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Background
Castberg, et al.1 studied the microbial population dynamics 

and diversity during a bloom of the marine coccolithophorid 
Emiliania huxleyi (Haptophyta).  Jacquet, et al.2 performed a flow 
cytometric analysis of an Emiliana huxleyi bloom terminated 
by viral infection.  Chattopadhyay, et al.3 researched the viral 
infection on the phytoplankton-zooplankton system using a 
mathematical model. Wilson, et al.4 showed that the isolation 
of viruses was responsible for the demise of an Emiliania 
huxleyi bloom in the English Channel. Chattopadhyay, et al.5, 
conducted preliminary experiments with population dynamics 

models of three trophic levels.  Singh, et al.6 studied the role of 
virus infection in a simple phytoplankton-zooplankton system.  
Bairagi, et al.7 showed that the virus replication factor may be a 
controlling agent for obtaining a disease-free system in a multi-
species eco-epidemiological system. Evans, et al.8 showed that 
the viral infection of Emiliania huxleyi (Prymnesiophyceae) 
leads to elevated production of reactive oxygen species.  Hilker, 
et al.9 demonstrated the existence of oscillations and waves in 
a virally infected plankton system. Gakkhar, et al.10 developed 
a mathematical model for viral infection in toxin-producing 
phytoplankton and zooplankton systems. Rhodes, et al.11 

 A B S T R A C T 
The effect of marine viruses on phytoplankton and zooplankton is highly nonlinear and complicated. The phytoplankton 

population is infected by external free viruses and zooplankton are affected by the consumption of infected phytoplankton. To 
minimize the infected phytoplankton and maximize the healthy zooplankton it is important to analyze and control the negative 
effects of the viruses. In this work, bifurcation analysis and multiobjective nonlinear model predictive control is performed on 
a dynamic model that describes the avoidance behavior of zooplankton on phytoplankton infected by free viruses Bifurcation 
analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be 
considered and multiple objectives must be met simultaneously. The MATLAB program MATCONT was used to perform the 
bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO   in conjunction 
with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of 
branch points limit points and Hopf bifurcation points.  The Hopf bifurcation point, which causes an unwanted limit cycle, is 
eliminated using an activation factor involving the tanh function. The MNLMPC converged to the Utoia solution. The branch 
and limit points (which cause multiple steady-state solutions from a singular point) are very beneficial because they enable the 
Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best possible solution) in the 
model.
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showed that viral infections could act as a regulator of oceanic 
phytoplankton populations.  Siekmann, et al.12, I., developed an 
extension of the Beretta-Kuang model of viral diseases.  Evans, 
et al.13 discussed the preferential grazing of Oxyrrhis marina on 
virus-infected Emiliania huxleyi.  Evans, et al.14 investigated the 
changes in Emiliania huxleyi fatty acid profiles during infection 
with the E. huxleyi virus and discussed the physiological and 
ecological implications.  Rhodes, et al.15 studied the influence 
of viral infection on a plankton ecosystem undergoing nutrient 
enrichment.  Chakraborty, et al.16 discussed the role of 
avoidance by zooplankton for survival and dominance of toxic 
phytoplankton. Samanta, et al.17 studied the effect of enrichment 
on plankton dynamics where phytoplankton can be infected 
from free viruses.  Rosenwasser, et al.18 showed that rewiring 
host lipid metabolism by large viruses determines the fate of 
Emiliania huxleyi, a bloom-forming alga in the ocean.  Gilg, 
et al.19 demonstrated that differential gene expression is tied to 
photochemical efficiency reduction in virally infected Emiliania 
huxleyi.  Malitsky, et al.20 showed that the viral infection of the 
marine alga Emiliania huxleyi triggers lipidome remodeling 
and induces the production of highly saturated triacylglycerol.  
Costamagna, et al.21 developed a model for the operations to 
render an epidemic-free hog farm infected by the Aujeszky 
disease.  Vermont, et al.22 showed that Virus infection of 
Emiliania huxleyi deters grazing by the copepod Acartia tonsa.  
Biswas, et al.23 modelled the avoidance behavior of zooplankton 
on phytoplankton infected by free viruses. This work aims to 
perform bifurcation analysis and multiobjective nonlinear 
control (MNLMPC) studies on a dynamic model describing the 
avoidance behavior of zooplankton on phytoplankton infected 
by free viruses23. The paper is organized as follows. First, the 
model equations are presented, followed by a discussion of 
the numerical techniques involving bifurcation analysis and 
multiobjective nonlinear model predictive control (MNLMPC). 
The results and discussion are then presented, followed by the 
conclusions.

