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Background
Kirschne, et al1 investigated the optimal control of the 

chemotherapy of HIV. Samanta2, analyzed a nonautonomous 
HIV/AIDS model.  Nyabadza, et al.3 developed a rigorous of 
an HIV/AIDS model with public health information campaigns 
and individual withdrawal. Samanta4 conducted research on 
the permanence and extinction of a nonautonomous HIV/
AIDS epidemic model with distributed time delay. Waziri, et 
al.5 modelled HIV/AIDS dynamics with treatment and vertical 
transmission,” Hattaf and N. Yousfi6,7, researched optimal 
treatments of HIV infection models. Lungu, et al.8, modelled the 
HIV/Kaposi’s sarcoma coinfection dynamics in areas of high 
HIV prevalence.  Huo and Feng9 investigated the global stability 

for an HIV/AIDS epidemic model with different latent stages 
and treatment. Balasubramaniam, et al.10, showed the presence 
of Hopf bifurcations and periodic solutions for delay differential 
model of HIV infection of CD4+ T-cells. Silva and Torres11 
developed a SICA compartmental model in epidemiology 
applied to HIV/AIDS in Cape Verde. Ali, et al.12 developed an 
optimal control strategy of the HIV-1 epidemic model regarding 
a recombinant virus.  Aldila13, developed a mathematical model 
for an HIV spread control program with ART treatment. Marsudi, 
et al.14 performed optimal control and sensitivity analysis of HIV 
model with public health education campaign and antiretroviral 
therapy. Ghosh, et al.15 described a simple SI-type model for 
HIV/AIDS with media and self-imposed psychological fear. 

 A B S T R A C T 
HIV/AIDS has significantly impacted universities, affecting young students through increased illness, mortality and 

absenteeism, as well as impacting institutional functioning and resources. Universities, particularly in regions with high HIV 
prevalence, have had to develop strategies to address the epidemic, including prevention, care and support programs, as well 
as integrating HIV/AIDS education into the curriculum. In this work, bifurcation analysis and multiobjective nonlinear 
model predictive control is performed on three HIV dynamic models, Bifurcation analysis is a powerful mathematical tool 
used to deal with the nonlinear dynamics of any process. Several factors must be considered and multiple objectives must be 
met simultaneously.  Bifurcation analysis and multiobjective nonlinear model predictive control (MNLMPC) calculations are 
performed on three oncolytic dynamic models. The MATLAB program MATCONT was used to perform the bifurcation analysis. 
The MNLMPC calculations were performed using the optimization language PYOMO   in conjunction with the state-of-the-art 
global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of branch and limit points in 
the models. The branch and limit points (which cause multiple steady-state solutions from a singular point) are very beneficial 
because they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best 
possible solution) in all the models.
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Akudibillah, et al.16 described optimal control techniques for 
HIV treatment.  Lawi, et al.17 studied in vivo HIV dynamics 
under combined antiretroviral treatment.  Ilahi and Nurhalimah18 
studied global stability and sensitivity analysis of the SIA model 
for the AIDS disease. Saha and Samanta19, conducted optimal 
control studies of HIV/AIDS prevention through PrEP and 
limited treatment. Widyaningsih, et al20 developed a susceptible 
infected AIDS treatment (SIAT) model.  Mayanja, et al.21, 
modelled the HIV-HCV coinfection dynamics in the absence of 
therapy.  Rana and Sharma22, modelled and analyzed a SI-type 
model for HIV/AIDS. Ayele, et al.23 modelled the HIV/AIDS 
with optimal control. Marsudi, et al.24 performed optimal control 
of an HIV/AIDS epidemic model with behavioral change and 
treatment. Cheneke, et al.25 performed bifurcation and stability 
analysis of a HIV transmission model with optimal control. 
Cheneke, et al.26 performed single-objective optimal control 
with bifurcation analysis of a HIV Model.

This work aims to perform bifurcation analysis and 
multiobjective nonlinear control (MNLMPC) studies in three 
HIV models, which are discussed in Akudibillah, et al.16 (model 
1); Cheneke, et al.26 (model 2) and Kirschne, et al.1 (model 3). 
The paper is organized as follows. First, the model equations are 
presented, followed by a discussion of the numerical techniques 
involving bifurcation analysis and multiobjective nonlinear 
model predictive control (MNLMPC). The results and discussion 
are then presented, followed by the conclusions.

