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ABSTRACT

Bifurcation analysis and multi-objective nonlinear model predictive control (MNLMPC) calculations are performed on
a heroin dynamic model. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of
any process. Several factors must be considered, and multiple objectives must be met simultaneously. The MATLAB program
MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization
language PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation
analysis revealed the existence of a branch point in the model. The branch point (which causes multiple steady-state solutions
from a singular point) is very beneficial because it enables the Multiobjective nonlinear model predictive control calculations
to converge to the Utopia point ( the best possible solution) in the model. It is proven (with computational validation) that the
branch points were caused because of the existence of two distinct separable functions in one of the equations in the dynamic
model. A theorem was developed to demonstrate this fact for any dynamic model.
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of an age-structured multi-group heroin epidemic model. Khan,
et al.’ discussed optimal control strategies for a heroin epidemic
model with age-dependent susceptibility and recovery-age.
Sowndarrajan, et al.'” performed optimal control of a heroin
epidemic mathematical model.

Background

Garten, et al.', investigated the rapid transmission of hepatitis
C virus among young injecting heroin users in Southern China.
White, et al.” discussed the treatment and ODE modelling of
heroin epidemics. Samanta’® studied the dynamic behaviour for a
nonautonomous heroin epidemic model with time delay. Liu, et
al.* investigated the global behaviour of a heroin epidemic model

This work aims to perform bifurcation analysis and
multiobjective nonlinear control (MNLMPC) studies on a

with distributed delays. Wang, et al.’ studied the dynamics of a
heroin epidemic model. Huang, et al.® studied the global stability
for a heroin epidemic model with distributed delay, Wangari, et
al.” developed an analysis of a heroin epidemic model with a
saturated treatment function. Wang, et al.® provided an analysis

microbiome dynamic model described in Sowndarrajan, et al.'’.
The paper is organized as follows. First, the model equations are
presented, followed by a discussion of the numerical techniques
involving bifurcation analysis and multiobjective nonlinear
model predictive control (MNLMPC). The results are then
presented, followed by the discussion and conclusions.
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Model Equations'’

In this model, sv, uvl, uv2, ev, and zv, represent susceptible
individuals, drug users, drug users in treatment, individuals in a
state of self-protection, and the information density. The model
equations are

d E;V) = A —svBl(uvl)— u(sv)+60(ev) —ul p(sv)(zv)

d (;‘:1) = B1(sv)uvl —u2(uvl) + B2uvl)uv2 -+ S1)uvl
d (;’,:2 )_ w2(uvl) - B2(uvlyuv2 — (1 +52)uv2

d (d‘it%l b PSS VRSS9 e

d(zv)  a(uvl)

i (=ban) O

A=0.7; f1=0.01; f2=0.0008; x=0.07; p=0.04; 61=0.05; 62 =0.06;
0=0.001; a=0.01; 5=1.0; a0=0.06;ul = 0; u2=0.

Bifurcation Analysis

The MATLAB software MATCONT is used to perform
the bifurcation calculations. Bifurcation analysis deals with
multiple steady states and limit cycles. Multiple steady states
occur because of the existence of branch and limit points.
Hopf bifurcation points cause limit cycles. A commonly used
MATLAB program that locates limit points, branch points, and
Hopf bifurcation points is MATCONT"'2. This program detects
Limit points (LP), branch points (BP), and Hopf bifurcation
points(H) for an ODE system

dx
E - f(xv a)

x € R" Let the bifurcation parameter be & . Since the
gradient is orthogonal to the tangent vector,

Thetangentplane atany point W = [W1 s Wy, Wy, Wy, ""Wn+1]
must satisfy

Aw=0

Where A is

A=[of /éx |of / da]

where Of / Ox is the Jacobian matrix. For both limit and

branch points, the Jacobian matrix .J =[9f / Ox]
singular.

must be

For a limit point, there is only one tangent at the point of
singularity. At this singular point, there is a single non-zero
vector, y, where Jy=0. This vector is of dimension n. Since there
is only one tangent the vector

V=225 V30Vas-y) must align with
w= (W, w,, w;,W,,..w,) . Since
Jw=Aw=0
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the n+1 ® component of the tangent vector W ., =0ata
limit point (LP).

For a branch point, there must exist two tangents at the
singularity. Let the two tangents be z and w. This implies that

Az=0
Aw=0

Consider a vector v that is orthogonal to one of the tangents
(say w). v can be expressed as a linear combination of z and w (

v=az+ fw). Since Az=Aw=0 ; Av=0 and since w

and v are orthogonal, w'v=0.Hence By = 4 v =0 Which
implies that B is singular. w'

Hence, for a branch point (BP) the matrix g — [AT} must be
singular. At a Hopf bifurcation point, w

det2f, (x,a)@1,)=0

@ indicates the bialternate product while 7 is the n-square
identity matrix. Hopf bifurcations cause limit cycles and should
be eliminated because limit cycles make optimization and control
tasks very difficult. More details can be found in Kuznetsov'*%°.

