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Background
Blier1 studied the crosstalk between the norepinephrine and 

serotonin systems and its role in the antidepressant response. 
Monteiro, et al.2 developed analytical results for a Wilson-
Cowan neuronal network model. Brown, et al.3, investigated the 
influence of spike rate and stimulus duration on noradrenergic 
neurons. Savic, et al.4 developed a mathematical model of the 
hypothalamo-pituitary-adrenocortical system and its stability 
analysis. Best, et al.5, studied homeostatic mechanisms in 
dopamine synthesis and release. Best, et al.6 researched 
Serotonin synthesis, release and reuptake in terminals: a 
mathematical model. Bowen7 studied the relationship between 
mood instability and depression.   Hamon, et al.8, investigated 
monoamine neurocircuitry in depression and strategies for new 
treatments. Akar, et al.9 performed a nonlinear analysis of EEGs 

of patients with major depression during different emotional 
states. Bowen, et al.10 showed that moods in clinical depression 
are more unstable than severe normal sadness. Bangsgaard, 
et al.11 performed patient-specific modelling of the HPA axis 
related to the clinical diagnosis of depression. Bachmann, et 
al.12 studied the various methods for classifying depression in 
single-channel EEG using linear and nonlinear signal analysis. 
Liu, et al.13 investigated the emotional roles of mono-aminergic 
neurotransmitters in major depressive disorder and anxiety 
disorders.  Perez-Caballero14 researched the monoaminergic 
system and depression. Menke, et al.15 investigated the role of 
the HPA axis as a target for depression. Loula, et al.16 produced 
an individual-based model for predicting the prevalence of 
depression. Loula, et al.17 developed a game theory-based model 
for predicting depression due to frustration in competitive 
environments. Shao, et al.18 discovered the associations 

 A B S T R A C T 
The dynamic interaction between Serotonin, Dopamine and Norepinephrine is very complex and nonlinear and it is 

important to understand the nonlinearity and develop strategies to control the interactions effectively. In this work, bifurcation 
analysis and multiobjective nonlinear model predictive control are performed on a neurondynamic model involving Serotonin, 
Dopamine and Norepinephrine. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics 
of any process. Several factors must be considered and multiple objectives must be met simultaneously.  The MATLAB program 
MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization 
language PYOMO   in conjunction with the state-of-the-art global optimization solvers IPOPT and  BARON. The bifurcation 
analysis revealed the existence of a Hopf bifurcation point. The Hopf bifurcation point, which causes an unwanted limit cycle, is 
eliminated using an activation factor involving the tanh function.
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among monoamine neurotransmitter pathways, personality 
traits and major depressive disorders. Xu, et al.19 performed a 
mental health informatics study on the mediating effect of the 
regulatory emotional self-efficacy. Nemesure, et al.20, developed 
a predictive model of depression and anxiety using electronic 
health records and a novel machine learning approach with 
artificial intelligence. Lu, et al.21 developed a semi-supervised 
random forest regression model based on co-training and 
grouping with information entropy for evaluation of depression 
symptoms severity. Loula, et al.22 used a dynamical systems 
approach to investigate the relationship between monoamine 
neurotransmitters and mood swings.

In this work, bifurcation analysis and multiobjective nonlinear 
model predictive control are performed on the neurodynamic 
model involving Serotonin, Dopamine and Norepinephrine22. 
The paper is organized as follows. First, the model equations are 
presented, followed by a discussion of the numerical techniques 
involving bifurcation analysis and multiobjective nonlinear 
model predictive control (MNLMPC). The results and discussion 
are then presented, followed by the conclusions.

Model Equations22

In this model, sv, dv, nv, represent the serotonin, dopamine 
and norepinephrine in the blood plasma. The model equations 
are
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The base parameter value is 

a = 20; b = 0.001; c = 0.04; e = 3; f = 0.1; g = 2; h = 80;  α  = 
50; β  = 200;

More details are found22.

Bifurcation analysis 

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles.  Multiple steady states 
occur because of the existence of branch and limit points.  
Hopf bifurcation points cause limit cycles.  A commonly used 
MATLAB program that locates limit points, branch points and 
Hopf bifurcation points is MATCONT23,24.  This program detects 
Limit points (LP), branch points (BP) and Hopf bifurcation 
points(H) for an ODE system

( , )dx f x
dt

α=

 nx R∈  Let the bifurcation parameter be α  . Since the 
gradient is orthogonal to the tangent vector,  The tangent plane at 
any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    must satisfy

0Aw =
Where A is

[ / | / ]A f x f α= ∂ ∂ ∂ ∂

where  /f x∂ ∂  is the Jacobian matrix.  For both limit and 
branch points, the Jacobian matrix  [ / ]J f x= ∂ ∂   must be 
singular.