Model Description
Model 1

The variables ( , ; 1, 2, 3, 4, , 1, 2, 3, 4, 2, 3, 4)s iua iu iu iu iu ida id id id id it it it
stands for susceptible individuals, infected undiagnosed acute, 
infected undiagnosed stage1, infected undiagnosed stage 2, 
infected undiagnosed stage3, infected undiagnosed stage 4, 
infected diagnosed acute, infected diagnosed stage1, infected 
diagnosed stage 2, infected diagnosed stage3, infected diagnosed 
stage 4 or infected treated stage 2, infected treated stage3, 
infected treated stage 4. The model equations are

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1

2
1 1 2 2

3
2 2 3 3 3

4
3 3 4 4 4

1
1 1 1

2
1 1 2 2 2 2

ds b nval s s
dt
d iua

s d ra iua
dt

d iu
ra iua d r iu

dt
d iu

r iu d r iu

d iu
r iu d r iu

dt
d iu

r iu d iu
dt

d ida
d iua ra ida

dt
d id

ra ida d iu r id
dt

d id
r id d iu it u r

d

d

t

t

µ λ

λ µ

µ

µ

µ γ

γ µ

µ

µ

τ

= − −

= − + +

= − + +

= − + +

= − + + +

= − + +

= − +

= + − +

= + + − + +( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

3
2 2 3 3 3 3 3 3

4
3 3 4 4 4 4 4 4

2
2 2 3 3 2

3
3 3 4 4 3 3

4
4 4 4 4 4

 

id

d id
r id d iu it u r id

dt
d id

r id d iu it u id

d it
u id y it it

d it
u id y it y it

d it
u id y it

d

t

t

t

dt

d

d

µ

τ µ γ

τ µ γ

τ µ

τ µ

τ µ γ

= + + − + + +

= + + − + +

= + − +

= + − + +

= − + + +

        (1)

With

( )( )

( )( )

( ) ( )( )

( ) ( )( )

1 2 3 4 1 2 3 4 2 3 4

1 1 1
1

2 2 2 2
2

3 3 3 3
3

1 2 3

1

1

nval s iua iu iu iu iu ida id id id id it it it
a iua ida

a
nval

iu id
nval

iu id it
nval

iu id it
nval

a

α

β ξ
λ

β ξ
λ

β ξ ξ
λ

β ξ ξ
λ

λ λ λ λ λ

α

= + + + + + + + + + + + + +

+
=

+
=

+ +
=

+ +
=

= + + +

−

−

                                          

			     			            (2)

The base parameter values are

0.0309; 0.0244; 4 0.9091; 3 0.9091; 0.960; 0.68;
0.656; 1 0.096; 2 0.654; 3 0.248; 0.03; 4.8;

1 0.3235; 2 0.6667; 3 0.1538; 3 1; 4 1; 0; 0.3333;
0.2;  2 0.2; 3 0.1; 4 0.1; 4 0.9;

b
a r ra

r r r y y da d
u u u d

µ γ γ α ξ
β β β β

τ

= = = = = =
= = = = = =
= = = = = = =
= = = = =

Model 2

The variables s, w, iv, u and a represent the susceptible 
population, HIV untested population, Size of HIV tested 
pre-AIDS population with transmissible virus, pre-AIDS 
population with untransmissible virus and AIDS population.  
The model equations are
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Model 3

In this model, the variables tv tv1, tv2, v represents the 
concentration of uninfected CD4+ T Cells, the concentrations 
of latently infected and actively infectedCD4+ T cells and the 
concentration of free infectious virus particles.

The model equations are
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obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where (
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑ for all j) is obtained.

Pyomo33 is used for these calculations.  Here, the differential 
equations are converted to a Nonlinear Program (NLP) using 
the orthogonal collocation method   The NLP is solved using 
IPOPT34 and confirmed as a global solution with BARON35.  
Sridhar36 proved that the MNLMPC calculations to converge to 
the Utopia solution when the bifurcation analysis revealed the 
presence of limit and branch points. This was done by imposing 
the singularity condition on the co-state equation37. This makes 
the constrained problem an unconstrained optimization problem 
and the only solution is the Utopia solution.  More details can be 
found in Sridhar36.

Results and Discussion
In model 1, the bifurcation analysis revealed several 

limit points for various bifurcation parameters. We provide 
an example of a limit point when   is the bifurcation 
parameter. In this case the limit point occurred at 
( , ; 1, 2, 3, 4, , 1, 2, 3, 4, 2, 3, 4, )s iua iu iu iu iu ida id id id id it it it τ
values of (15300176172.914, 23558640.2, 166003336.701, 
41517249.721 ,27348556.3828, 2294086.703, 1627579.549, 
181492652.947, 79629149.219, 71504204.973, 12754317.507, 
99171199.0158, 6328187.215, 597811.929, 0.935788) (Figure 
1).

Figure 1: Bifurcation Diagram for HIV model 1(indicating limit 
point).

For the MNLMPC calculations, 
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subject to the equations governing Model 2. This led to a value 
of zero (the Utopia solution) validating the analysis of Sridhar 
(2024).  The MNLMPC control values of u2, u3 and u4 were 
(0.2844, 0.02983, 0.6467).

