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Background
Boer, et al1, investigated recruitment times, proliferation 

and apoptosis rates during the cd8+ t-cell response to the 
lymphocytic choriomeningitis virus. Rustom Antia, et al2,3, 
developed models of cd8+ responses and analyzed the role 
of models in understanding cd8+ t-cell memory. Lisette G de 
Pillis, et al4, developed a validated mathematical model of cell-
mediated immune response to tumor growth. Brentjens, et al5, 
researched the treatment of chronic lymphocytic leukemia with 
genetically targeted autologous T cells. Kalos M, et al6, showed 
that C.H. T cells with chimeric antigen receptors have potent 
antitumor effects and can establish memory in patients with 
advanced leukemia. Kochenderfer, et al7, demonstrated B-cell 
depletion and malignancy remissions along with cytokine-

associated toxicity in a clinical trial of anti-CD19 chimeric-
antigen-receptor transduced T cells. Grupp, et al8, researched 
Chimeric antigen receptor-modified T cells for acute lymphoid 
leukemia. De Boer and Perelson9, quantified t lymphocyte 
turnover. Dotti, et al10, designed and developed therapies using 
chimeric antigen receptor-expressing T cells. Davenport, et 
al11, argued that CAR-T cells are serial killers. Brown, et al12,13, 
demonstrated the regression of glioblastoma after chimeric 
antigen receptor t-cell therapy optimized il13rα2-targeted 
chimeric antigen receptor t-cells for improved persistence 
and antitumor efficacy against glioblastoma. Hege, et al14, 
investigated the safety, tumor trafficking and immunogenicity 
of chimeric antigen receptor (car)-t cells specific for tag-72 in 
colorectal cancer. Davenport, et al15. extracted chimeric antigen 

 A B S T R A C T 
CAR T-cell therapy is a new type of cancer treatment that uses the immune system to kill cancer cells. In many situations, 

it has cured people where all other treatments have failed. The interaction between the CAR T cells and the cancer cells is very 
complex and highly nonlinear and to get the best results, one must consider several factors. This work involves the development 
of a rigorous mathematical framework to deal with the high degree of complexity that exists in the interaction between CAR-T 
cells and cancer. Bifurcation analysis and Mult objective nonlinear model predictive control (MNLMPC) calculations were was 
performed on CAR-T cell models describing the interaction between CAR-T and the cancerous cells. The MATLAB program 
MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization 
language PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation 
analysis revealed limit points branch points and Hopf bifurcation points. The Hopf bifurcation points that cause unwanted limit 
cycles were eliminated using an activation factor involving the tanh function. The limit and branch points were beneficial because 
they allowed the Mult objective nonlinear model predictive control calculations to converge to the Utopia point which is the 
most beneficial solution.
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receptor T cells form nonclassical and potent immune synapses 
driving rapid cytotoxicity. Mostolizadeh, et al16, developed 
a mathematical model of chimeric antigen receptor (CAR) 
T cell therapy with presence of cytokine. Andrew M Stein, et 
al17, investigated tisagenlecleucel model-based cellular kinetic 
analysis of chimeric antigen receptor–t cells. Nirali N Shah and 
Terry J Fry18, developed mechanisms of resistance to CAR T 
cell therapy. Feins, et al19, provided an introduction to chimeric 
antigen receptor (car) t-cell immunotherapy for human cancer. 
Ghorashian, et al20, researched enhanced car t cell expansion 
and prolonged persistence in pediatric patients all treated with 
a low-affinity. Chavez, et al21, discussed car t-cell therapy for 
b-cell lymphomas. Bodnar, et al22, produced a mathematical 
analysis of a generalized model of chemotherapy for low grade 
gliomas. Barros, et al23, discussed some CAR-T cell mathematical 
models. Anwesha Chaudhury, et al24, reviewed cellular kinetic-
pharmacodynamic modeling approaches. Laetitia Vercellino, et 
al25, discussed the various predictive factors of early progression 
after car t-cell therapy in large b-cell lymphoma. Altrock, et 
al26, discussed the roles of t cell competition and stochastic 
extinction events in chimeric antigen receptor t cell therapy. Can 
Liu, et al27, provided a Model-based cellular kinetic analysis of 
chimeric antigen receptor-t cells in humans. Alvaro Martınez-
Rubio, et al28, provided a mathematical description of the bone 
marrow dynamics during car t-cell therapy in b-cell childhood 
acute lymphoblastic leukemia. Barros, et al29, developed a 
mathematical model of CAR-T immunotherapy in preclinical 
studies of hematological cancers. Anna Mueller-Schoell, et 
al30, developed an early survival prediction framework in cd19-
specific car-t cell immunotherapy using a quantitative systems 
pharmacology model. Aman P Singh, et al31, produced a bench-
to-bedside translation of chimeric antigen receptor (car) t cells 
using a multiscale systems pharmacokinetic-pharmacodynamic 
model. Vıctor M Perez-Garcıa, et al32, produced insights from 
mathematical models of car t cells for t-cell leukemias. Kimmel, 
et al33, investigated the roles of T cell competition and stochastic 
extinction events in chimeric antigen receptor T cell therapy. 
León-Triana et al34, showed that dual-target car-ts with on- and 
off-tumor activity may override immune suppression in solid 
cancers: a mathematical proof of concept. Cancers 13(4), 703. 
León-Triana35, provided insights from mathematical models 
of Car t cell therapy in b-cell acute lymphoblastic leukaemia. 
Liu, et al36, developed a model-based cellular kinetic analysis 
of chimeric antigen receptor-T cells in humans. Martínez-
Rubio, et al37, provided a mathematical description of the bone 
marrow dynamics during car t-cell therapy in b-cell childhood 
acute lymphoblastic leukemia. Nukala, et al38, provided a 
systematic review of the efforts and hindrances of modeling and 
simulation of CAR T-cell therapy while Owens, et al39, modeled 
CAR T-cell therapy with patient preconditioning. Valle, et al40, 
discussed eradication conditions and in silico experimentation 
for CAR-T cell therapy Santurio and Barros, et al41, developed a 
mathematical model for on-target off-tumor effect of car-t cells 
on gliomas. Emanuelle, et al42, modeled patient-specific car-t 
cell dynamics and discussed multiphasic kinetics via phenotypic 
differentiation. Ahmed M Salem, et al43, developed a multiscale 
mechanistic modeling framework integrating differential 
cellular kinetics of car t-cell subsets and immunophenotypes 
in cancer patients. Daniel C Kirouac, et al44, discussed the 
deconvolution of clinical variance in car-t cell pharmacology 
and response. Bodnar, et al45, analyzed a mathematical model 
of car-t cell therapy for glioblastoma Daniela Silva Santurio, 

