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ABSTRACT

The effect of marine viruses on phytoplankton and zooplankton is highly nonlinear and complicated. The phytoplankton
population is infected by external free viruses and zooplankton are affected by the consumption of infected phytoplankton. To
minimize the infected phytoplankton and maximize the healthy zooplankton it is important to analyze and control the negative
effects of the viruses. In this work, bifurcation analysis and multiobjective nonlinear model predictive control is performed on
a dynamic model that describes the avoidance behavior of zooplankton on phytoplankton infected by free viruses Bifurcation
analysis is a powerful mathematical tool used to deal with the nonlinear dynamics of any process. Several factors must be
considered and multiple objectives must be met simultaneously. The MATLAB program MATCONT was used to perform the
bifurcation analysis. The MNLMPC calculations were performed using the optimization language PYOMO in conjunction
with the state-of-the-art global optimization solvers IPOPT and BARON. The bifurcation analysis revealed the existence of
branch points limit points and Hopf bifurcation points. The Hopf bifurcation point, which causes an unwanted limit cycle, is
eliminated using an activation factor involving the tanh function. The MNLMPC converged to the Utoia solution. The branch
and limit points (which cause multiple steady-state solutions from a singular point) are very beneficial because they enable the
Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best possible solution) in the
model.
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Background

Castberg, et al.' studied the microbial population dynamics
and diversity during a bloom of the marine coccolithophorid
Emiliania huxleyi (Haptophyta). Jacquet, et al.? performed a flow
cytometric analysis of an Emiliana huxleyi bloom terminated
by viral infection. Chattopadhyay, et al.’ researched the viral
infection on the phytoplankton-zooplankton system using a
mathematical model. Wilson, et al.* showed that the isolation
of viruses was responsible for the demise of an Emiliania
huxleyi bloom in the English Channel. Chattopadhyay, et al.’,
conducted preliminary experiments with population dynamics

models of three trophic levels. Singh, et al.® studied the role of
virus infection in a simple phytoplankton-zooplankton system.
Bairagi, et al.” showed that the virus replication factor may be a
controlling agent for obtaining a disease-free system in a multi-
species eco-epidemiological system. Evans, et al.® showed that
the viral infection of Emiliania huxleyi (Prymnesiophyceac)
leads to elevated production of reactive oxygen species. Hilker,
et al.” demonstrated the existence of oscillations and waves in
a virally infected plankton system. Gakkhar, et al.'’ developed
a mathematical model for viral infection in toxin-producing
phytoplankton and zooplankton systems. Rhodes, et al.!
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showed that viral infections could act as a regulator of oceanic
phytoplankton populations. Siekmann, et al.'?, 1., developed an
extension of the Beretta-Kuang model of viral diseases. Evans,
et al."” discussed the preferential grazing of Oxyrrhis marina on
virus-infected Emiliania huxleyi. Evans, et al.' investigated the
changes in Emiliania huxleyi fatty acid profiles during infection
with the E. huxleyi virus and discussed the physiological and
ecological implications. Rhodes, et al.® studied the influence
of viral infection on a plankton ecosystem undergoing nutrient
enrichment.  Chakraborty, et al.'® discussed the role of
avoidance by zooplankton for survival and dominance of toxic
phytoplankton. Samanta, et al.'” studied the effect of enrichment
on plankton dynamics where phytoplankton can be infected
from free viruses. Rosenwasser, et al.'® showed that rewiring
host lipid metabolism by large viruses determines the fate of
Emiliania huxleyi, a bloom-forming alga in the ocean. Gilg,
et al."” demonstrated that differential gene expression is tied to
photochemical efficiency reduction in virally infected Emiliania
huxleyi. Malitsky, et al.”* showed that the viral infection of the
marine alga Emiliania huxleyi triggers lipidome remodeling
and induces the production of highly saturated triacylglycerol.
Costamagna, et al.”' developed a model for the operations to
render an epidemic-free hog farm infected by the Aujeszky
disease. Vermont, et al.”> showed that Virus infection of
Emiliania huxleyi deters grazing by the copepod Acartia tonsa.
Biswas, et al.”® modelled the avoidance behavior of zooplankton
on phytoplankton infected by free viruses. This work aims to
perform bifurcation analysis and multiobjective nonlinear
control (MNLMPC) studies on a dynamic model describing the
avoidance behavior of zooplankton on phytoplankton infected
by free viruses*. The paper is organized as follows. First, the
model equations are presented, followed by a discussion of
the numerical techniques involving bifurcation analysis and
multiobjective nonlinear model predictive control (MNLMPC).
The results and discussion are then presented, followed by the
conclusions.