(Figures 2-8) show the various MNLMPC profiles. (Figure 
7) shows the control profiles (u2, u3, u4) exhibiting noise. The 
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Bifurcation analysis

Bifurcation analysis is performed using the MATLAB 
software MATCONT which locates branch points limit points 
and Hopf bifurcation points27,28. Consider a set of ordinary 
differential equations

( , )dx f x
dt

α=                                  		  (8)

nx R∈  Let the bifurcation parameter be α  . Since the 
gradient is orthogonal to the tangent vector, The tangent plane at 
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where /f x∂ ∂  is the Jacobian matrix. For both limit and 

branch points, the Jacobian matrix [ / ]f x∂ ∂ must be singular. 
The n+1th component of the tangent vector 1nz + = 0 for a limit 

point (LP)and for a branch point (BP) the matrix 
T
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be singular. At a Hopf bifurcation point,
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  @ indicates the bialternate product and nI is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult.  More details can be found in Kuznetsov29-31.

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC)

The procedure developed by Flores Tlacuahuaz, et al.32 
is used for performing the MNLMPC calculations Let the 

objective function variables 
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Where ft  is the final time value and n the total number of 
objective variables and u the control parameter is parameter.  
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This will provide the values of u at various times. The first 
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noise was eliminated using the Savitzky-Golay filter to produce 
the smooth control profiles (u2sg, u3sg, u4sg) (Figure 8).

Figure 2: MNLMPC for HIV model 1(s vs t).

Figure 3: MNLMPC for HIV model 1(iu1, id1 vs t).

Figure 4: MNLMPC for HIV model 1(iu2, id2, it2 vs t).

Figure 5: MNLMPC for HIV model 1(iu3, id3, it3 vs t).

Figure 6: MNLMPC for HIV model 1(iu4, id4, it4 vs t).

Figure 7: MNLMPC for HIV model 1(u2, u3, u4 vs t; control 
profiles exhibit noise).

Figure 8: MNLMPC for HIV model 1(u2sg, u3sg, u4sg vs t; 
control profiles noise eliminated with Savitzky-Golay filter).

In model 2, the bifurcation analysis revealed both branch and 
limit points. With u1 as the bifurcation parameter, a branch point 
and limit point were found at (s, w, iv, u, a, u1) values of (10000, 
0, 0, 0, 0, 0.878605) and (10000.009866, -0.000241, -0.001604, 
0, -0.000157, 0.878605) (Figure 9).

For the MNLMPC calculations, 
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the equations governing Model 2. This led to a value of zero 
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(the Utopia solution) validating the analysis of Sridhar (2024).  
The MNLMPC control values of u1, u2 and u4 were 0.44 and 
0.3249.

Figure 9: Bifurcation Diagram for Model 2.

(Figures 10-15) show the various MNLMPC profiles. 
(Figure 14) shows the control profiles (u1, u2) exhibiting noise. 
The noise was eliminated using the Savitzky-Golay filter to 
produce the smooth control profiles (u1sg, u2sg) (Figure 15).

Figure 10: MNLMPC model 2 (s,w, vs t).

Figure 11: MNLMPC model 2 (u,vs t).

Figure 12: MNLMPC model 2 (iv vs t).

Figure 13: MNLMPC model 2 (a vs t).

Figure 14: MNLMPC model 2 (u1, u2 vs t).

Figure 15: MNLMPC model 2 (u1sg, u2sg vs t).

In model 3, with   as the bifurcation parameter a branch 
point and 2 limit points occurred at   values of (1000, 0, 0, 0, 0); 
(999.977873, 0, 0.033191, 0, 0) and (999.965686, 0, 0.051471, 
0, 0) (Figure 16).

Figure 16: Bifurcation Diagram for Model 3.
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For the MNLMPC calculations, 
0 0

1( ), 2( )
i f i f

i i

t t t t

i i
t t

tv t tv t
= =

= =

∑ ∑ were 

minimized individually and each minimization yielded a value 
of 0. The multiobjective optimal control problem will involve 

the minimization of 
0 0

2 2( 1( ) 0) ( 2( ) 0)
i f i f

i i

t t t t

i i
t t

tv t tv t
= =

= =

− + −∑ ∑  

subject to the equations governing Model 3. This led to a value 
of zero (the Utopia solution) validating the analysis of Sridhar 
(2024).  The MNLMPC control values of u1 was 0.7592.

(Figures 17-20) show the various MNLMPC profiles. 
(Figure 20) shows the control profile (u1) exhibiting noise. The 
noise was eliminated using the Savitzky-Golay filter to produce 
the smooth control profiles (u1sg) (also shown in Figure 20).

Figure 17: MNLMPC model 2 (tv vs t).

Figure 18: MNLMPC model 2 (v vs t).

Figure 19: MNLMPC model 2 (tv1, tv2 vs t).

Figure 20: MNLMPC model 2 (u1, u1sg vs t)

Conclusions
Bifurcation analysis and multiobjective nonlinear control 

(MNLMPC) studies in dynamic HIV models. The bifurcation 
analysis revealed the existence of branch and limit points. The 
branch and limit points (which cause multiple steady-state 
solutions from a singular point) are very beneficial because 
they enable the Multiobjective nonlinear model predictive 
control calculations to converge to the Utopia point (the best 
possible solution) in the models.    A combination of bifurcation 
analysis and Multiobjective Nonlinear Model Predictive Control 
(MNLMPC) for HIV models   is the main contribution of this 
paper.
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