et al46, discussed the various mechanisms of resistance to car-t 
cell immunotherapy and provided insights from a mathematical 
model. Sergio Serrano, et47, discussed the role of b-cells in car 
t-cell therapy in leukemia through a mathematical model. Daniela 
S Santurio48, showed that the mathematical modeling unveils the 
timeline of car-t cell therapy and macrophage-mediated cytokine 
release syndrome.

Motivation and Objectives

Although several CAR-T Cell models have been developed, 
bifurcation analysis and optimal control calculations have been 
disjointly done. Additionally, all optimal control calculations 
involve single objective minimization. The main objective of 
this work is to perform bifurcation analysis in conjunction with 
multiobjective nonlinear model predictive control on CAR-T 
Cell models demonstrating the effects of bifurcation analysis on 
multiobjective nonlinear model predictive control. This paper 
is organized as follows. First, the description of the problems 
involving CAR T cells is presented. The results and discussion 
then follow a discussion of the numerical techniques that 
involve bifurcation analysis and multiobjective nonlinear model 
predictive control.

Description of Problems Involving Car-T Cells
The first problem is described in Fassoni, et al49, while the 

second and third are presented in Khailov, et al50 and Bodnar, 
et al51.

Problem 1

In problem 149 the dynamic model involving the CAR-T 
Cells is

min ( )

(1 )

T
T T M T

M
T M M

T

T

dC Tr C C TC TC
dt A T

dC C TC C
dt

CdT rt bT T
dt a T C

ξ ε θ α

ε θ µ

γ
δ

= − + + Λ + −
+

= − −

= − −
+ +

                (1)

, ,T MC C T  are the effector CAR-T cells, memory CAR-T 
cells and tumor cells. is the basal expansion rate of the effector 
CAR-T cells. represents the rate at which the effector cells 
transition to the memory cells while i s the rate at which the 
effector cells are exhausted. represent the death rates of effector, 
memory and exhausted CAR-T cells. The logistic growth rate 
of tumor cells is r and the carrying capacity is 1/b. The rate of 
cytotoxic effects on the tumor cells is. The mass-action law 
models the immunosuppressive effect on the effector CAR-T 
cells with a constant. This set of equations was scaled and results 
in

( ) ( ) ( ) ( )

