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ABSTRACT

Influenza is a global health challenge and effective strategies must be implemented to minimize the damage. The dynamics
of influenza transmission must be understood and control methods that are beneficial and cost-effective must be implemented.

In this work, bifurcation analysis and multiobjective nonlinear model predictive control are performed on a dynamic model
involving influenza. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process.
Several factors must be considered and multiple objectives must be met simultaneously. The MATLAB program MATCONT was
used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO
in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed
the existence of branch points in the influenza model for two different bifurcation parameters. The MNLMPC converged to
the Utopia solution. The branch points (which cause multiple steady-state solutions from a singular point) are very beneficial
because they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best
possible solution) in the model.
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Background treatment. Tchuenche et al.’, performed optimal control and
sensitivity analysis studies of an influenza model with treatment
and vaccination. Lee, et al.” modeled the optimal age-specific
vaccination strategies against pandemic influenza. Guan, et
al.' investigated the global stability of an influenza A model
with vaccination. Prasad, et al.', used a multi-modeling
approach to evaluate the efficacy of layering pharmaceutical
and nonpharmaceutical interventions for influenza pandemics.
Chen, et al."?, performed optimal control studies of an influenza
model with mixed cross-infection by age group. Le Sage, et
al.!3, discussed the barriers to transmission of influenza viruses.
Han, et al."¥, investigated the co-evolution of immunity and
seasonal influenza viruses. Wang, et al. performed optimal

Stilianakis, et al.', researched the emergence of drug
resistance during an influenza epidemic using insights from a
mathematical model. Alexander, et al.> developed a vaccination
model for transmission dynamics of influenza. Nuno et al.’
studied the dynamics of two-strain influenza with isolation
and partial cross-immunity. Xu, et al.* developed a stochastic
model of an influenza epidemic with drug resistance. Rambaut,
et al.’ studied the genomic and epidemiological dynamics of
human influenza. Lee, et al.%, researched optimal control for a
pandemic influenza model involving the role of limited antiviral
treatment and isolation. Qiu, et al.” studied the transmission
dynamics of an influenza model with vaccination and antiviral
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control of an influenza model incorporating pharmacological
and non-pharmacological interventions. This work aims to
perform bifurcation analysis and multiobjective nonlinear
control (MNLMPC) studies in the influenza transmission model.
The paper is organized as follows". First, the model equations
are presented, followed by a discussion of the numerical
techniques involving bifurcation analysis and multiobjective
nonlinear model predictive control (MNLMPC). The results and
discussion are then presented, followed by the conclusions.

Model Equations for the influenza transmission model"*

The variables (s,v, is,ir,istr,irtr, r) represent the susceptible
population, vaccinated population, the population untreated
with drug-sensitive strains, people untreated with drug-resistant
strains, those treated with drug-sensitive strains, those treated
with drug-resistant strains and the recovered population.

The model equations are
rval = Pr(ir)+ Prtr(irtr)
sval = Bs(is) + PBstr(istr)

tval = rval + sval

D — A= (vl ) - (906)) + (1) o) + (1) ()
= (95)~(1=ut) o)~ ((1=r) vy~ ()
@:(svaz(s))+((1-o)svazv)-((l+uz)k1is)—(is(§1+ﬂ+u4));
%:(mz(s))+((1_a)mzv)-((1+u3)k2ir)—(fr(52+u+u4));
@ = ((1+u2)k1Gis)) = (istr (ppar +al + p+us));

d(irtr)

= ((1 + u3)k2(ir)) +( ppar(istr)) - (irtr(a2 Ut uS));

) (1) (€260 st (2o~ 7.1

The base parameter value are

A =0.0137; u =3.4247¢-05; fs s=6.e-03; frir=4.02¢-
03; Br =1.2e-03; Prtr =1.2e-03; phig =0.03; @ =0.003; y
=0.011; o =0.85; k1=0.7; &1 =0.25; k2=0.7, £2 =0.25; 1
=0.3325; a2 =0.25;ppar=0.05;

ul, u2, u3, u4 and u5 are control parameters and are set to 0
for the bifurcation analysis.

