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Background
Cardiovascular disease, often abbreviated as CVD, refers to 

a broad class of disorders that affect the heart and blood vessels. 
It remains one of the most significant global health problems, 
contributing to high levels of morbidity, disability and mortality 
across populations. Despite substantial advancements in 
medicine, public health awareness and treatment technologies, 
cardiovascular disease continues to place an enormous burden 
on individuals, families and societies. To understand why it holds 
such a prominent place among global health concerns, one must 
look at the biological mechanisms that underlie its development, 
the risk factors that predispose individuals to it, the profound 
social and economic consequences it entails and the ways in 
which prevention and treatment can mitigate its impact.

At its core, cardiovascular disease is not one singular illness 
but rather an umbrella term that encompasses a variety of 
related conditions. These include coronary artery disease, which 
is characterized by the narrowing or blockage of the arteries 
that supply blood to the heart; cerebrovascular disease, which 
involves the vessels supplying blood to the brain; rheumatic 
heart disease, which results from damage caused by rheumatic 
fever; congenital heart disease, which arises from structural 
malformations present at birth; peripheral artery disease, which 
affects the blood supply to limbs; and heart failure, which refers 
to the inability of the heart to pump sufficient blood to meet the 
body’s needs. Of these, coronary artery disease and stroke are by 
far the most common and deadly, representing the majority of 
cardiovascular-related deaths worldwide.

 A B S T R A C T 
Cardiovascular diseases (CVDs) is one of the leading causes of death in the world. It is very important to understand the 

dynamics of this disease and develop strategies to control it minimizing the damage as much as possible. This article involves 
analysis and control of two dynamic cardiovascular models. Bifurcation analysis is a powerful mathematical tool used to deal with 
the nonlinear dynamics of any process. Several factors must be considered and multiple objectives must be met simultaneously. 
Bifurcation analysis and multi-objective nonlinear model predictive control (MNLMPC) calculations are performed on 
two cardiovascular dynamic models. The MATLAB program MATCONT was used to perform the bifurcation analysis. The 
MNLMPC calculations were performed using the optimization language PYOMO  in conjunction with the state-of-the-art 
global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of branch points in both models. 
The branch points (which cause multiple steady-state solutions from a singular point) are very beneficial because they enable 
the Mult objective nonlinear model predictive control calculations to converge to the Utopia point (the best possible solution) 
in the models. It is proven (with computational validation) that the branch points were caused by the existence of two distinct 
separable functions in one of the equations in each dynamic model. A theorem was developed to demonstrate this fact for any 
dynamic model.
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The biological foundation of many forms of cardiovascular 
disease can be traced to a process known as atherosclerosis. 
Atherosclerosis involves the gradual buildup of fatty deposits 
or plaques, within the walls of arteries. Over time, these 
plaques harden and narrow the arteries, restricting blood flow 
and reducing oxygen delivery to vital tissues. This process is 
often silent, progressing without symptoms for decades, until 
it culminates in acute events such as heart attacks or strokes. 
These events occur when a plaque ruptures, forming a blood clot 
that obstructs circulation entirely. The damage inflicted by such 
blockages is often irreversible, leading to tissue death and, in 
severe cases, sudden death.

The development of cardiovascular disease is strongly 
influenced by an interplay between non-modifiable and 
modifiable risk factors. Non-modifiable factors include age, 
sex, ethnicity and genetic predisposition. As individuals grow 
older, the likelihood of developing cardiovascular disease rises 
significantly due to the cumulative wear and tear on blood vessels 
and the gradual decline of protective physiological mechanisms. 
Men are at a somewhat higher risk earlier in life, though women’s 
risk increases substantially after menopause. Genetics can also 
play an important role, as family history of cardiovascular events 
often signals a predisposition to similar outcomes. However, 
it is the modifiable risk factors that explain much of the high 
prevalence of cardiovascular disease worldwide. These include 
unhealthy diets high in saturated fats, trans fats, cholesterol, 
salt and added sugars; physical inactivity; tobacco use; and 
excessive alcohol consumption. Additional contributors such as 
obesity, hypertension, diabetes and high cholesterol levels often 
arise from these lifestyle choices and amplify the likelihood of 
developing cardiovascular complications.

