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Background
Garten, et al.1, investigated the rapid transmission of hepatitis 

C virus among young injecting heroin users in Southern China. 
White, et al.2 discussed the treatment and ODE modelling of 
heroin epidemics. Samanta3 studied the dynamic behaviour for a 
nonautonomous heroin epidemic model with time delay.  Liu, et 
al.4 investigated the global behaviour of a heroin epidemic model 
with distributed delays. Wang, et al.5 studied the dynamics of a 
heroin epidemic model. Huang, et al.6 studied the global stability 
for a heroin epidemic model with distributed delay, Wangari, et 
al.7 developed an analysis of a heroin epidemic model with a 
saturated treatment function. Wang, et al.8 provided an analysis 

of an age-structured multi-group heroin epidemic model. Khan, 
et al.9 discussed optimal control strategies for a heroin epidemic 
model with age-dependent susceptibility and recovery-age. 
Sowndarrajan, et al.10 performed optimal control of a heroin 
epidemic mathematical model.

This work aims to perform bifurcation analysis and 
multiobjective nonlinear control (MNLMPC) studies on a 
microbiome dynamic model described in Sowndarrajan, et al.10. 
The paper is organized as follows. First, the model equations are 
presented, followed by a discussion of the numerical techniques 
involving bifurcation analysis and multiobjective nonlinear 
model predictive control (MNLMPC). The results are then 
presented, followed by the discussion and conclusions.

 A B S T R A C T 
Bifurcation analysis and multi-objective nonlinear model predictive control (MNLMPC) calculations are performed on 

a heroin dynamic model. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of 
any process. Several factors must be considered, and multiple objectives must be met simultaneously. The MATLAB program 
MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization 
language PYOMO   in conjunction with the state-of-the-art global optimization solvers IPOPT and  BARON. The bifurcation 
analysis revealed the existence of a branch point in the model. The branch point   (which causes multiple steady-state solutions 
from a singular point)  is  very beneficial because it enables the Multiobjective nonlinear model predictive control calculations 
to converge to the Utopia point ( the best possible solution) in the model.  It is proven (with computational validation) that the 
branch points were caused because of the existence of two distinct separable functions in one of the equations in the dynamic 
model. A theorem was developed to demonstrate this fact for any dynamic model.
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Model Equations10

In this model, sv, uv1, uv2, ev, and zv,   represent susceptible 
individuals,  drug users, drug users in treatment, individuals in a 
state of self-protection, and the information density. The model 
equations are
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The base parameter values are

0.7;  1 0.01;  2 0.0008;  0.07;  0.04;  1 0.05;  2 0.06;
 0.001;  0.01;  1.0;  0 0.06; 1 0;  2 0.a b a u u
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θ
Λ = = = = = = =

= = = = = =

Bifurcation Analysis 
The MATLAB software MATCONT is used to perform 

the bifurcation calculations. Bifurcation analysis deals with 
multiple steady states and limit cycles.  Multiple steady states 
occur because of the existence of branch and limit points.  
Hopf bifurcation points cause limit cycles.  A commonly used 
MATLAB program that locates limit points, branch points, and 
Hopf bifurcation points is MATCONT11,12.  This program detects 
Limit points (LP), branch points (BP), and Hopf bifurcation 
points(H) for an ODE system

( , )dx f x
dt

α=

nx R∈  Let the bifurcation parameter be α  . Since the 
gradient is orthogonal to the tangent vector,  

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    
must satisfy

0Aw =  	

 Where A is 

[ / | / ]A f x f α= ∂ ∂ ∂ ∂  	

where  /f x∂ ∂  is the Jacobian matrix.  For both limit and 
branch points, the Jacobian matrix  [ / ]J f x= ∂ ∂   must be 
singular.

For a  limit point, there is only one tangent at the point of 
singularity. At this singular point,  there is a single  non-zero 
vector, y,  where Jy=0. This vector is of dimension n. Since there 
is only one tangent the vector

1 2 3 4( , , , ,... )ny y y y y y=  must align with  

1 2 3 4ˆ ( , , , ,... )nw w w w w w= . Since

ˆ 0Jw Aw= =

the n+1 th component of the tangent vector 1nw +  = 0 at  a 
limit point (LP).

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w.  This implies that

0
0

Az
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=
=

Consider a vector v that is orthogonal to one of the tangents 
(say w). v can be expressed as a linear combination of z and w (
v z wα β= + ). Since 0Az Aw= =  ; 0Av =  and since w 

and v are orthogonal, 0Tw v = . Hence 0T

A
Bv v

w
 

= = 
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 which 
implies that B is singular.

