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Background 
Chao, et al1, discussed the transforming growth factor beta 

in Alzheimer’s disease.  Lue, et al2, showed that the soluble 
amyloid beta peptide concentration is a predictor of synaptic 
change in Alzheimer’s disease. Mehta, et al3, investigated the 
plasma and cerebrospinal fluid levels of amyloid β proteins 
1-40 and 1-42 in Alzheimer disease. Penkowa, et al4, showed 
the impaired inflammatory response and increased oxidative 
stress and neurodegeneration after brain injury in interleukin-
6-deficient mice. Penkowa, et al5, demonstrated that the 
Interleukin-6 deficiency reduces the brain inflammatory response 
and increases oxidative stress and neurodegeneration after 
kainic acid-induced seizures.  Wyss-Coray, et al6, showed that 
TGF-β1 promotes microglial amyloid-β clearance and reduces 

plaque burden in transgenic mice.  Jacobsen, et al7, investigated 
the early-onset behavioral and synaptic deficits in a mouse 
model of Alzheimer’s disease. Wyss-Coray8 showed that the 
TGF-β pathway was a potential target in neurodegeneration and 
Alzheimer’s disease.  Das, et al9, demonstrated the dysfunction 
of TGF-β signaling in Alzheimers disease.  Tobinick, et al10, 
used the TNF-alpha modulation for treatment of Alzheimer’s 
disease. Green, et al11, investigated the role of calcium in the 
pathogenesis of Alzheimer’s disease and transgenic models.  
Group, et al12, showed that naproxen and celecoxib do not 
prevent AD in early results from a randomized controlled trial.  
Town, et al13, demonstrated that. blocking TGF-β–smad2/3 
innate immune signaling mitigates Alzheimer-like pathology.  
Cheung, et al14, illustrated the mechanism of Ca2+ disruption in 

 A B S T R A C T 
Millions of people are affected by Alzheimer's disease, which is a progressive neurodegenerative disorder. It is important to 

understand the progression dynamics of this disease to be able to minimize the damage that is caused by it. This article provides 
a mathematical framework to develop strategies to slow down the progression of Alzheimer's disease. Bifurcation analysis is a 
powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be considered and 
multiple objectives must be met simultaneously.  Bifurcation analysis and multiobjective nonlinear model predictive control 
(MNLMPC) calculations are performed on two Alzheimer’s disease models. The MATLAB program MATCONT was used to 
perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO   in 
conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the 
existence of limit points in the models. The limit points were beneficial because they enabled the multiobjective nonlinear 
model predictive control calculations to converge to the Utopia point in both problems, which is the most beneficial solution. 
A combination of bifurcation analysis and multiobjective nonlinear model predictive control for Alzheimer’s disease models is 
the main contribution of this paper.
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Alzheimer’s disease by presenilin regulation of InsP3 receptor 
channel gating.  Bezprozvanny, et al15, researched the neuronal 
calcium mishandling and the pathogenesis of Alzheimer’s 
disease.  Bojarski, et al16, investigated the calcium dysregulation 
in Alzheimer’s disease.  Group, et al17, researched the cognitive 
function over time in the Alzheimer’s Disease and produced 
results of a randomized, controlled trial of naproxen and 
celecoxib.

Lopez, et al18, J., Lyckman, A., Oddo, S., LaFerla, F., 
Querfurth, H., Shtifman, A., 2008. Increased intraneuronal 
resting [Ca2+] in adult Alzheimer’s disease mice. Nelson, et 
al19, investigated familial Alzheimer’s disease mutations in 
presenilins and studied the effects on endoplasmic reticulum 
calcium homeostasis and correlation with clinical phenotypes. 
Puri, et al20, studied Mathematical models for the pathogenesis 
of Alzheimer’s disease. Berridge21, tested the calcium hypothesis 
of Alzheimer’s disease. Eur. J. Physiol. 459, 441-449. Imbimbo, 
et al22, investigated whether NSAIDs are useful to treat 
Alzheimer’s disease or mild cognitive impairment. Berridge23, 
studied the effect of calcium signalling on Alzheimer’s disease. 
Anastasio24, performed data-driven modelling of Alzheimer’s 
disease pathogenesis. Camandola and Mattson25, studied the 
aberrant subcellular neuronal calcium regulation in aging and 
Alzheimer’s disease.  Ho, et al26, showed that the effects of metal 
chelators on γ-secretase indicate that calcium and magnesium 
ions facilitate cleavage of Alzheimer’s amyloid precursor 
substrate.  Itkin, et al27, demonstrated that calcium ions promote 
the formation of amyloid b-peptide (1-40) oligomers causally 
implicated in neuronal toxicity of Alzheimer’s disease. Müller, 
et al28, studied the constitutive cAMP response element binding 
protein (CREB) activation by Alzheimer’s disease presenilin-
driven inositol trisphosphate receptor (InsP3R) Ca2+ signaling.