Model Equations23

In this model, sv, iv, zv and vv represent the susceptible 
phytoplankton, infected phytoplankton, zooplankton and free 
viruses in the environment infecting the phytoplankton. The 
model equations are 
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The base parameter values are
1 0.045;  1  2;  2 0.045;  2 2;  3.8;  ;  1 0.75;  2 0.61;  0.012;

0.77; 108; 1 3; 0.65; 0.16; 35; 1.23.
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a k k b
α α γ λ λ υ

β µ δ
= = = = = = = =
= = = = = = =

  	

Bifurcation analysis

The MATLAB software MATCONT is used to perform 
the bifurcation calculations. Bifurcation analysis deals with 

multiple steady-states and limit cycles.  Multiple steady states 
occur because of the existence of branch and limit points.  
Hopf bifurcation points cause limit cycles.  A commonly used 
MATLAB program that locates limit points, branch points and 
Hopf bifurcation points is MATCONT24,25.  This program detects 
Limit points (LP), branch points (BP) and Hopf bifurcation 
points(H) for an ODE system.

( , )dx f x
dt

α=

 nx R∈  Let the bifurcation parameter be α  . Since the 
gradient is orthogonal to the tangent vector,  

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    
must satisfy

0Aw =
 Where A is 

[ / | / ]A f x f α= ∂ ∂ ∂ ∂

where  /f x∂ ∂  is the Jacobian matrix.  For both limit and 
branch points, the Jacobian matrix  [ / ]J f x= ∂ ∂   must be 
singular.

For a limit point, there is only one tangent at the point of 
singularity. At this singular point, there is a single non-zero 
vector, y, where Jy=0. This vector is of dimension n. Since there 
is only one tangent the vector

1 2 3 4( , , , ,... )ny y y y y y=  must align with  

1 2 3 4ˆ ( , , , ,... )nw w w w w w=  . Since

ˆ 0Jw Aw= =
the n+1 th component of the tangent vector 1nw +  = 0 at a 

limit point (LP).

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w.  This implies that

0
0

Az
Aw

=
=

Consider a vector v that is orthogonal to one of the tangents 
(say w). v can be expressed as a linear combination of z and 
w ( v z wα β= + ). Since 0Az Aw= =  ; 0Av =  and since 

w and v are orthogonal, 0Tw v = . Hence 0T

A
Bv v

w
 

= = 
 

 
which implies that B is singular.

Hence, for a branch point (BP) the matrix 
T

A
B

w
 

=  
 

 must 
be singular.

At a Hopf bifurcation point, 

det(2 ( , )@ ) 0x nf x Iα =

@ indicates the bialternate product while 
nI  is the n-square 

identity matrix. Hopf bifurcations cause limit cycles and should 
be eliminated because limit cycles make optimization and control 
tasks very difficult.  More details can be found in Kuznetsov27,28.
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Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 

point is when 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j.

 Sridhar38 demonstrated that when the bifurcation analysis 
revealed the presence of limit and branch points the MNLMPC 
calculations to converge to the Utopia solution.  For this, the 
singularity condition, caused by the presence of the limit or branch 
points was imposed on the co-state equation.   If the minimization  

of   1q  lead to the value 
*
1q  and the minimization of 2q  lead 

to the value 
*
2q   The MNLPMC calculations will minimize the 

function 
* 2 * 2

1 1 2 2( ) ( )q q q q− + −  .  The multiobjective optimal 
control problem is

* 2 * 2
1 1 2 2min ( ) ( ) ( , )dxq q q q subject to F x u

dt
− + − =

 