The global burden of cardiovascular disease is staggering. 
According to estimates from the World Health Organization, 
cardiovascular disease is the leading cause of death worldwide, 
accounting for roughly one-third of all deaths annually. This 
toll is not distributed evenly. While high-income countries once 
bore the brunt of the epidemic, improved healthcare systems, 
early detection and preventive interventions have helped to 
lower mortality rates in those regions. In contrast, low- and 
middle-income countries now face disproportionately high rates 
of cardiovascular deaths. These regions often experience rapid 
urbanization and lifestyle changes that increase risk exposure 
while lacking the resources to implement adequate prevention, 
screening and treatment programs. This disparity underscores 
the reality that cardiovascular disease is not merely a medical 
challenge but also a profound social and economic one, deeply 
linked to inequality, access to care and broader patterns of 
development.

The economic consequences of cardiovascular disease 
are equally severe. At the individual level, those who develop 
cardiovascular conditions often face reduced quality of life, 
long-term disability and financial strain due to the costs of 
medical treatment, hospitalization and medication. At the 
societal level, the economic burden extends to lost productivity, 
increased healthcare expenditure and the diversion of resources 
from other critical needs. In many countries, cardiovascular 
disease accounts for a substantial proportion of total healthcare 
spending, which places stress on both public health systems and 
families struggling to cope with its demands.

Despite its heavy burden, cardiovascular disease is largely 

preventable. The fact that so many cases can be avoided through 
lifestyle changes makes it a unique challenge in modern medicine. 
Public health strategies aimed at reducing the prevalence of risk 
factors have shown promising results. Anti-smoking campaigns, 
efforts to reduce salt intake, promotion of physical activity 
and initiatives to encourage healthier diets are among the most 
effective interventions. These population-level strategies, when 
combined with individual-level approaches such as regular 
medical checkups, blood pressure monitoring, cholesterol testing 
and glucose screening, can significantly reduce the incidence of 
cardiovascular events. Moreover, early detection plays a critical 
role in prevention. Identifying hypertension, diabetes and high 
cholesterol before they cause significant damage allows for 
timely interventions that can delay or even prevent the onset of 
cardiovascular disease.

Treatment for cardiovascular disease has also advanced 
dramatically over the past few decades. Pharmacological 
interventions, such as statins to lower cholesterol, antihypertensive 
drugs to control blood pressure and anticoagulants to prevent clot 
formation, are now widely used and have saved millions of lives. 
Surgical and procedural interventions, such as angioplasty, stent 
placement and coronary artery bypass grafting, offer lifesaving 
options for those with advanced disease. In cases of severe heart 
failure, mechanical assist devices and heart transplantation may 
be necessary. These treatments, though often costly and complex, 
demonstrate the remarkable capacity of modern medicine to 
prolong life and reduce suffering. Yet the challenge remains to 
make such treatments accessible to all populations, not just those 
in wealthy countries.

Beyond medical treatment, there is a growing recognition of 
the importance of addressing social determinants of health in 
tackling cardiovascular disease. Poverty, limited education, food 
insecurity and lack of access to safe spaces for physical activity all 
contribute to heightened risk and poorer outcomes. Interventions 
that focus solely on medical solutions without addressing 
these broader determinants often fall short. Consequently, 
holistic strategies that combine medical, behavioral and social 
approaches are essential. For example, urban planning that 
promotes walkable cities, policies that regulate unhealthy food 
marketing and workplace initiatives that encourage physical 
activity all play a role in reducing cardiovascular disease risk at 
the population level.

Looking to the future, cardiovascular disease presents 
both challenges and opportunities. Advances in personalized 
medicine, including genetic screening and the use of biomarkers, 
promise to improve risk prediction and allow for more tailored 
interventions. Technological innovations, such as wearable 
devices that monitor heart rhythms and blood pressure in real 
time, could empower individuals to take greater control over 
their health. Telemedicine offers new possibilities for expanding 
access to cardiovascular care in underserved regions. At the 
same time, emerging global health threats such as obesity and 
diabetes epidemics, coupled with aging populations, may further 
increase the prevalence of cardiovascular disease in the coming 
decades if preventive measures are not strengthened.