( ) ( ) ( )

( )(1 )

dax ax azpa w ax q az ay u az ax
d k z
day s ax q az ay mq ay
d
daz ax azaz az v
d c ax az

τ

τ

τ

= − + −
+

= − −

= − −
+ +     (2)
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Cρ  (Mitotic stimulation of CAR-T cells by tumor cells) 

= 0.9; cg  (CAR-T concentration for half-maximal tumor 

inactivation) = 2.e+09; Cα  (Tumor inactivation rate) = 0.05; Cτ
(Activated CAR-T cell mean lifetime in the tumor site) =7; Tρ
( Tumour growth rate ) = 0.01; Tg  (Tumour cells concentration 

for half-maximal CAR-T cell proliferation) = 1.e+10; Tα  

(CAR-T cells killing efficiency against tumor) = 2.5e-10; Pρ  

(Mitotic stimulation of CAR-T cells by the antigen cells)=0.9; 

Pτ (Activated CAR-T cell mean lifetime outside the tumor 

site) =7; Bg  (B-cell concentration for half-maximal CAR-T 

cell proliferation) = 1.e+10; Bα  (9CAR-T cells induced B cell 

death rate)= 1.e-11; Bτ  (B cell mean lifetime)=45; k  (CAR-T 

cells infiltrating the tumor site rate) = 0.2; K  (Tumour carrying 

capacity) = 2.e+12; A  (CAR-T cell dosage)= 2.8571e+06;

This set of equations is scaled using the following 
transformations.

; ; ; ; ;

; ; ; ; ; ;

1; ; ( );

C C T C B

C
T T C P P C T T C C b C C C

B

C T C C
b B C C P C

C P C

t P T C Bt pval tval cval bval
g g g g

g k k a

gb g k aval A
g g

τ
τρ ρ τ ρ ρ τ α α τ η τ ρ τ
τ

α τ τα α τ η τ
τ

= = = = =

= = = = = =

= = = + =

  





   



 



Using these transformations the dynamic model would 
become

(1 ) ( )( )

( ) ( / (1 )) *( / (1 ) 1)

( / (1 ) )

( )

T T

P P

b b

dtval tval cval tval
dt k

dcval k pval aval tval tval b tval cval cval
dt

dpval aval bval bval pval
dt

dbval pval bval
dt

ρ α

ρ η

α η

= − −

= + + − + −

= + + −

= − +

                                                                                                  (5)

Numerical Methods
Bifurcation analysis

The existence of multiple steady-states and limit cycles in 
various processes has led to much research involving bifurcation 
analysis. Multiple steady states occur because of the existence 
of branch and limit points. Hopf bifurcation points cause limit 
cycles.

One of the most commonly used software to locate limit 
points, branch points and Hopf bifurcation points is the MATLAB 
program MATCONT (Dhooge Govearts and Kuznetsov52; 
Dhooge Govearts, Kuznetsov, Mestrom and Riet53). This 
software detects Limit points (LP), branch points(BP) and Hopf 
bifurcation points(H). Consider an ODE system

( , )dx f x
dt

α=
                      (6)

min

, , , , , ,

( ), , , ,

T M
b b abax C ay C az bT k bA q s c
d d rb r d

r brt pa u w m
r rb r

θ ε

α ξ ε µτ
θ

= = = = = = =

+ + Λ
= = = = =

  (3)

The parameter values are v = 289/20; w = 1/2; m = 3/20; k 
=3/20; c = 3/20; q =9/20; s = 9/20; u=0.2. pa is the bifurcation 
parameter and the control value.

Problem 2

In this problem Khailov, et al50 the dynamic equations are

1 1

2
2 2

2
3 3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ( )) ( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( ) ( ) ( )

( ) (1 ) ( ) ( )

dxa rxa t xa t ya t xa t za t xa t
dt

dya pval ya t ya t xa t ya t ya t za t
dt

dza qza t za t xa t za t ya t za t
dt

dwa wa t nval vval wa t xa t
dt

α β µ

η α β

γ α β

λ ν

= − − +

= − − −

= − − −

= − + −

                (3)

1 2 3 1 2 3

  0.6;   1.1;   0.9;   1.1; 1; 0.3
 1.0;   0.8;   0.9;   0.9;   0.9;   1.1;

r pval nval vvalη γ
α α α β β β
= = = = = =
= = = = = =

, , ,xa ya za wa  represent the population of CAR-modified 
T-lymphocytes, the population of B-leukemic or cancer cells, the 
population of healthy B-cells and inflammatory cytokines which 
are elevated by immunotherapy.

