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Background
Stilianakis, et al.1, researched the emergence of drug 

resistance during an influenza epidemic using insights from a 
mathematical model. Alexander, et al.2 developed a vaccination 
model for transmission dynamics of influenza. Nuno et al.3 
studied the dynamics of two-strain influenza with isolation 
and partial cross-immunity.  Xu, et al.4 developed a stochastic 
model of an influenza epidemic with drug resistance. Rambaut, 
et al.5 studied the genomic and epidemiological dynamics of 
human influenza. Lee, et al.6, researched optimal control for a 
pandemic influenza model involving the role of limited antiviral 
treatment and isolation. Qiu, et al.7 studied the transmission 
dynamics of an influenza model with vaccination and antiviral 

treatment.  Tchuenche et al.8, performed optimal control and 
sensitivity analysis studies of an influenza model with treatment 
and vaccination.  Lee, et al.9 modeled the optimal age-specific 
vaccination strategies against pandemic influenza.  Guan, et 
al.10 investigated the global stability of an influenza A model 
with vaccination. Prasad, et al.11, used a multi-modeling 
approach to evaluate the efficacy of layering pharmaceutical 
and nonpharmaceutical interventions for influenza pandemics. 
Chen, et al.12, performed optimal control studies of an influenza 
model with mixed cross-infection by age group.  Le Sage, et 
al.13, discussed the barriers to transmission of influenza viruses. 
Han, et al.14, investigated the co-evolution of immunity and 
seasonal influenza viruses. Wang, et al. performed optimal 

 A B S T R A C T 
Influenza is a global health challenge and effective strategies must be implemented to minimize the damage.  The dynamics 

of influenza transmission must be understood and control methods that are beneficial and cost-effective must be implemented.

In this work, bifurcation analysis and multiobjective nonlinear model predictive control are performed on a dynamic model 
involving influenza.  Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. 
Several factors must be considered and multiple objectives must be met simultaneously. The MATLAB program MATCONT was 
used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO   
in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON.  The bifurcation analysis revealed 
the existence of branch points in the influenza model for two different bifurcation parameters. The MNLMPC converged to 
the Utopia solution. The branch points (which cause multiple steady-state solutions from a singular point) are very beneficial 
because they enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best 
possible solution) in the model.
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control of an influenza model incorporating pharmacological 
and non-pharmacological interventions. This work aims to 
perform bifurcation analysis and multiobjective nonlinear 
control (MNLMPC) studies in the influenza transmission model. 
The paper is organized as follows15. First, the model equations 
are presented, followed by a discussion of the numerical 
techniques involving bifurcation analysis and multiobjective 
nonlinear model predictive control (MNLMPC). The results and 
discussion are then presented, followed by the conclusions.

Model Equations for the influenza transmission model15

The variables (s,v, is,ir,istr,irtr, r) represent the susceptible 
population, vaccinated population, the population untreated 
with drug-sensitive strains, people untreated with drug-resistant 
strains, those treated with drug-sensitive strains, those treated 
with drug-resistant strains and the recovered population.

The model equations are 
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The base parameter value are

Λ  = 0.0137; µ  =3.4247e-05; sβ  s=6.e-03; rtrβ =4.02e-

03; rβ  =1.2e-03; rtrβ  =1.2e-03; phiφ  =0.03;ω  =0.003;γ  

=0.011; σ  =0.85; k1=0.7; 1ξ  =0.25; k2=0.7; 2ξ  =0.25; 1α  
=0.3325; 2α  =0.25;ppar=0.05;

u1, u2, u3, u4 and u5 are control parameters and are set to 0 
for the bifurcation analysis.

Bifurcation analysis

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles.  Multiple steady states 
occur because of the existence of branch and limit points.  
Hopf bifurcation points cause limit cycles.  A commonly used 
MATLAB program that locates limit points, branch points and 
Hopf bifurcation points is MATCONT16,17.  This program detects 
Limit points (LP), branch points (BP) and Hopf bifurcation 
points(H) for an ODE system

( , )dx f x
dt

α=

nx R∈  Let the bifurcation parameter be α  . Since the 
gradient is orthogonal to the tangent vector,  

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    
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[ / | / ]A f x f α= ∂ ∂ ∂ ∂

where  /f x∂ ∂  is the Jacobian matrix.  For both limit and 
branch points, the Jacobian matrix  [ / ]J f x= ∂ ∂   must be 
singular.

For a limit point, there is only one tangent at the point of 
singularity. At this singular point, there is a single non-zero 
vector, y, where Jy=0. This vector is of dimension n. Since there 
is only one tangent the vector

1 2 3 4( , , , ,... )ny y y y y y=  must align with  

1 2 3 4ˆ ( , , , ,... )nw w w w w w=  . Since

ˆ 0Jw Aw= =
 the n+1 th component of the tangent vector 1nw +  = 0 at  a 

limit point (LP).