Bifurcation analysis

The MATLAB software MATCONT is used to perform
the bifurcation calculations. Bifurcation analysis deals with
multiple steady-states and limit cycles. Multiple steady states
occur because of the existence of branch and limit points.
Hopf bifurcation points cause limit cycles. A commonly used
MATLAB program that locates limit points, branch points and
Hopf bifurcation points is MATCONT'®"". This program detects
Limit points (LP), branch points (BP) and Hopf bifurcation
points(H) for an ODE system

dx
E - f(x,a)
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x € R" Let the bifurcation parameter be & . Since the
gradient is orthogonal to the tangent vector,

The tangent plane atany point W= [Wl s Wy s Way Wyy ool W, ]
must satisfy

Aw=0
Where A is
A=[of /ox |of /dc]

where Jf / Ox is the Jacobian matrix. For both limit and

branch points, the Jacobian matrix J =[0f / Ox]
singular.

must be

For a limit point, there is only one tangent at the point of
singularity. At this singular point, there is a single non-zero
vector, y, where Jy=0. This vector is of dimension n. Since there
is only one tangent the vector

must align with

Y=V Y2 V35 Vis-V)

w= (W, w,, w;,w,,..w,) . Since
Jw=Aw=0

the n+1 ™ component of the tangent vector W, | =0 at a
limit point (LP).

For a branch point, there must exist two tangents at the
singularity. Let the two tangents be z and w. This implies that

Az=0
Aw=0

Consider a vector v that is orthogonal to one of the tangents
(say w). v can be expressed as a linear combination of z and

w(v=az+ fw).Since Az=Aw=0; Av =0 and since

A
w and v are orthogonal, w'v =0. Hence By = ,|v=0
which implies that B is singular.

A
Hence, for a branch point (BP) the matrix B = [ T} must
be singular. w

At a Hopf bifurcation point,

det2f.(x,a)@1 )=0

@ indicates the bialternate product while 7, is the n-square
identity matrix. Hopf bifurcations cause limit cycles and should
be eliminated because limit cycles make optimization and control
tasks very difficult. More details can be found in Kuznetsov'®#%,

Multiobjective Nonlinear Model Predictive Control
(MNLMPC)

The rigorous multiobjective nonlinear model predictive
control (MNLMPC) method developed by Flores Tlacuahuaz,

et al.”! was used. e
i

Consider a problem where the variables z q,() =1,
tico
2..n) have to be optimized simultaneously for a dynamic problem
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dx
== F(x,
” (x,u)

t r being the final time value and n the total number of
objective variables and u the control parameter. ~ The single

objective optimal control problem is solved individually
=ty
optimizing each of the variables Z q; (ti) The optimization
lizo
L=ty
of Z q j(ti) will lead to the values q;
tizo
multiobjective optimal control (MOOC) problem that will be
solved is

Then, the

n L=l

min(Y (> q,(t)—q;))°

i=0

subject to ax = F(x,u);
dt

This will provide the values of u at various times. The first
obtained control value of u is implemented and the rest are
discarded. This procedure is repeated until the implemented and
the first obtained control values are the same or if the Utopia

t=t;

point where ( Z q, (t)=4 ; for all j) is obtained.

lico

Pyomo? is used for these calculations. Here, the differential
equations are converted to a Nonlinear Program (NLP) using
the orthogonal collocation method The NLP is solved using

IPOPT? and confirmed as a global solution with BARON?*,
The steps of the algorithm are as follows
4=t
*  Optimize Z q; (ti) and obtain qj. .
lizo
n_ b=l

+  Minimize (Z (Z q; (t)- q; )" and get the control

values at variuis times.
e Implement the first obtained control values

*  Repeat steps 1 to 3 until there is an insignificant difference
between the implemented and the first obtained value of
the control variables or if the Utopia point is achieved. The

L=t

Utopia point is when Z q, (%)= q; forallj.

lizo

Sridhar®® demonstrated that when the bifurcation analysis
revealed the presence of limit and branch points the MNLMPC
calculations to converge to the Utopia solution. For this, the
singularity condition, caused by the presence of the limit or
branch points was imposed on the co-state equation®. If the

*
minimization of { lead to the value ¢, and the minimization
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of ¢, lead to the value ¢, The MNLPMC calculations

(ql —611*)2 +(Q2 —6];)2.