, ,r pval q  represent the growth rate of , ,xa ya za  

1 2 3, ,α α α  the relative compatibility coefficients while 

1 2 3, ,β β β  are the competition coefficients. ,
pval q
η γ

 represent 

the per capita growth rates and reciprocal carrying capacities of 
,ya za  .ν  is the cytokine decay rate. bounded control vval  is 

the control term that plays the role of the intensity of the dosage 
of immunosuppressant drug intake. nval  is a tuning factor 

that can increase or decrease (1 ) ( ) ( )vval wa t xa t−  . q is the 
bifurcation parameter and the control variable.

Problem 3
For the third problem Bodnar, et al51, , , ,T C P B    represent 

the tumor cells, the CAR-T Cells in the tumor site, the CAR-T 
Cells outside the tumor site and the B-Cells which represent the 
second antigen in the dual-target treatment. The dynamic model 
equations are 

( (1 ) )T T

C C
T CC

P

B P

B
B

dT T C T
dt K
dC CT CT CkP
dt g T g C

PBdP PA kP
dt g B

dB BPB
dt

ρ α

ρ α
τ

ρ
τ

α
τ

= − −

= + − −
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= + − −
+

= − −

 

 
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



    




 

 


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



 

 





                      (4)
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nx R∈  Let the tangent plane at any point x be 

1 2 3 4 1[ , , , ,.... ]nw w w w w w +=  . Define matrix A given by

1 1 1 1 1 1

1 2 3 4

2 2 2 2 2 2

1 2 3 4

..........

..........

...........................................................

.................................................

n

n

f f f f f f
x x x x x
f f f f f f
x x x x x

A

α
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∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

=

1 2 3 4

..........

..........n n n n n n

n

f f f f f f
x x x x x α

 
 
 
 
 
 
 
 
 
 ∂ ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ 
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The bifurcation parameter is the matrix A can be expressed 
as

[ / | / ]A f x f α= ∂ ∂ ∂ ∂                          (8)

Where /f x∂ ∂  is the Jacobian matrix. Since the gradient is 
orthogonal to the tangent vector,

0Aw =                         (9)

For both limit and branch points the matrix [ / ]f x∂ ∂  must 
be singular. For a limit point (LP) the n+1th component of the 

tangent vector 1nw +  = 0 and for a branch point (BP) the matrix 

T

A
w
 
 
 

 must be singular. At a Hopf bifurcation point, 

det(2 ( , )@ ) 0x nf x Iα =                      (10)

@ indicates the bi alternate product while is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult. More details can be found in Kuznetsov54,55 
and Govaerts56.

Nonlinear model predictive control

The Mult objective nonlinear model predictive control 
(MNLMPC) method57 used in these calculations is rigorous 
and does not involve weighting functions, nor does it impose 
additional constraints on the problem unlike the weighted 
function or the epsilon correction method.

Let 
0

( )
i f

i

t t

j i
t

q t
=

=

∑ (j=12..n) be the variables that need to be 

minimized/maximized simultaneously for a problem involving 
a set of ODE

( , )dx F x u
dt

=
   (11)

ft  being the final time value and n the total number of 
objective variables. u is the control parameter. The MNLMPC 
method first solves the single objective optimal control problem 

independently optimizing each of the variables 0

( )
i f

i

t t

j i
t

q t
=

=

∑
  

individually. The minimization/maximization of 
0

( )
i f

i

t t

j i
t

q t
=

=

∑
will lead to the values *

jq  . Then the optimization problem that 
will be solved is

0

* 2

1
min( ( ( ) ))

( , );

i f

i

t tn

j i j
j t

q t q

dxsubject to F x u
dt

=

=

=

−

=

∑ ∑

         (12)

This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 
point or if the Utopia point ( 

0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  ) for all j. is obtained. 

The optimization package in Python, Pyomo58, where the 
differential equations are automatically converted to a Nonlinear 
Program (NLP) using the orthogonal collocation method will be 
used. The resulting nonlinear optimization problem was solved 
using the solvers IPOPT59 and confirmed as a global solution 
with BARON60. To summarize the steps of the algorithm are as 
follows

Optimize 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  subject to the differential and algebraic 

equations that govern the process using Pyomo with IPOPT and 

BARON. This will lead to the value *
jq  at various time intervals 

ti. The subscript i is the index for each time step. 