Schmidt, et al29, performed quantitative modelling of 
amyloidogenic processing and its influence by SORLA in 
Alzheimer’s disease.  Ma, et al30, studied mitochondrial 
modulation of store-operated Ca2+ entry in model cells of 
Alzheimer’s disease.  Woods and Padmanabhan31, studied the 
effect of neuronal calcium signaling on Alzheimer’s disease.  
De Kimpe, et al32, showed that disturbed Ca2+ homeostasis 
increases glutaminyl cyclase expression, connecting two early 
pathogenic events in Alzheimer’s disease in vitro.  Berridge, 
M33, investigated the dysregulation of neural calcium signaling 
in Alzheimer’s disease. Cabezas, et al34, investigated the role of 
glial cells in Alzheimer’s disease.  Chen, et al35, studied strategies 
involving protection of TGF-β1 against neuroinflammation and 
neurodegeneration in Aβ1-42-induced Alzheimer’s disease in 
model rats. Von Bernhardi, et al36, studied the role of TGFβ 
signaling in the pathogenesis of Alzheimer’s disease.  Bertsch, 
et al37 and Hao, et al38 developed mathematical models for the 
onset and progression of Alzheimer’s disease.  Forloni, et al39, 
performed research involving oligomers and inflammation in 
Alzheimer’s disease.

Kinney, et al40, conclude that inflammation is a central 
mechanism in Alzheimer’s disease. Zhu, et al41, investigated 
whether inflammation be resolved in Alzheimer’s disease. 
Ozben, et al42, studied neuro-inflammation and anti-
inflammatory treatment options for Alzheimer’s disease. 
Ali, et al43, provide recommendations for anti-inflammatory 
treatments in Alzheimer’s disease. Ciuperca, et al44, developed 
an in vitro mathematical model involving Alzheimer’s disease 

and prions. Andrade-Restrepo, et al45, modelled the spatial 
propagation of Aβ oligomers in Alzheimer’s disease.  Rivers-
Auty, et al46, investigated the use of anti-inflammatories in 
Alzheimer’s disease-potential therapy. Huang, et al47, performed 
clinical trials of new drugs for Alzheimer’s disease.  Li, et al48, 
developed a mathematical model of Alzheimer’s disease with 
prion proteins interactions and treatment. Hu, et al49, performed 
optimal control calculations of a stochastic reaction diffusion 
model for Alzheimer’s disease with impulse and time-varying 
delay. Hao, et al50, developed a strategy for optimal anti-
amyloid-beta therapy for Alzheimer’s disease via a personalized 
mathematical model. Al-Ghraiybah, et al51, studied glial cell-
mediated neuroinflammation in Alzheimer’s disease.  Pal et 
al52, modelled Anti-Amyloid-Beta Therapy for Alzheimer’s 
Disease.  Van Dyck et al53, investigated Lecanemab in early 
Alzheimer’s disease. Ciuperca, et al54, performed a qualitative 
analysis of an A β-monomer model with inflammation processes 
for Alzheimer’s disease. Caluwé, et al55, discuss he progression 
towards Alzheimer’s disease described as a bistable switch 
arising from the positive loop between amyloids and Ca2+.

Torres, et al56, performed optimal control calculations 
involving anti-inflammatory treatments of Alzheimer’s disease.  
All the optimal control work involving Alzheimer’s disease 
involved single-objective optimal control. In this article we 
perform multiobjective nonlinear model predictive control 
in conjunction with bifurcation analysis for two Alzheimer’s 
disease. The two models that will be used are the ones described 
in Caluwé, et al55 and Ciuperca et al54. These models will be 
referred to as model 1 and model 2.  This paper is organized 
as follows. First, the Alzheimer’s disease models   are 
presented.  The numerical procedures (bifurcation analysis and 
multiobjective nonlinear model predictive control (MNLMPC) 
are then described. This is followed by the results and discussion 
and conclusions.