Differentiating the objective function results in

* 2 * 2 * * * *
1 1 2 2 1 1 1 1 2 2 2 2(( ) ( ) ) 2( ) ( ) 2( ) ( )

i i i

d d dq q q q q q q q q q q q
dx dx dx

− + − = − − + − −

The Utopia point requires that both 
*

1 1( )q q−  and 

*
2 2( )q q−  are zero.  Hence

* 2 * 2
1 1 2 2(( ) ( ) ) 0

i

d q q q q
dx

− + − =
The optimal control co-state equation39 is

* 2 * 2
1 1 2 2( ) (( ) ( ) ) ; ( ) 0i x i i f

i

d d q q q q f t
dt dx

λ λ λ= − − + − − =  	

iλ  is the Lagrangian multiplier. ft  is the final time.  The 
first term in this equation is 0 and hence

( ) ; ( ) 0i x i i f
d f t
dt

λ λ λ= − =

At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  

xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0i
d
dt

λ < . In between there 

is a vector [ ]iλ  where ( ) 0i
d
dt

λ = . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to  [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem and 
the optimal solution is the Utopia solution.

Results
When a is the bifurcation parameter, a   branch point occurred 

at (sv, iv, zv, vv,a) values of (0;-0.608365; -4.948035; -2.769792; 
-7.887499) (Figure 1a).

Hopf bifurcations cause limit cycles. The tanh activation 
function (where a control value u is replaced by) ( tanh / )u u ε   
is  used to eliminate spikes in the optimal control profiles29-32. 
Sridhar33 explained with several examples how the activation 
factor involving the tanh function also eliminates the Hopf 
bifurcation points. This was because the tanh function increases 
the oscillation time period in the limit cycle. 

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC)

The rigorous multiobjective nonlinear model predictive 
control (MNLMPC) method developed by Flores Tlacuahuaz, 
et al.34 was used. 

Consider a problem where the variables  
0

( )
i f

i

t t

j i
t

q t
=

=

∑ (j=1, 

2..n) have to be optimized simultaneously for a dynamic problem

( , )dx F x u
dt

=

 ft  being the final time value and n the total number of 
objective variables and u the control parameter.     The single 
objective optimal control problem is solved individually 

optimizing each of the variables 
0

( )
i f

i

t t

j i
t

q t
=

=

∑    The optimization 

of 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  will lead to the values *
jq   .  Then, the 

multiobjective optimal control (MOOC) problem that will be 
solved is 

0

* 2

1
min( ( ( ) ))

( , );

i f

i

t tn

j i j
j t

q t q

dxsubject to F x u
dt

=

=

=

−

=

∑ ∑

This will provide the values of u at various times. The first 
obtained control value of u is implemented and the rest are 
discarded. This procedure is repeated until the implemented and 
the first obtained control values are the same or if the Utopia 

point where ( 
0

*( )
i f

i

t t

j i j
t

q t q
=

=

=∑  for all j) is obtained.

Pyomo35 is used for these calculations.  Here, the differential 
equations are converted to a Nonlinear Program (NLP) using 
the orthogonal collocation method   The NLP is solved using 
IPOPT36 and confirmed as a global solution with BARON37.

The steps of the algorithm are as follows  

Optimize 
0

( )
i f

i

t t

j i
t

q t
=

=

∑  and obtain *
jq .

Minimize 
0

* 2

1
( ( ( ) ))
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i

t tn

j i j
j t

q t q
=

=

=

−∑ ∑ and get the control values 
at various times.

Implement the first obtained control values
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Figure 1a: a is the bifurcation parameter

When 1α   is the bifurcation parameter, a   branch point 
occurred at (sv, iv, zv, vv, 1α ) values of (3.792436; 14.728461; 
0; 65.14051; 0.050878) (Figure 1b).

Figure 1b: 1α   is the bifurcation parameter.

When 2α  is the bifurcation parameter, a Hopf bifurcation 
point occurs at (sv, iv, zv, vv, 2α )  values of (19.860109 
1.388582 164.282223 2.055185 1.737406). This is indicated 
in the curve AB in (Figure 1c). When 2α  is modified to 

2 tanh( 2) /1.5α α , the Hopf bifurcation point disappears. 
This is indicated in the curve CD in Fig. 1c. The limit cycle 
caused by the Hopf bifurcation is shown in (Figure 1d).