Minimize 
0

* 2

1
( ( ( ) ))

i f

i

t tn

j i j
j t

q t q
=

=

=

−∑ ∑ subject to the differential 

and algebraic equations that govern the process using Pyomo 
with IPOPT and BARON. This will provide the control values 
for various times.

Implement the first obtained control values and discard the 
remaining.

Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 

point is when ( )
i ft t

j i jq t q∑  for all j.

Sridhar61 proved that the MNLMPC calculations to converge 
to the Utopia solution when the bifurcation analysis revealed the 
presence of limit and branch points. The Utopia point is when 

0

*( )
i f

i

t t

j i j
t

p t p
=

=

=∑  for all j. This was done by imposing the 

singularity condition on the co-state equation (Upreti, 2013). 
If the minimization be of the variable 1q  lead to the value 
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7

8

9

az

BP
LP

H 

Figure 1: Branch point, limit points and Hopf bifurcation points 
for problem 1

Figure 2: Limit cycle arising from the Hopf bifurcation point in 
Problem 1

When pa was modified to pa (tanh (pa))/0.02 the Hopf 
bifurcation point disappeared (Figure 3) confirming the 
correctness of the analysis of Sridhar63. In problem 2, q was 
the bifurcation parameter and a branch point was located at 
[xa,ya,za,wa, q] values (0.0 1.222222 0.0 100.000000 1.344444). 
(Figure 4) In problem 3 

Pη  is the bifurcation parameter and 

a branch point was located at ( , , , , )Ptval cval pval bval η  
values of (0.000000 0.000000 0.714286 0.000000 0.014000 ) 
(Figure 5).

0 2 4 6 8 10 12 14 16

pa

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

az

Figure 3: Hopf bifurcation point disappears when pa was 
modified to pa*tanh(pa)/0.02

Limit/Branch points were found in all three problems. 
Sridhar61 showed that the presence of the limit and branch points 
enabled the MNLMPC calculations to converge to the Utopia 
solution. This result is confirmed in the MNLMPC calculations 
for all the three problems,

*
1q  and the minimization of function 2q  lead to the value 

*
2q  The MNLPMC calculations will minimize the function 

* 2 * 2
1 1 2 2( ) ( )q q q q− + −  . The Mult objective optimal control 

problem is

* 2 * 2
1 1 2 2min ( ) ( ) ( , )dxq q q q subject to F x u

dt
− + − =

               (13) 

* 2 * 2 * * * *
1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )

i i i

d d dq q q q q q q q q q q q
dx dx dx

− + − = − − + − −

               (14)

The Utopia point requires that both 
*

1 1( )q q−  and 

*
2 2( )q q−  are zero. Hence

* 2 * 2
1 1 2 2(( ) ( ) ) 0

i

d q q q q
dx

− + − =
     (15)

the optimal control co-state equation62 is 

* 2 * 2
1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d q q q q f t
dt dx

λ λ λ= − − + − − =

         (16)

iλ  is the Lagrangian multiplier. ft  is the final time. The 
first term in this equation is 0 and hence

( ) ; ( ) 0i x i i f
d f t
dt

λ λ λ= − =
       (17)

At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  

xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0i
d
dt

λ <  . In between there 

is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem and 
the only solution for the unconstrained problem is the Utopia 
solution.

Results and Discussion
For problem 1, pa was used as the bifurcation parameter and 

a branch point (BP) , limit point(LP) and a Hopf bifurcation 
point (HP were found at (ax, ay, az, pa) values of ( 0.000000 
0.000000 1.000000 0.355000 ); ( 0.021015 0.027565 0.612369 
0.324949 ) and ( 0.019563 0.060804 0.171749 0.551033 ); values 
respectively. This is shown in (Figure 1 and Figure 2) shows 
the limit cycle arising from the Hopf bifurcation point. Sridhar63 
showed that the Hopf bifurcation point would be eliminated by 
the use of an activation factor involving the tanh function. This 
was because the tanh function increases the time period of the 
oscillatory behavior which occurs in the form of a limit cycle 
caused b Hopf bifurcations.



J Petro Chem Eng  | Vol: 3 & Iss: 1Sridhar LN

6

0 1 2 3 4 5 6

q
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10

15
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BP

Figure 4: Bifurcation diagram for problem 2.

Figure 5: Bifurcation Diagram for problem 3.