Alzheimer’s Disease Models
Model 1

The model equations are
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a and c represent the concentrations of Aβ and the intracellular 

Ca2+. 1 2,v v  represent the synthesis rate of Aβ and the rate at 
which Ca2+ enters the cytoplasm. These are the bifurcation and 
control parameters, respectively.

Model 2

The model equations are
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calculations Here   
0
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∑ (j=1, 2..n) represents   the 
variables that need to be minimized/maximized simultaneously 
for a problem   involving a set of ODE
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=

ft  being the final time value and n the total number 
of objective variables and. u the control parameter. This 
MNLMPC procedure first solves the single objective optimal 
control problem independently optimizing each of the variables 
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This will provide the values of u at various times. The first 
obtained control value of u  is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0
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=∑  for all j) is obtained.

Pyomo63, is used for these calculations.  Here, the differential 
equations are converted to a Nonlinear Program (NLP) using 
the orthogonal collocation method   The NLP is solved using 
IPOPT64 and confirmed as a global solution with BARON65.

The steps of the algorithm are as follows
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•	 Implement the first obtained control values 

•	 Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of 
the control variables or if the Utopia point is achieved. The 
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Sridhar66, proved that the MNLMPC calculations to converge 
to the Utopia solution when the bifurcation analysis revealed the 
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b and bp represent the oligomer concentration and the 
concentration of oligomers in plaques. mval and mcap represent 
the monomer and microglial cell concentrations. ival represents 
the interleukin concentration. Sigma and d are the degradation 
rates of microglial cells and the degradation rate of monomers. 
These are the bifurcation and control parameters, respectively.

Bifurcation Analysis
The MATLAB software MATCONT is used to perform 

the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles. Multiple steady states 
occur because of the existence of branch and limit points. 
Hopf bifurcation points cause limit cycles. A commonly used 
MATLAB program that locates limit points, branch points and 
Hopf bifurcation points is MATCONT57,58. This program detects 
Limit points (LP), branch points (BP) and Hopf bifurcation 
points(H) for an ODE system.

( , )dx f x
dt

α=
nx R∈  Let the bifurcation parameter be α  Since the 

gradient is orthogonal to the tangent vector, 

The tangent plane at any point 1 2 3 4 1[ , , , ,.... ]nw w w w w w +=  
must satisfy

0Aw =
Where A is

[ / | / ]A f x f α= ∂ ∂ ∂ ∂

where /f x∂ ∂  is the Jacobian matrix. For both limit and 
branch points, the matrix [ / ]f x∂ ∂  must be singular. The n+1 

th component of the tangent vector 1nw +  = 0 for a limit point 

(LP)and for a branch point (BP) the matrix 
T

A
w
 
 
 

 must be 
singular. At a Hopf bifurcation point,

det(2 ( , )@ ) 0x nf x Iα =

 @ indicates the BI alternate product while is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult. More details can be found in Kuznetsov and 
Govaerts59-61.

Nonlinear Model Predictive Control (MNLMPC)
Flores Tlacuahuaz, et al62, developed a multiobjective 

nonlinear model predictive control (MNLMPC) method that is 
rigorous and does not involve weighting functions or additional 
constraints. This procedure is used for performing the MNLMPC 
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presence of limit and branch points. This was done by imposing 
the singularity condition on the co-state equation67.   If the 

minimization  of   1q  lead to the value 
*
1q  and the minimization 

of 2q  lead to the value 
*
2q   The MNLPMC calculations will 

minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The 
multiobjective optimal control problem is

* 2 * 2
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dt
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Differentiating the objective function results in
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*
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are zero.  Hence
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the optimal control co-state equation is 
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iλ  is the Lagrangian multiplier. ft  is the final time.  The 
first term in this equation is 0 and hence 

( ) ; ( ) 0i x i i f
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At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  

xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0i
d
dt

λ <  . In between there 

is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to  [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem and 
the only solution is the Utopia solution.

Results and Discussion
Bifurcation analysis for model 1 revealed the existence 

of limit points for both the bifurcation parameters v1 and v2. 
The coordinates for the 2 limit points are (a,c,v1) = (1.682845, 
56.040073, 0.007876) and (a,c,v2) = (1.672121, 60.828416, 
4.519333). These limit points are shown in (Figures 1a and 1b).
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v1 10 -3

1.2
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1.6
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2.2

2.4
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LP

Figure 1a: Biurcation analysis model 1 v1 is bifurcation 
parameter.
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Figure 1b: Biurcation analysis model 1 v2 is bifurcation 
parameter.