Hopf bifurcations cause limit cycles. The tanh activation

function (where a control value uis replaced by ) (u tanhu / £)
is used to eliminate spikes in the optimal control profiles'®'”.
Sridhar® explained with several examples how the activation
factor involving the tanh function also eliminates the Hopf
bifurcation points. This was because the tanh function increases
the oscillation time period in the limit cycle.

Multiobjective Nonlinear Model Predictive

Control(MNLMPC)

The rigorous multiobjective nonlinear model predictive
control (MNLMPC) method developed by Flores Tlacuahuaz,
et al.”! was used.

;=t,
Consider a problem where the variables Z q,() (=1,
lico
2.n) have to be optimized simultaneously for a dynamic
problem

dx
—=F(x,u
"~ (x,u)

t r being the final time value, and n the total number of
objective variables and u the control parameter. ~ The single
objective optimal control problem is solved individually

ti=t;
optimizing each of the variables Z q; (t l.) The optimization
L=ty lizg
of [Z:q ; (ti) will lead to the values ¢,
i=0
multiobjective optimal control (MOOC) problem that will be
solved is

Then, the

n_ L=l

mln(Z(z q; (t[) - qj))Z

J=l i

dx
subject to — = F(x,u);
) ” (x,u)

This will provide the values of u at various times. The first
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obtained control value of u is implemented and the rest are

discarded. This procedure is repeated until the implemented and

the first obtained control values are the same or if the Utopia
t=ty

point where ( Z q; (t)=q ; forallj) is obtained.

tico

Pyomo? is used for these calculations. Here, the differential
equations are converted to a Nonlinear Program (NLP) using
the orthogonal collocation method The NLP is solved using
IPOPT? and confirmed as a global solution with BARON?.

The steps of the algorithm are as follows

t=t
. . f . *
Optimize Z q, (fi) and obtain ¢ ;.
lizo
n L=l
*\\2
Minimize (Z(Z q; (ti)_q j )" and get  the control
J=L i
values at various times.

Implement the first obtained control values

Repeat steps 1 to 3 until there is an insignificant difference
between the implemented and the first obtained value of the
control variables or if the Utopia point is achieved. The Utopia

ti=ty
point is when Z q, (¢,)= 4q; forallj.

tio

Sridhar®® demonstrated that when the bifurcation analysis
revealed the presence of limit and branch points the MNLMPC
calculations to converge to the Utopia solution. For this, the
singularity condition, caused by the presence of the limit or
branch points was imposed on the co-state equation®. If the

minimization of q, lead to the value ql* and the minimization
of ¢, lead to the value q; The MNLPMC calculations

*\2 *\2
will minimize the function (¢, —¢,)" +(¢,—¢,)" . The

multiobjective optimal control problem is
, .2 2 . dx
min - (¢, =) (¢, =q,)"  subjectto —-=F(xu)

Differentiating the objective function results in

d . . o d . o d .
((ql_q1)2+(q2_q2)2):2(q1_q1) (-9)+2(q,-9,)—(9,-4,)
dx, dx. dx,

i i

The Utopia point requires that both (q1 - ql* ) and (612 - qz)
are zero. Hence

—— (4 ~9) +(4,-4,))=0
dx,
The optimal control co-state equation

d d .2 .2
E(;Li)z_d_x[((%_ql) +(‘12_Q2) )_f;cﬂ“i; ﬂ’i(tf)zo

/1:' is the Lagrangian multiplier. f r
first term in this equation is 0 and hence

is the final time. The
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d
E(ﬁﬁ) = _fx/li;ﬂ’i(tf) =0

Atalimitorabranch point, for the set of ODE ? = f(x,u)
t

f . 1s singular. Hence there are two different vectors-values for

[l,] where di(}ti) >0 and di(ﬂi) <0 . In between there
t t

s a vector [il] where di(ﬁi) =( . This coupled with the
t

boundary condition /1, (f f) =0 will lead to M,] =0 This
makes the problem an unconstrained optimization problem, and
the optimal solution is the Utopia solution.