In conclusion, cardiovascular disease represents one of the 
most pressing health challenges of our time. Its complexity 
arises not only from the intricate biological mechanisms that 
drive it but also from the interplay of lifestyle factors, social 
determinants and health system limitations that shape its impact 
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The base parameter values are

20; 0.5; 0.2; 0.15;  0.15;  0.75;  0.2;  0.08; 1 0.5; 2 0.5; 3 0.5.u u uπ σ γ τ α β µ δ= = = = = = = = = = =

Model 27

In this model, the variables are sv, ev, iv, ov, rv and, hv and 
these variables represent the susceptible, exposed, infected 
without Omicron, Omicron-infected, recovered and population 
with heart attacks. u1 and u2 are the control variables that 
represent self-isolation of infected individuals and other 
treatment alternatives such as drugs and therapy.

The model base parameters are

 2.9517 03;  3.4857 05; 2  0.8;  1 0.0247; 2 0.6;
1 0.1161; 2 0.1085; 3  0.5;  4 .4; 1  0.3963; 2  0.5; 3  0.7;
1 0.0034; 2 0.0994;  3 0.78;  0.0664;  1  1. 04;  2 1. 04;
1 0; 2 0

e e

e e
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Bifurcation analysis

The MATLAB software MATCONT8,9 is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. Hopf 
bifurcation points cause limit cycles.  This program detects Limit 
points (LP), branch points (BP) and Hopf bifurcation points(H) 
for an ODE system.

( , )dx f x
dt

α=                                                         (3)

nx R∈  Let the bifurcation parameter be α  . Since the 
gradient is orthogonal to the tangent vector, The tangent plane at 

any point  1 2 3 4 1[ , , , ,.... ]nw w w w w w +=   must satisfy

0Aw =                                                                          (4)

Where A is

[ / | / ]A f x f α= ∂ ∂ ∂ ∂                                                          (5)

where /f x∂ ∂  is the Jacobian matrix. For both limit and 
branch points, the Jacobian matrix [ / ]J f x= ∂ ∂  must be 
singular.

For a limit point (LP) the n+1th component of the tangent 

across different populations. While the burden of cardiovascular 
disease is immense, it is also clear that much of it is preventable. 
Through a combination of public health initiatives, medical 
advances and societal changes, it is possible to significantly 
reduce its toll. Addressing cardiovascular disease requires a 
sustained commitment at both individual and collective levels, 
one that recognizes the need for healthier lifestyles, equitable 
access to healthcare and the integration of preventive measures 
into everyday life. As the world continues to grapple with this 
enduring health issue, the path forward lies not only in treating 
disease after it emerges but also in fostering conditions that 
allow hearts and blood vessels to remain healthy throughout the 
course of life.

Kraus1, a preventive cardiologist and research scientist at 
Duke University, showed that both the risk of heart disease and 
risk factors for heart disease are strongly linked to family history. 
Thyfault JP2 discussed the physiology of sedentary behavior and 
its relationship to health outcomes. Jibril, et al.3 modelled and 
performed an optimal control analysis on sedentary behavior and 
physical activity in relation to cardiovascular disease. Mishra, et 
al.4 provided a systematic review of the impact of cardiovascular 
diseases on the severity of COVID-19 patients. Harrison, et 
al.5 discussed the Cardiovascular risk factors associate with 
the COVID disease.  Clerkin, et al.6 discussed the relationship 
between COVID-19 and cardiovascular disease. Evirgen, et 
al.7 developed real data-based optimal control strategies for 
assessing the impact of the Omicron variant on heart attacks.

This work aims to perform bifurcation analysis and 
multiobjective nonlinear control (MNLMPC) studies in two 
cardiovascular disease models, which are discussed in Jibril, 
et al.3 (model 1) and Evirgen, et al.7 (model 2). The paper is 
organized as follows. First, the model equations are presented, 
followed by a discussion of the numerical techniques involving 
bifurcation analysis and Mult objective nonlinear model 
predictive control (MNLMPC). The results and discussion are 
then presented, followed by the conclusions.

Model Equations

The model equations in two cardiovascular disease models; 
Jibril, et al.3 (model 1) and Evirgen, et al.7 (model 2); are 
described in this section.