1.7 1.8 1.9 2 2.1 2.2 2.3
1.8

1.9

2

2.1

2.2

2.3

2.4

Hopf Bifurcation disappears when alfa2 
is modified to alfa2*tanh(alfa2)

HOPF (alfa2 is bifurcation parameter)

B

A

alfa2tanh(alfa2/1.5) is bifurcation

parameter . NO HOPF

C

D

Figure 1c: 2α  is the bifurcation parameter, a Hopf bifurcation 
point is present (curve AB). When 2α  is modified to 

2 tanh( 2) /1.5α α , the Hopf bifurcation point disappears 
(curve CD)

When δ  was used as the bifurcation parameter several limit 
points were found. One of them occurred at (sv, iv, zv, vv, δ ) 
values of (0, 0, 0, 310.688616, 0). (Figure 1e).

Figure 1d: Limit cycle for Hopf shown in Figure 1d.

Figure 1e: The bifurcation parameter.

For the MNLMPC calculations, sv(0) = 200, vv (0) = 50, 

zv(0) = 50, iv (0) =50, 
0

( )
i f

i

t t

i
t

iv t
=

=

∑  was minimized and 
0

( )
i f

i

t t

i
t

zv t
=

=

∑  

was maximized individually and resulted in values of 50 and 
400.   The overall optimal control problem will involve the 

minimization of 
0 0

2 2( ( ) 50) ( ( ) 400)
i f i f

i i

t t t t

i i
t t

iv t zv t
= =

= =

− + −∑ ∑
 
was 

subject to the equations governing the model. This led to a value 
of zero (the Utopia

The MNLMPC values of the control variables, β  was 
0.000334.  The various MNMPC figures are shown in (Figures 

2a-2b).  The control profiles of β  exhibited noise and this was 
remedied using the Savitzky-Golay filter to produce a smoother 

control profile sgβ .Both the noisy and smooth profiles ae 
shown in (Figure 2c).

Figure 2a: MNLMPC (vv,sv,iv profiles).
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Figure 2b: MNLMPC (zv profile).

Figure 2c: ( β  (noise exhibited) sgβ  (noise eliminated)).

Discussion of Results
Theorem

If at least one of the functions in a dynamic system is 
separable into two distinct functions, a branch point singularity 
will occur in the system.

Proof

Consider a system of equations 

( , )dx f x
dt

α=

 nx R∈  . Defining the matrix A as

1 1 1 1 1 1

1 2 3 4

2 2 2 2 2 2

1 2 3 4

..........

..........

...........................................................

.................................................

n

n

f f f f f f
x x x x x
f f f f f f
x x x x x

A

α

α

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

=

1 2 3 4

..........

..........n n n n n n

n

f f f f f f
x x x x x α

 
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 
 
 
 
 
 
 
 ∂ ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ 
  

α  is the bifurcation parameter. The matrix A can be written 
in a compact form as

[ . | ]p p

q

f f
A

x α
∂ ∂

=
∂ ∂

The tangent at any point x; ( 1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) 
must satisfy

0Az =

The matrix { }p

q

f
x
∂

∂
  must be singular at both limit and branch 

points.  The n+1 th component of the tangent vector 1nz +  = 
0 at a limit point (LP) and for a branch point (BP) the matrix 

T

A
B

z
 

=  
 

 must be singular.

Any tangent at a point y that is defined by 

1 2 3 4 1[ , , , ,.... ]nz z z z z z += ) must satisfy

0Az =
For a branch point, there must exist two tangents at the 

singularity. Let the two tangents be z and w.  This implies that
0
0

Az
Aw

=
=

Consider a vector v orthogonal to one of the tangents 
(z). v can be expressed as a linear combination of z and w (

v z wα β= + ). Since 0Az Aw= =  ; 0Av =  and since 

z and v are orthogonal, 0Tz v = . Hence 0T

A
Bv v

z
 

= = 
 

 

which implies that B is singular where  T

A
B

z
 

=  
 

Let any of the functions fi are separable into 2 functions 

1 2,φ φ  as

1 2if φφ=

At steady-state ( , ) 0if x α = . Hence either 1 0φ =  or 

2 0φ =  or both 1φ  and 2φ   must be 0 implying that the  two 

branches 1 0φ =  and  2 0φ =  will intersect at a point  1φ  and 

2φ   are 0.

