sridhar®.

—
— v

— sy

o 100 200 300 400 500
t

Figure 2b: MNLMPC of Model 2 vv, tv, sv profiles.
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o 100 200 300 400 500
t

Figure 2¢: MNLMPC of Model 2 iv, rv profiles.
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Figure 2d: MNLMPC of Model 2 CV profile.
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Figure 2e: MNLMPC of Model 2 control profiles (noise

exhibited).
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Figure 2f: MNLMPC of Model 2 control profiles (noise
eliminated).
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Conclusions

Bifurcation analysis and multiobjective nonlinear control
(MNLMPC) studies in two dynamic pneumonia transmission
models. The bifurcation analysis revealed the existence of a
branch and limit point in the birst model and a branch point in
the second model. The branch and limit points (which cause
multiple steady-state solutions from a singular point) are very
beneficial because they enable the Multiobjective nonlinear
model predictive control calculations to converge to the Utopia
point (the best possible solution) in the models. A combination
of bifurcation analysis and Multiobjective Nonlinear Model
Predictive Control (MNLMPC) for dynamic pneumonia
transmission models is the main contribution of this paper.
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