For a limit point, there is only one tangent at the point of 
singularity. At this singular point, there is a single non-zero 
vector, y, where Jy=0. This vector is of dimension n. Since there 
is only one tangent the vector

1 2 3 4( , , , ,... )y y y y y y  must align with  

1 2 3 4ˆ ( , , , ,... )nw w w w w w=  . Since

ˆ 0Jw Aw= =

the n+1 th component of the tangent vector 1nw +  = 0 at a 
limit point (LP).

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w.  This implies that	
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Consider a vector v that is orthogonal to one of the tangents 
(say w). v can be expressed as a linear combination of z and 
w ( v z wα β= + ). Since 0Az Aw= =  ; 0Av =  and since 

w and v are orthogonal, 0Tw v = . Hence 0T
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which implies that B is singular.

Hence, for a branch point (BP) the matrix 
T

A
B

w
 

=  
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 must 
be singular.

At a Hopf bifurcation point,

det(2 ( , )@ ) 0x nf x Iα =
@ indicates the bialternate product while nI  is the n-square 

identity matrix. Hopf bifurcations cause limit cycles  and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult.  More details can be found in Kuznetsov25-27.

Hopf bifurcations cause limit cycles. The tanh activation 
function (where a control value u is replaced by) ( tanh / )u u ε   
is  used to eliminate spikes in the optimal control profiles28-31. 
Sridhar32 explained with several examples how the activation 
factor involving the tanh function also eliminates the Hopf 
bifurcation points. This was because the tanh function increases 
the oscillation time period in the limit cycle. 

Multiobjective nonlinear model predictive control 
(MNLMPC)

The rigorous multiobjective nonlinear model predictive 
control (MNLMPC) method developed by Flores Tlacuahuaz, 
et al.33 was used.

Consider a problem where the variables  ( )
i ft t

j iq t∑ (j=1, 

2..n) have to be optimized simultaneously for a dynamic problem
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Figure 1a: Hopf on AB disappears when a is modified to 
atanh(a)(CD).

Figure 1b: limit cycle caused by Hopf bifurcation point.

The tanh activation factor causes the Hopf bifurcation to 
disappear, validating the analysis of Sridhar32.

For the MNLMPC sv (0) =100, dv(0)=50, nv(0)=50, a is 

the control parameters and 
0 0 0

( ), ( ), ( )
i f i f i f

i i i

t t t t t t

i i i
t t t
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= = =

= = =
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were maximized individually and each of them led to 
a value of 100, 50.5116 and 50.   The overall optimal 
control problem will involve the minimization of 

0 0 0
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i f i f i f

i i i

t t t t t t

i i i
t t t

sv t dv t nv t
= = =

= = =

− + − + −∑ ∑ ∑
was minimized subject to the equations governing the model. 
This led to a value of 5473.68. The MNLMPC values of the 
control variable, a was 16.17225. The MNLMPC profiles are 
shown in (Figures 2a-2d). The control profiles of a exhibits 
noise and this was remedied using the Savitzky-Golay filter to 
produce the smooth profile asg.

( , )dx F x u
dt

=

 ft  being the final time value and n the total number of 
objective variables and u the control parameter.     The single 
objective optimal control problem is solved individually 

optimizing each of the variables 
0
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multiobjective optimal control (MOOC)   problem that will be 
solved is 
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This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j) is obtained.

Pyomo34 is used for these calculations.  Here, the differential 
equations are converted to a Nonlinear Program (NLP) using 
the orthogonal collocation method   The NLP is solved using 
IPOPT35 and confirmed as a global solution with BARON36.

The steps of the algorithm are as follows  

Optimize 
0
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i
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values at various times.

Implement the first obtained control values 

Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 

point is when 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j. 

Results and Discussion
When bifurcation analysis is performed with a as the 

bifurcation parameter, a Hopf bifurcation point appears at 
(sv, dv, nv, a) values of (96.593811, 15.79856, 631.942427, 
25.811127). This is seen on curve AB in Fig. 1a. When a is 
modified to a(tanh(a)), the Hopf bifurcation point disappears as 
seen in curve CD in (Figure 1a).  The limit cycle caused by this 
Hopf bifurcation is shown in (Figure 1b).
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Figure 2a: MNLMPC (sv vs t)

Figure 2b: MNLMPC (dv vs t).

Figure 2c: MNLMPC (nv vs t).

Figure 2d: a,asg vs t.

Conclusions
Bifurcation analysis and multiobjective nonlinear control 

(MNLMPC) studies on a Neurodynamic model involving 
Serotonin, Dopamine and Norepinephrine. The bifurcation 
analysis revealed the existence of a Hopf bifurcation point   
The Hopf bifurcation point, which causes an unwanted limit 
cycle, is eliminated using an activation factor involving the 
tanh function. A combination of bifurcation analysis and 
Multiobjective Nonlinear Model Predictive Control (MNLMPC) 
for a Neurodynamic model involving Serotonin, Dopamine and 
Norepinephrine is the main contribution of this paper.
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