Here, B will be singular as one row row in this matrix would be

[ | ]i i

k

f f
x α
∂ ∂
∂ ∂

However,

2 1
1 2

2 1
1 2

[ ( 0) ( 0) 0( 1., , )

( 0) ( 0) ] 0

i

k k k

i

f k n
x x x
f

φ φφ φ

φ φφ φ
α α α

∂ ∂ ∂
= = + = = ∀ =

∂ ∂ ∂
∂ ∂ ∂

= = + = =
∂ ∂ ∂
 

This implies that every element in the row [ | ]i i

k

f f
x α
∂ ∂
∂ ∂

  
would be 0 and hence the matrix B would be singular, implying 
a branch point.

When a is the bifurcation parameter, a   branch point occurred 
at (sv, iv, zv, vv,a) values of (0;-0.608365; -4.948035; -2.769792; 
-7.887499).
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  Here, the two distinct functions can be obtained from the 
first ODE in the model 

( ) ( )
( ) ( )

1( ) ( )( ) 1
1 1

d sv sv iv sv zv sv vva sv
dt k d sv k vv

α β  
     

+
= − − −

+ +

The two distinct equations   are

( )
( ) ( )

0
1 1

0

11
iv zv vva
k d k v

s

v

v

α β

=

  
     
− − − =

+
With sv=0; a = -7.887499 ;  iv = ;-0.608365;  zv=-4.948035; 

vv=-2.769792; k = 108; alfa 1α =0.045; d1 = 2; β  =0.65; k1=3; 
both the distinct equations are satisfied, validating the theorem.  

When 1α   is the bifurcation parameter, a   branch point 
occurred at (sv, iv, zv, vv, 1α ) values of (3.792436; 14.728461; 
0; 65.14051; 0.050878)

Here, the two distinct functions can be obtained from the 
third ODE in  the model

( )
( ) ( ) ( )1( ) 2 ( )1 2

( )1 2
d zv sv zv iv zv zv

d sv d iv svdt
α αλ λ υ

γ
=
   
      
   

− −
+ + +

The two distinct equations are

( ) ( )
1( ) 2( )1 2 0
1 2

0

( )
sv iv

d sv d iv sv

zv

α αλ λ υ
γ

− − =
+

=

   
      

  + +
With 

1 0.050878;  1  2;  2 0.045;  2 2;  3.8;  ;  1 0.75;  2 0.61;  0.012;
3.792436;    14.728461;  0;  65.14051

d d
sv iv zv vv
α α γ λ λ υ= = = = = = = =

= = = =
 

both the distinct equations are satisfied, validating the theorem.

When 2α  is the bifurcation parameter, a Hopf bifurcation 
point occurs at (sv, iv, zv, vv, 2α )  values of (19.860109 
1.388582 164.282223 2.055185 1.737406). When 2α  is 
modified to 2 tanh( 2) /1.5α α , the Hopf bifurcation point 
disappears. This validates the analysis of Sridar33.

 It is seen that the presence of the limit and branch points are 
beneficial because it allows the MNLMPC calculations to attain 
the Utopia solution, validating the analysis of Sridhar38.

Conclusions
Bifurcation analysis and multiobjective nonlinear model 

predictive control (MNLMPC) studies were conducted on 
a dynamic model that describes the avoidance behavior of 
zooplankton on phytoplankton infected by free viruses. The 
bifurcation analysis revealed the existence of branch points, limit 
points and Hopf bifurcation points. in the model.  The branch 
and limit points (which cause multiple steady-state solutions 
from a singular point) are very beneficial because they enable the 
Multiobjective nonlinear model predictive control calculations 
to converge to the Utopia point (the best possible solution).  It 
is proven (with computational validation) that the branch points 
were caused by the existence of two distinct separable functions 
in one of the equations in each dynamic model. A theorem was 

developed to demonstrate this fact for any dynamic model. The 
Hopf bifurcation point that causes an unwanted limit cycle is 
eliminated using an activation factor involving the tanh function. 
A combination of bifurcation analysis and Multiobjective 
Nonlinear Model Predictive Control (MNLMPC) for a dynamic 
model that describes the avoidance behaviour of zooplankton on 
phytoplankton infected by free viruses is the main contribution 
of this paper.
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