The multiobjective optimal control problem is

will minimize the function

min (q,—¢q,)’ +(q,—q,)° subject to % = F(x,u)

Differentiating the objective function results in

d * * * d * * d *
_((ql -4 )2 +(qz _qz)z) = 2((11 -4 )_(ql -4 )+2(q2 _qz)_(qz _qz)
d, d, d,

1

The Utopia point requires that both (ql -4, ) and (q ) q2)
are zero. Hence

d * 2 * 2
E((ql —-¢,) +(¢,-¢,))=0
The optimal control co-state equation is
d d * 2 * 2 .
E(ﬂﬁ):_d_xi((%_%) +(Q2_Q2) )_ﬂrﬂ’i> ﬂ’i(t/'):()

ﬂ»i is the Lagrangian multiplier. ¢ is the final time. The

first term in this equation is 0 and hence
d
Z(ﬂv) = _f;c/li;/?’i(tf) =0

Atalimit or abranch point, for the set of ODE % = f(x,u)
t
f . 1s singular. Hence there are two different vectors-values for

Mﬁ] where di(;ti) >0 and di(/Ii) <0 . In between there
t t

is a vector [i,] where g(ﬂi) =( . This coupled with the
t

boundary condition ﬂi ( f) =0 will lead to [ﬂ«,] =0 This
makes the problem an unconstrained optimization problem and
the optimal solution is the Utopia solution.

Results and Discussion

The bifurcation analysis of the influenza model revealed
branch points when 7 and [Srtr are bifurcation parameters.
When [7r was the bifurcation parameter the branch point

occurred at

(s,v, is, ir, istr, irtr, T, ,Br ) values of (42.757781, 189.151848,
0, 1.870419, 0, 5.236455 161.018538 0.009997) (Figure 1).

When Srtrwas the bifurcation parameter the branch point

occurred at (s,v, is, i, istr, irtr, r, Srtr ) values of (42.757781,
189.151848, 0, 1.870419, 0, 5.236455, 161.018538, 0.004342 )
(Figures 2, 3 and 4).
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branch point when betar is bifurcation parameter

L=ty L=ty

(S is@)) + (S ir)) +(S istr@)) +(S irtr(1))’

was minimized subject to the equations governing the model.
This led to a value of zero (the Utopia

The MNLMPC values of the control variables, ul, u2 u3,
u4, u5 were 0.5498, 0.7725, 0.4696, 0.92579, 0.8467. The
various MNMPC figures are shown in figures 3--6. The control
profiles ul, u2, u3.u4, u5 (Figure 5) exhibited noise and this
was remedied using the Savitzky-Golay filter (Figure 6). It is
seen that the presence of the limit and branch points is beneficial
because it allows the MNLMPC calculations to attain the Utopia
solution, validating the analysis of Sridhar?.

s 426 o betar

Figure 1: Branch point ( f7 is the bifurcation parameter).
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Figure 2: Branch point ( frtr is the bifurcation parameter).
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For theMNLMPC calculations, s (0) is set to 300 and v (0)
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Figure 6: MNLMPC (smooth control profiles; noise removed

individually and each of them led to a value 0. The overall by Savitzky-Golay filter).

optimal control problem will involve the minimization of
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Conclusions

Bifurcation analysis and multiobjective nonlinear control
(MNLMPC) studies a dynamic influenza transmission model.
The bifurcation analysis revealed the existence of branch points
for two different bifurcation parameters. The branch and points
(which cause multiple steady-state solutions from a singular
point) are very beneficial because they enable the Multiobjective
nonlinear model predictive control calculations to converge
to the Utopia point (the best possible solution) in the models.
A combination of bifurcation analysis and Multiobjective
Nonlinear Model Predictive Control (MNLMPC) for dynamic
influenza transmission models is the main contribution of this
paper.
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