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w.  This implies that 

0
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Consider a vector v that is orthogonal to one of the tangents 
(say w). v can be expressed as a linear combination of z and 

w ( v z wα β= + ). Since 0Az Aw= =  ; 0Av =  and since 
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which implies that B is singular.

Hence, for a branch point (BP) the matrix 
T
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B

w
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be singular.

At a Hopf bifurcation point, 

det(2 ( , )@ ) 0x nf x Iα =

@ indicates the bialternate product while 
nI  is the n-square 

identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult.  More details can be found in Kuznetsov18-20.

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC)

The rigorous multiobjective nonlinear model predictive 
control (MNLMPC) method developed by Flores Tlacuahuaz, 
et al.21 was used. 

Consider a problem where the variables  
0
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2..n) have to be optimized simultaneously for a dynamic problem
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of 2q  lead to the value 
*
2q   The MNLPMC calculations 

will minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + − .  

The multiobjective optimal control problem is	
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The optimal control co-state equation is
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iλ  is the Lagrangian multiplier. ft  is the final time.  The 
first term in this equation is 0 and hence 
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At a limit or a branch point, for the set of ODE ( , )dx f x u
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xf  is singular. Hence there are two different vectors-values for 
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d
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is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to  [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem and 
the optimal solution is the Utopia solution.  

Results and Discussion
The bifurcation analysis of the influenza model revealed 

branch points when rβ   and rtrβ  are bifurcation parameters. 

When rβ  was the bifurcation parameter the branch point 
occurred at 

(s,v, is, ir, istr, irtr, r, rβ ) values of (42.757781, 189.151848, 
0, 1.870419, 0, 5.236455 161.018538 0.009997) (Figure 1).

When rtrβ was the bifurcation parameter the branch point 

occurred at (s,v, is, ir, istr, irtr, r,  rtrβ  ) values of (42.757781, 
189.151848, 0, 1.870419, 0,  5.236455, 161.018538, 0.004342 ) 
(Figures 2, 3 and 4).

( , )dx F x u
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=

 ft  being the final time value and n the total number of 
objective variables and u the control parameter.     The single 
objective optimal control problem is solved individually 

optimizing each of the variables 
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This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0
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i
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t
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=
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Pyomo22 is used for these calculations.  Here, the differential 
equations are converted to a Nonlinear Program (NLP) using 
the orthogonal collocation method   The NLP is solved using 
IPOPT23 and confirmed as a global solution with BARON24.

The steps of the algorithm are as follows  

•	 Optimize 
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values at various times.

•	 Implement the first obtained control values 

•	 Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of 
the control variables or if the Utopia point is achieved. The 

Utopia point is when 
0
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i f

i

t t

j i j
t

q t q
=

=
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 Sridhar25 demonstrated that when the bifurcation analysis 
revealed the presence of limit and branch points the MNLMPC 
calculations to converge to the Utopia solution.  For this, the 
singularity condition, caused by the presence of the limit or 
branch points was imposed on the co-state equation26.   If the 

minimization  of   1q  lead to the value 
*
1q  and the minimization 
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Figure 1: Branch point ( rβ   is the bifurcation parameter).

Figure 2: Branch point ( rtrβ  is the bifurcation parameter).

Figure 3: MNLMPC (s v r profiles).

For theMNLMPC calculations, s (0) is set to 300 and v (0) 
is set to 100

0 0 0 0

( ), ( ) ( ), ( )
i f i f i f i f

i i i i

t t t t t t t t

i i i i
t t t t
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individually and each of them led to a value 0.   The overall 
optimal control problem will involve the minimization of 
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was minimized subject to the equations governing the model. 
This led to a value of zero (the Utopia

The MNLMPC values of the control variables, u1, u2 u3, 
u4, u5 were 0.5498, 0.7725, 0.4696, 0.92579, 0.8467.  The 
various MNMPC figures are shown in figures 3--6.  The control 
profiles u1, u2, u3.u4, u5 (Figure 5) exhibited noise and this 
was remedied using the Savitzky-Golay filter (Figure 6). It is 
seen that the presence of the limit and branch points is beneficial 
because it allows the MNLMPC calculations to attain the Utopia 
solution, validating the analysis of Sridhar25.

Figure 5: MNLMPC (control profiles with noise).

Figure 6: MNLMPC (smooth control profiles; noise removed 
by Savitzky-Golay filter).
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Conclusions
Bifurcation analysis and multiobjective nonlinear control 

(MNLMPC) studies a dynamic influenza transmission model. 
The bifurcation analysis revealed the existence of branch points 
for two different bifurcation parameters. The branch and points 
(which cause multiple steady-state solutions from a singular 
point) are very beneficial because they enable the Multiobjective 
nonlinear model predictive control calculations to converge 
to the Utopia point (the best possible solution) in the models. 
A combination of bifurcation analysis and Multiobjective 
Nonlinear Model Predictive Control (MNLMPC) for dynamic 
influenza transmission models is the main contribution of this 
paper.
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