In problem 1, 
0 0

t tf t tf

t t
ax ay

= =

= =

+∑ ∑  was maximized and 

this maximization resulted in a value of 11.0697
0

t tf

t
az

=

=
∑  

was minimized and this minimization resulted in a value 
of 0. The overall minimization involved the objective 

function 2 2

0 0 0
( 11.0697) ( )

t tf t tf t tf

t t t
ax ay az

= = =

= = =

+ − +∑ ∑ ∑  . This 

minimization resulted in the Utopia point 0. The first obtained 
control value was implemented and the remaining discarded. 
This procedure was repeated until the difference between the 
first and second control values was negligible, the obtained 
control value (MNLMPC value) of pa was 2.45771905. The 
MNLMPC profiles of ax, ay, az and pa are shown in (Figure 6).

In problem 2, 
0

t tf

t
za

=

=
∑  was maximized and this 

maximization resulted in a value of 24.78026859
0

t tf

t
ya

=

=
∑  

was minimized and this minimization resulted in a value of 
0. The overall minimization involved the objective function 

2 2

0 0
24.78026( )85 )9 (

t tf t tf

t t
za ya

= =

= =

− +∑ ∑  . This minimization 

resulted in the Utopia point 0. The control variable was q/ The 
first obtained control value was implemented and the remaining 
discarded. This procedure was repeated until the difference 

between the first and second control values was negligible, the 
obtained control value (MNLMPC value) of q was 4.99999. 
(Figures 7-10) show the various MNLMPC profiles.

Figure 6: MNLMPC profiles of ax, ay, az and pain Problem 1.

Figure 7: MNLMPC profile of xa in problem 2.

Figure 8: MNLMPC profile of ya in problem 2.

Figure 9: MNLMPC profile of za in problem 2

The obtained control profile of q exhibited a lot of noise 
(Figure11). This was remedied using the Savitzky-Golay Filter. 
The Savitzky-Golay filter, is a digital filter widely used for 
data smoothing and differentiation. The Savitzky-Golay filter 
maintains the integrity of the original signal preserving the 
shape and features of the signal. The smoothed-out version of 
this profile is shown in (Figure 12).



7

Sridhar LN J Petro Chem Eng  | Vol: 3 & Iss: 1

Figure 10: MNLMPC profile of wa in problem 2.

Figure 11: MNLMPC profile of q in problem 2.

Figure 12: MNLMPC profile of q in problem 2 with noise 
removed with Savitsky Golay Filter.

In problem 3, Pη was the control variable,
0

t tf

t
cval

=

=
∑  was 

maximized and this maximization resulted in a value of 1000. 

0

t tf

t
tval

=

=
∑  was inimized and this minimization resulted in a value 

of 0. The overall minimization involved the objective function 
2 2

0 0
( 1000) ( )

t tf t tf

t t
cval tval

= =

= =

− +∑ ∑ . This minimization resulted 

in the Utopia point 0. The first obtained control value was 
implemented and the remaining discarded. This procedure was 
repeated until the difference between the first and second control 
values was negligible, The obtained control value (MNLMPC 

value) of Pη was 3.7797402436111.

(Figures 13-16) show the various MNLMPC profiles. The 
obtained control profile of q exhibited a lot of noise (Figure 
17). This was remedied using the Savitzky-Golay Filter. The 
smoothed-out version of this profile is shown in (Figure 18). The 

results in the three problems confirm the analysis of Sridhar61 
who showed that the presence of the limit and branch points 
enabled the MNLMPC calculations to converge to the Utopia 
solution. Problem 1 exhibits a Hopf bifurcation point. Sridhar63 
showed that the Hopf bifurcation point would be eliminated 
by the use of an activation factor involving the tanh function. 
In problem 1, when pa was modified to pa (tanh (pa))/0.02 the 
Hopf bifurcation point disappeared confirming the analysis of 
Sridhar63.

Figure 13: MNLMPC profile of tval in problem 3.

Figure 14: MNLMPC profile of cval in problem 3.

Figure 15: MNLMPC profile of pval in problem 3.

Figure 16: MNLMPC profile of pval in problem 3
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Figure 17: MNLMPC profile of in problem 3.

Figure 18: MNLMPC profile of in problem 3 with noise 
removed with Savitsky Golay Filter.

Conclusion
Rigorous bifurcation analysis and Mult objective nonlinear 

model predictive control calculations were performed on 
models involving CAR-T cells. The bifurcation analysis 
revealed limit points branch points and Hopf bifurcation points. 
The Hopf bifurcation points that cause unwanted limit cycles 
were eliminated using an activation factor involving the tanh 
function. The limit and branch points were beneficial because 
they allowed the Mult objective nonlinear model predictive 
control calculations to converge to the Utopia point which is the 
best solution.
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