Hence,  for a branch point (BP) the matrix 
T

A
B

w
 

=  
 

 must be 
singular. At  a Hopf bifurcation point, 

det(2 ( , )@ ) 0x nf x Iα =
  @ indicates the bialternate product while 

nI  is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult.  More details can be found in Kuznetsov13-15.

Hopf bifurcations cause limit cycles. The tanh activation 

function (where a control value u is replaced by ) ( tanh / )u u ε
is used to eliminate spikes in the optimal control profiles16-19. 
Sridhar20 explained with several examples how the activation 
factor involving the tanh function also eliminates the Hopf 
bifurcation points. This was because the tanh function increases 
the oscillation time period in the limit cycle. 

Multiobjective Nonlinear Model Predictive 
Control(MNLMPC) 

The rigorous multiobjective nonlinear model predictive 
control (MNLMPC) method developed by Flores Tlacuahuaz, 
et al.21 was used.

Consider a problem where  the variables  
0
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2..n)  have  to be optimized simultaneously for  a dynamic 
problem 

( , )dx F x u
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 ft  being the final time value, and n the total number of 
objective variables and u the control parameter.     The single 
objective optimal control problem is solved individually 

optimizing each of the variables 
0
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jq   .  Then, the 

multiobjective optimal control (MOOC)   problem that will be 
solved is
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This will provide the values of u at various times. The first 
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( ) ; ( ) 0i x i i f
d f t
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λ λ λ= − =

At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  

xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0i
d
dt

λ <  . In between there 

is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to  [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem, and 
the optimal solution is the Utopia solution.

Results
Bifurcation analysis revealed the existence of a  branch point 

at , ( ,  1,  2,  , , 1)sv uv uv ev zv δ  values of (10, 0,  0,  0,  0, 
0.03). For the MNLMPC calculations sv(0)=30, uv1(o)=15, 

0

1( )
i f

i

t t

i
t

uv t
=

=

∑  was minimized and produced a value of 15 

and 
0

( )
i f

i

t t

i
t

zv t
=

=

∑      was maximized led to value a of  2000.  

u1, u2    were the control parameters.  The multiobjective 
optimal control problem will involve the minimization of 

0 0

2 2( ( ) 2000) ( 1( ) 15)
i f i f

i i

t t t t

i i
t t

zv t uv t
= =

= =

− + −∑ ∑  subject to the 

equations governing the model. This led to a value of zero (the 
Utopia solution) (Figure 1a). The MNLMPC control values 
of u1 and u2) were 0.0045 and 0.5. (Figures 2a-2f) show the 
various MNLMPC profiles.  The profile of the control variable 
u1 exhibited a lot of noise, which was remedied using the 
Savitsky-Golay filter to produce the smooth profile u1sg. u2 had 
a uniform value of 0.5 throughout.
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Figure 1a: Bifurcation diagram when 1δ  is bifurcation 
parameter.

obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point  where ( 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j)   is obtained.

Pyomo22 is used for these calculations.  Here, the differential 
equations are converted to a Nonlinear Program (NLP) using 
the orthogonal collocation method   The NLP is solved using 
IPOPT23 and confirmed as a global solution with BARON24.

The steps of the algorithm are as follows  

Optimize 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  and obtain *
jq .

Minimize 
0

* 2

1
( ( ( ) ))
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i
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j i j
j t

q t q
=

=

=

−∑ ∑ and get  the control 

values at various times.

Implement the first obtained control values 

Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 

point is when 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j.

Sridhar25 demonstrated that when the bifurcation analysis 
revealed the presence of limit and branch points the MNLMPC 
calculations to converge to the Utopia solution.  For this, the 
singularity condition, caused by the presence of the limit or 
branch points was imposed on the co-state equation26.   If the 

minimization  of   1q  lead to the value *
1q  and the minimization 

of 2q  lead to the value *
2q   The MNLPMC calculations 

will minimize the function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The 
multiobjective optimal control problem is

* 2 * 2
1 1 2 2min ( ) ( ) ( , )dxq q q q subject to F x u

dt
− + − =   

Differentiating the objective function results in

* 2 * 2 * * * *
1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )

i i i

d d dq q q q q q q q q q q q
dx dx dx

− + − = − − + − −  

The Utopia point requires that both *
1 1( )q q−  and 

*
2 2( )q q−  

are zero.  Hence

* 2 * 2
1 1 2 2(( ) ( ) ) 0

i

d q q q q
dx
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The optimal control co-state equation

* 2 * 2
1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d q q q q f t
dt dx

λ λ λ= − − + − − =

iλ  is the Lagrangian multiplier. ft  is the final time.  The 
first term in this equation is 0 and hence
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Figure 2a: MNLMPC sv vs t.