Model 13

In this model, sv represents the sub-population involved 
in physical activity, iv represents the sub-population with 
sedentary behaviour and cv(t) represents the sub-population 
with cardiovascular disease.

The model equations are

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )

( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( )( )

 – 1 1  – 1 1 1 1 2 3  

1 1 2 3

1 1 2 3

d sv
iv cv u ivsv u ivsv u cvsv u u iv cv sv

d iv
u ivsv u u iv iv

d cv
u cvsv

dt

dt

d
iv u u c v

t
v c

π σ γ β β α µ

β σ µ τ

α τ γ µ δ

= + + − − − − + + + −

= − − + − + +

= − + − + − + +

					                                                   (1)

u1, u2 and u3 are the control parameters that represent living 
a healthy lifestyle, which incorporates good nutrition, weight 
management and getting plenty of physical activity.

20; 0.5; 0.2; 0.15;  0.15;  0.75;  0.2;  0.08; 1 0.5; 2 0.5; 3 0.5.u u uπ σ γ τ α β µ δ= = = = = = = = = = =
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vector  = 0 and for a branch point (BP) the matrix 
T

A
B

w
 

=  
 

 
must be singular.

At a Hopf bifurcation point,

det(2 ( , )@ ) 0x nf x Iα =                                (8)

 @ indicates the bialternate product while 
nI  is the n-square 

identity matrix. More details can be found in Kuznetsov10-12.

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC)
The (MNLMPC) method13 is used.

The variables 
0

( )
i f

i

t t

j i
t

v t
=

=

∑  (j=1, 2..n) have to be optimized 

simultaneously for a dynamic problem

ft  being the final time value and n the total number 
of objective variables and u the control parameter is used.  
The single objective optimal control problem is first solved 

optimizing each of the variables 
0

( )
i f

i

t t

j i
t

v t
=

=

∑   The optimization 

of  will lead to the values *
jv . This will lead to the solution of 

the multiobjective optimal control problem.

0

* 2

1
min( ( ( ) ))

i f

i

t tn

j i j
j t

v t v
=

=

=

−∑ ∑

subject to the dynamic model equations. This will provide 
the values of u at various times. The first obtained control value 
of u is implemented and the rest are discarded. This procedure 
is repeated until the implemented and the first obtained 
control values are the same or if the Utopia point where (

0

*( )
i f

i

t t

j i j
t

v t v
=

=

=∑ for all j) is obtained.

Pyomo14 is used in conjunction with  IPOPT15 and BARON16. 
Sridhar17 demonstrated that when the bifurcation analysis 
revealed the presence of limit and branch points the MNLMPC 
calculations to converge to the Utopia solution. For this, the 
singularity condition, caused by the presence of the limit or 
branch points was imposed on the co-state equation18.  Details of 
proof for this theorem can be found at Sridhar17.

Results
The bifurcation analysis performed with model 1 revealed 

two branch points at (sv, iv, cv, u1) values of (100 0 0 0.901333) 
and (100 0 0 0.975333). This is shown in (Figure 1a).

For the MNLMPC calculations sv (0) =100; iv (0) =30; cv 
(0) =15.

0

( )
i f

i

t t

i
t

sv t
=

=

∑  were maximized and led to a value of 200. 

0 0

( ); ( )
i f i f

i i

t t t t

i i
t t

iv t cv t
= =

= =

∑ ∑  were minimized individually and 

produced values of 40.0634 and 17.7986. The multiobjective 

optimal control problem involves the minimization of 

0 0 0

2 2 2( ( ) 200) ( ( ) 40.0634) ( ( ) )17.7986
i f i f i f

i i i

t t t t t t

i i i
t t t

sv t iv t cv t
= = =

= = =

− + − + −∑ ∑ ∑ sub jec t 

to the equations governing the model. This led to a value of zero 
(the Utopia point). The MNLMPC values of the control variables 
u1 u2 and u3 were 0.2569, 0.999 and 0.999.

(Figures 1b-1e) show the various MNLMPC profiles. The 
u2 profile exhibits noise (Figure 1d) which was remedied using 
the Savitzky-Golay filter. The modified profile (u2sg) is shown 
in (Figure 1e). The u2 and u3 profiles were identical.

Figure 1b: MNLMPC for model 1 sv, iv, cv profiles.