The variables, a and c, which are the concentrations of Aβ and 

the intracellular Ca2+were minimized. 
0 0
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i i

t t t t

i i
t t

a t b t
= =

= =

∑ ∑  was   

minimized individually and each of them led to a value of 0.  The 
overall optimal control problem will involve the minimization 

of 
0 0

2 2( ( ) 0) ( ( ) 0)
i f i f

i i

t t t t

i i
t t

a t b t
= =

= =

− + −∑ ∑  was minimized subject 

to the equations governing the model. This led to a value of zero 
(the Utopia solution.

The various concentration profiles for this MNLMPC 
calculation are shown in (Figures 1c-1d).

Figure 1c: MNLMPC model a vs t.

Figure 1d: MNLMPC model 1 c vs t.

The obtained control profile of s exhibited noise (Figures 
1e-1h).  This was remedied using the Savitzky-Golay Filter. The 
smoothed-out version of this profile is shown in Figs 1g and 
1h. The MNLMPC control values obtained for v1 and v2 are 
0.00039 v2 0.001017.
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Figure 1e: MNLMPC model 1 v1 vs t.

Figure 1f: MNLMPC model 1 v2 vs t.

Figure 1g: MNLMPC model 1 v1 (Savitzky Golay) vs t.

Figure 1h: MNLMPC model 1 v2 (Savitzky Golay) vs t.

Bifurcation analysis for model 2 revealed the existence of 
limit points for both the bifurcation parameters sigma and d.

The coordinates for the 2 limit points are (b, bp, mval, 
mcap, ival, sigma) = (0.557430, 0.929049, 0.527934, 0.499842, 
0.178902, 0.177014) and (b, bp, mval, mcap, ival, d) = (0.310730, 
0.517884, 0.394164, 0.991528, 0.235058, 0.473347). These limit 
points are shown in (Figures 2a and 2b). The variables b and 
bp which are the oligomer concentration and the concentration 

of oligomers in plaques were minimized. 
0 0

( ), ( ),
i f i f

i i

t t t t

i i
t t

b t bp t
= =

= =

∑ ∑  
was   minimized individually and each of them led to a value 
of 0.  The overall optimal control problem will involve the 

minimization of 
0 0

2 2( ( ) 0) ( ( ) 0)
i f i f

i i

t t t t

i i
t t

b t bp t
= =

= =

− + −∑ ∑  was 
minimized subject to the equations governing the model. 
This led to a value of zero (the Utopia solution.  The various 
concentration profiles for this MNLMPC calculation are shown 
in (Figures 2c-2g).  The obtained control profile of s exhibited 
noise (Figures 2h and 2i).  This was remedied using the 
Savitzky-Golay Filter. The smoothed-out version of this profile 
is shown in (Figures 2j and 2k). The MNLMPC control values 
obtained for sigma and d are 0.2499 and 0.5683.
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Figure 2a: (Bifurcation diagram model 2 sigma is bifurcation 
parameter).
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Figure 2b: (Bifurcation diagram model 2 d is bifurcation 
parameter).

Figure 2c: MNLMPC model 2 b vs t.
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Figure 2d: MNLMPC model 2 bp vs t

Figure 2e: MNLMPC model mval  vs t.

Figure 2f: MNLMPC model mcap vs t

Figure 2g: MNLMPC model ival vs t.

Figure 2h: MNLMPC model d vs t.

Figure 2i: (MNLMPC model 2 sigma vs t).

Figure 2j: (MNLMPC d (Savitzky Golay) vs t).

Figure 2k: MNLMPC model 2 sigma (Savitzky Golay) vs t.
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In both the cases, the MNLMPC calculations converged to 
the Utopia solution, validating the analysis of Sridhar66, which 
showed that the presence of a limit point enables the MNLMPC 
calculations to reach the best possible (Utopia) solution.

Conclusion
Bifurcation analysis and Multiobjective nonlinear model 

predictive control calculations were performed on two 
Alzheimer’s disease models.   The bifurcation analysis revealed 
the existence of linit points.  The limit points (which produced 
multiple steady-state solutions originating from a singular point) 
are very beneficial as they caused the multiojective nonlinear 
model predictive calculations to converge to the Utopia point 
(the best possible solution) in both models.  A combination 
of bifurcation analysis and multiobjective nonlinear model 
predictive control for Alzheimer’s disease models is the main 
contribution of this paper.
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