Figure 2b: MNLMPC uv1 vs t.

Figure 2c: MNLMPC uv2 vs t.

Figure 2d: MNLMPC ev vs t.

Figure 2e: MNLMPC zv vs t.

Figure 2f: MNLMPC u1, u1sg vs t.

Discussion of Results
Theorem 

If one of the functions in a dynamic system is separable into 
two distinct functions, a branch point singularity will occur in 
the system.
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Proof 

Consider a system of equations

( , )dx f x
dt

α=

nx R∈ . Defining the matrix A as

1 1 1 1 1 1
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α  is the bifurcation parameter. The matrix A can be written 
in a compact form as

[ . | ]p p

q

f f
A

x α
∂ ∂

=
∂ ∂

The tangent at any point x;    ( 1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) 
must satisfy

0Az =

The matrix { }p

q

f
x
∂

∂
  must be singular at  both limit and 

branch points.  The n+1 th component of the tangent vector 1nz +  
= 0  at a limit point (LP) and for a branch point (BP) the matrix 

T

A
B

z
 

=  
 

 must be singular.

Any  tangent at a point y that is defined by 

1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) must satisfy

0Az =
For a branch point, there must exist two tangents at the 

singularity. Let the two tangents be z and w.  This implies that

0
0

Az
Aw

=
=

Consider a vector v that is orthogonal to one of the tangents 
(say z). v can be expressed as a linear combination of z and w 
( v z wα β= + ). Since 0Az Aw= =  ; 0Av =  and since 

z and v are orthogonal, 0Tz v = . Hence 0T

A
Bv v

z
 

= = 
 

 

which implies that B is singular where  T

A
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z
 
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Let any of the functions fi are separable into 2 functions 

1 2,φ φ  as

1 2if φφ=

At steady-state ( , ) 0if x α = and this will imply that either 

1 0φ =  or 2 0φ =  or both 1φ  and 2φ   must be 0.  This implies 

that two branches 1 0φ =  and  2 0φ =  will meet at a point 

where  both 1φ  and 2φ   are 0.

At this point, the matrix B will be singular as a row in this 
matrix would be

[ | ]i i

k

f f
x α
∂ ∂
∂ ∂

However,

2 1
1 2

2 1
1 2

[ ( 0) ( 0) 0( 1., , )

( 0) ( 0) ] 0

i

k k k

i

f k n
x x x
f

φ φφ φ

φ φφ φ
α α α

∂ ∂ ∂
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∂ ∂ ∂
∂ ∂ ∂

= = + = =
∂ ∂ ∂

This implies that every element in the row [ | ]i i

k

f f
x α
∂ ∂
∂ ∂

  

would be 0, and hence the matrix B would be singular.  The 
singularity in B implies that there exists a branch point.

The branch point occurred at ( ,  1,  2,  , , 1)sv uv uv ev zv δ  
values of  ( 10, 0,  0,  0,  0, 0.03 )

Here, the two distinct functions can be obtained from the 
second ODE in the model

( ) ( )1
1( ) 1 2( 1) 2( 1) 2 1 1

d uv
sv uv u uv uv uv uv

dt
β β µ δ= − + − +

The two distinct equations are

( )1( ) 2 2 2 1
1 0

0sv u
u

v
v

uβ β µ δ− + − +

=

=

Since 1δ  =0.03, 0.07;µ =  1 0.01;β =   u2=0;uv2=0, 
both distinct equations are satisfied, validating the theorem.   The 
MNLMPC calculations converge to the Utopia point, validating 
the analysis in Sridhar25. 

Conclusions
Bifurcation analysis and multiobjective nonlinear control 

(MNLMPC) studies were conducted on a heroin dynamic model. 
The bifurcation analysis revealed the existence a   branch point.   
The branch point (which causes multiple steady-state solutions 
from a singular point) is very beneficial because it enables the 
Multiobjective nonlinear model predictive control calculations 
to converge to the Utopia point (the best possible solution) in 
the model.  It is proven (with computational validation) that the 
branch point was caused because of the existence of two distinct 
separable functions in one of the equations in the model. A 
theorem was developed to demonstrate this fact for any dynamic 
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model.  A combination of bifurcation analysis and Multiobjective 
Nonlinear Model Predictive Control(MNLMPC) for a heroin 
dynamic model is the main contribution of this paper.
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