Figure 1c: MNLMPC for model 1 u1 profile.

Figure 1d: MNLMPC for model 1 u2 profile (noise exhibited).

Figure 1e: MNLMPC for model 1 u2 profile (noise removed 
with Savitzky-Golay filter).
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The bifurcation analysis performed (with 1β with model 2 

revealed a branch point at (sv, ev, iv ov, rv, hv, 1β  ) values of 
(119333.618949 0 0 0 0 3684.264957 0.072005). This is shown 
in (Figure 2a).

For the MNLMPC calculations sv (0) =5.0e+06; iv (0) 
=30000; ov (0) =1300.

Figure 2a: Bifurcation Diagram for Model 2.

0 0

( ); ( )
i f i f

i i

t t t t

i i
t t

iv t ov t
= =

= =

∑ ∑  were minimized individually and 

produced values of 30000 and 1300. The multiobjective 
optimal control problem will involve the minimization of

0 0

2 2( ( ) 30000) ( ( 1300) )
i f i f

i i

t t t t

i i
t t

iv t ov t
= =

= =

− + −∑ ∑ subject to the 

equations governing the model. This led to a value of zero (the 
Utopia point). The MNLMPC values of the control variables u1 
u2 were 0.1601 and 05602. (Figures 2b-2d) show the various 
MNLMPC profiles. The u1 u2 profile exhibits noise which was 
remedied using the Savitzky-Golay filter to produce the control 
profiles (u1sg, u2sg)) (Figure 2d).

Figure 2b: MNLMPC for Model 2 (sv vs t).

Figure 2c: MNLMPC for Model 2 (ov, rv, iv, ev, hv profiles).

Figure 2d: MNLMPC for Model 2 (u1 u2 (control profiles with 
noise u1sg, u2sg (noise eliminated)).

Discussion of Results
Theorem

If at least one of the functions in a dynamic system is 
separable into two distinct functions, a branch point singularity 
will occur in the system.

Proof

Consider a system of equations

( , )dx f x
dt

α=                                                                     (16)

nx R∈ . Defining the matrix A as

1 1 1 1 1 1

1 2 3 4

2 2 2 2 2 2

1 2 3 4

..........

..........

...........................................................

.................................................

n

n

f f f f f f
x x x x x
f f f f f f
x x x x x

A

α

α

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

=

1 2 3 4

..........

..........n n n n n n

n

f f f f f f
x x x x x α

 
 
 
 
 
 
 
 
 
 ∂ ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ 
  

              (17)

α is the bifurcation parameter. The matrix A can be written 
in a compact form as

[ . | ]p p

q

f f
A

x α
∂ ∂

=
∂ ∂

                                          (18)

The tangent at any point x; ( 1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) 
must satisfy

0Az =                                  (19)

The matrix { }p

q

f
x
∂

∂
 must be singular at both limit and branch 

points. The n+1th component of the tangent vector 1nz + = 
0 at a limit point (LP) and for a branch point (BP) the matrix 

T

A
B

z
 

=  
 

 must be singular.

Any tangent at a point y that is defined by 

1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) must satisfy
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 0Az =                   			    (20)

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w. This implies that

0
0

Az
Aw

=
=

                                                     (21)

Consider a vector v that is orthogonal to one of the tangents 
(say z). v can be expressed as a linear combination of z and w 
( v z wα β= + ). Since 0Az Aw= = ; 0Av =  and since z 

and v are orthogonal, 0Tz v = . Hence 0T

A
Bv v

z
 

= = 
 

 which 

implies that B is singular where T

A
B

z
 

=  
 

Let any of the functions fi are separable into 2 functions 

1 2,φ φ  as

1 2if φφ=                                                     (22)

At steady-state ( , ) 0if x α =  and this will imply that either 

1 0φ =  or 
2 0φ =  or both 

1φ  and 
1φ  must be 0. This implies 

that two branches 
1 0φ =  and 

2 0φ =  will meet at a point where 

both 1φ and 1φ  are 0.