Results
Bifurcation analysis revealed the existence of a branch point
at , (sv, uvl, uv2, ev,zv,0l) values of (10, 0, 0, 0, 0,
0.03). For the MNLMPC calculations sv(0)=30, uvl(o)=15,
t‘-:t/
ZMVI(ti) was minimized and produced a value of 15
tizo
L=t
and Z zv(t,)
t

i=0
ul, u2 were the control parameters. The multiobjective
optimal control problem will involve the minimization of

was maximized led to value a of 2000.

l,v:l/
(D zv(,)=2000)> + (D uvl(t,)—15)> subject to the

tico lizo
equations governing the model. This led to a value of zero (the
Utopia solution) (Figure 1a). The MNLMPC control values
of ul and u2) were 0.0045 and 0.5. (Figures 2a-2f) show the
various MNLMPC profiles. The profile of the control variable
ul exhibited a lot of noise, which was remedied using the
Savitsky-Golay filter to produce the smooth profile ulsg. u2 had
a uniform value of 0.5 throughout.

li:t/

Bifurcation Diagram (delta1 is bifurcation parameter)
1005
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BP
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Figure 1a: Bifurcation diagram when o1 is bifurcation

parameter.
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Figure 2d: MNLMPC ev vs t.
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Figure 2a: MNLMPC sv vs t.
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Figure 2b: MNLMPC uvl vs t.
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0 Figure 2f: MNLMPC ul, ulsg vs t.
- Discussion of Results
Theorem
0 If one of the functions in a dynamic system is separable into
0 % 0 150 . M W w0 two distinct functions, a branch point singularity will occur in
the system.

Figure 2¢: MNLMPC uv2 vs t.
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Proof

Consider a system of equations

% ~ fxa)

x € R" . Defining the matrix A as

oo o U9 Y

ox, Ox, Ox; Ox, ox, Oa
A A A A
ox, Ox, Ox; Ox, ox, Oa

¢ s the bifurcation parameter. The matrix A can be written
in a compact form as

A=[

o, | afp]

ox = O«

q

The tangent at any point x; (2= [21,22,23,24,----2,1“])

must satisfy

Az=0

The matrix {—%} must be singular at both limit and

q
branch points. The n+1 " component of the tangent vector Z,
=0 at a limit point (LP) and for a branch point (BP) the matrix

A .
B = ’ must be singular.
z

Any
2=(2,,2,y,23, 245

tangent at a point y that is defined by

Zoi ] ) must satisfy

Az=0

For a branch point, there must exist two tangents at the
singularity. Let the two tangents be z and w. This implies that

Az=0
Aw=0

Consider a vector v that is orthogonal to one of the tangents
(say z). v can be expressed as a linear combination of z and w

(v=az+ fw). Since Az=Aw=0 ; Ay=0 and since

T

A
z and v are orthogonal, z'v=0. Hence BVZ{ }v: 0
z

A
which implies that B is singular where B = |: T}
z
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Let any of the functions f are separable into 2 functions

4,9, as
Ji =49,

At steady-state f,(x, ) =0 and this will imply that either
¢ =0 or ¢ =0 orboth ¢ and ¢, mustbe 0. This implies

that two branches @ =0 and ¢, =0 will meet at a point

where both @, and ¢, are 0.

At this point, the matrix B will be singular as a row in this
matrix would be
o o

[

ox, 80(]

However,

e
ax,

i—m 0)6

a¢2 ¢ =0(Vk =1.,,n)

=h(=0-= +¢2( 0=

¢2 ¢1

0
thE0
9%, K af

80{
would be 0, and hence the matrix B would be singular. The
singularity in B implies that there exists a branch point.

This implies that every element in the row [

The branch point occurred at (sv, uvl, uv2, ev,zv,ol)
values of ( 10,0, 0, 0, 0,0.03)

Here, the two distinct functions can be obtained from the
second ODE in the model

d(uvl
(stV) = Ll(sv)uvl —u2(uvl) + f2(uv)uv2 — (,u + 51)uv1
The two distinct equations are

uvl=0
ﬂl(sv)—u2+ﬁ2uv2—(,u+5l) =0
Since o1 =0.03, £=0.07; P1=0.01; u2=0;uv2=0,

both distinct equations are satisfied, validating the theorem. The
MNLMPC calculations converge to the Utopia point, validating
the analysis in Sridhar®.

Conclusions

Bifurcation analysis and multiobjective nonlinear control
(MNLMPC) studies were conducted on a heroin dynamic model.
The bifurcation analysis revealed the existence a branch point.
The branch point (which causes multiple steady-state solutions
from a singular point) is very beneficial because it enables the
Multiobjective nonlinear model predictive control calculations
to converge to the Utopia point (the best possible solution) in
the model. It is proven (with computational validation) that the
branch point was caused because of the existence of two distinct
separable functions in one of the equations in the model. A
theorem was developed to demonstrate this fact for any dynamic
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model. A combination of bifurcation analysis and Multiobjective
Nonlinear Model Predictive Control(MNLMPC) for a heroin
dynamic model is the main contribution of this paper.
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