At this point, the matrix B will be singular as a row in this 
matrix would be

[ | ]i i

k

f f
x α
∂ ∂
∂ ∂                                                     (23)

However,

2 1
1 2

2 1
1 2

[ ( 0) ( 0) 0( 1., , )

( 0) ( 0) ] 0

i

k k k

i

f k n
x x x
f

φ φφ φ

φ φφ φ
α α α

∂ ∂ ∂
= = + = = ∀ =

∂ ∂ ∂
∂ ∂ ∂

= = + = =
∂ ∂ ∂

     (24)

This implies that every element in the row [ | ]i i

k

f f
x α
∂ ∂
∂ ∂would be 0 and hence the matrix B would be singular. The 

singularity in B implies that there exists a branch point.

In model 1, the first branch point occurred at (sv, iv, cv, u1) 
values of (100 0 0 0.901333). Here, the two distinct functions 
can be obtained from the third ODE in model 1 which is
( ) ( )( ) ( ) ( )( ) ( )( )1 1 2 3

d cv
u cvsv i

d
v u u cv cv

t
α τ γ µ δ= − + − + − + +  (25)

When iv = 0 this equation reduces to

( ) ( )( ) ( )( ) ( )( )1 1 2 3
d cv

u cvsv u u cv cv
dt

α γ µ δ= − − + − + +      (26)

The two distinct equations are

( )( ) ( )( ) ( )( )1 2 3

0

1 u u u
v

sv
c

α γ µ δ− − + − + +

=
        (27)

With cv=0; sv= 100; u1 = 0.901333, 

0.08; 0.2;   0.15;  0.2;  2 0.5; 3 0.5;u uδ γ α µ= = = = = =
both distinct equations are satisfied, validating the theorem.

The second branch point occurred at (sv, iv, cv, u1) values 
of (100 0 0 0.975333). Here, the two distinct functions can be 
obtained from the second ODE in model 1 which is

( ) ( )( ) ( )( ) ( )( )1 1 2 3
d iv

u ivsv u u iv iv
dt

β σ µ τ= − − + − + +
  
(28)

The two distinct equations are

( )( ) ( )( ) ( )( )1 2 3

0

1 u u u
v

sv
i

β σ µ τ− − + − + +

=
                 (29)

With iv = 0; sv= 100; u1 = 0.975333, 

0.5; 0.15;   0.75;  0.2;  2 0.5; 3 0.5;u uσ τ β µ= = = = = = b o t h 
distinct equations are satisfied, validating the theorem.

The MNLMPC calculations converged to the Utopia solution, 
validating the analysis in Sridhar17.

In model 2, the first branch point occurred at 

(sv, ev, iv ov, rv, hv, 1β ) values of (119333.618949 0 0 0 0 
3684.264957 0.072005).

Here, the two distinct functions can be obtained from the 
second  ODE in model 2 which is

( ) ( )( )1 1 1( ) ( 2 ) 1

;

wvev ed ev
dt

svwv nv sv ev iv ov rv hv
n

v

v

ε ε µ α σβ − − − +=

= = + + + +

+

+
              (30)

The two distinct equations are

( ) ( )( )1 1 1 2 1

0

( ) 0v
ev

w ε ε µ α σβ − − − + +

=

=
         (31)

With ev=0; sv = 119333.618949, hv = 3684.264957, 

1β = 0 . 0 7 2 0 0 5 ; 1 2 1. 04; 1 0.0034; 0.0064eε ε α σ= = − = =
both equations are satisfied, validating the theorem. Even in the 
case of model 2, the MNLMPC calculations converged to the 
Utopia solution, validating the analysis in Sridhar17.

Conclusions
Bifurcation analysis and multiobjective nonlinear control 

(MNLMPC) studies were conducted on two cardiovascular 
dynamic models. The bifurcation analysis revealed the existence 
of branch points in both models. The branch points (which cause 
multiple steady-state solutions from a singular point) are very 
beneficial because they enable the Multiobjective nonlinear 
model predictive control calculations to converge to the Utopia 
point (the best possible solution) in the models. It is proven (with 
computational validation) that the branch points were caused by 
the existence of two distinct separable functions in one of the 
equations in each dynamic model. A theorem was developed to 
demonstrate this fact for any dynamic model. A combination 
of bifurcation analysis and Multiobjective Nonlinear Model 
Predictive Control (MNLMPC) for cardiovascular dynamic 
models is the main contribution of this paper.
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