Model Equations?®

In this model, sv, iv, zv and vv represent the susceptible
phytoplankton, infected phytoplankton, zooplankton and free
viruses in the environment infecting the phytoplankton. The
model equations are

d (sv) _ a(sv)[l B [(sv+ iv) D _al(sv)zv  B(sv)wy

dt k (d1+sv) (kl+w)
d@iv) _ Bsvw. a2iv(zv) o
dt _((k1+vv)) ((d2+iv+(}/sv))) H()
d(zv) _|Iu al(sv)zv | 2 a2iv(zv) ~(vzv)
dt (dl+sv) (d2+iv+(}/sv))
diw) = Blsw
e bu(iv) (kl + vv) o)

The base parameter values are

al=0.045; dl = 2; a2=0.045; d2=2; y=3.8; ; A1=0.75; 12=0.61; v=0.012;
a=0.77,k =108;k1=3; f = 0.65, 11 =0.16;6 =35;6 =1.23.

Bifurcation analysis

The MATLAB software MATCONT is used to perform
the bifurcation calculations. Bifurcation analysis deals with
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multiple steady-states and limit cycles. Multiple steady states
occur because of the existence of branch and limit points.
Hopf bifurcation points cause limit cycles. A commonly used
MATLAB program that locates limit points, branch points and
Hopf bifurcation points is MATCONT?***. This program detects
Limit points (LP), branch points (BP) and Hopf bifurcation
points(H) for an ODE system.

L ra

x € R" Let the bifurcation parameter be & . Since the
gradient is orthogonal to the tangent vector,

The tangent plane atany point W= [Wl s Wy s Wy Wyy ool W, ]
must satisfy

Aw=0
Where A is

A=[of /éx |of | da]

where Of / Ox is the Jacobian matrix. For both limit and

branch points, the Jacobian matrix J =[3Jf / Ox]
singular.

must be

For a limit point, there is only one tangent at the point of
singularity. At this singular point, there is a single non-zero
vector, y, where Jy=0. This vector is of dimension n. Since there
is only one tangent the vector

must align with

V=125 Y35 Var--V)

w= (W, w,, w;,W,,..w,) . Since

Jw=Aw=0
the n+1 ™ component of the tangent vector W,y =0 ata

limit point (LP).

For a branch point, there must exist two tangents at the
singularity. Let the two tangents be z and w. This implies that

Az=0
Aw=0

Consider a vector v that is orthogonal to one of the tangents
(say w). v can be expressed as a linear combination of z and

w(v=az+ fw).Since Az=Aw=0 ; Av=0 and since

A
w and v are orthogonal, W' v =0. Hence Bv = s V= 0
which implies that B is singular.

A
Hence, for a branch point (BP) the matrix B = [ T} must
be singular. w

At a Hopf bifurcation point,

det2f . (x,a)@1 )=0

@ indicates the bialternate product while 7 is the n-square
identity matrix. Hopf bifurcations cause limit cycles and should
be eliminated because limit cycles make optimization and control
tasks very difficult. More details can be found in Kuznetsov?"%.
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Hopf bifurcations cause limit cycles. The tanh activation
function (where a control value u is replaced by) (u tanhu / &)
is used to eliminate spikes in the optimal control profiles®2.
Sridhar® explained with several examples how the activation
factor involving the tanh function also eliminates the Hopf
bifurcation points. This was because the tanh function increases
the oscillation time period in the limit cycle.

Multiobjective Nonlinear Model Predictive Control
(MNLMPC)

The rigorous multiobjective nonlinear model predictive
control (MNLMPC) method developed by Flores Tlacuahuaz,
et al.** was used.

t;=t;

Consider a problem where the variables z q; (¢,)G=1,

tig
2..n) have to be optimized simultaneously for a dynamic problem
dx
—=F(x,u
.~ (x,u)

t 7 being the final time value and n the total number of
objective variables and u the control parameter.  The single
objective optimal control problem is solved individually

L=t;
optimizing each of the variables Z q ; (fl-) The optimization
lio
t=t;

of Z q]'(ti) will lead to the values C]j-
lizo

multiobjective optimal control (MOOC) problem that will be

solved is

Then, the

n 1=ty

min(Q>_ (D q,¢)—4q))°

J=1 i

subject to ax = F(x,u);
dt

This will provide the values of u at various times. The first
obtained control value of u is implemented and the rest are
discarded. This procedure is repeated until the implemented and

the first obtained control values are the same or if the Utopia
t;=t
il

*
point where ( Z C]j (ti) = qj for all j) is obtained.

fizo

Pyomo?® is used for these calculations. Here, the differential
equations are converted to a Nonlinear Program (NLP) using
the orthogonal collocation method The NLP is solved using
IPOPT?*® and confirmed as a global solution with BARON?’.

The steps of the algorithm are as follows
=t

Optimize z q; (t,') and obtain q;.

lizo

n L=ty

*\\2
Minimize (Z (z q; (t,') 4, )) and get the control values

at various timesi=l

Implement the first obtained control values
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Repeat steps 1 to 3 until there is an insignificant difference
between the implemented and the first obtained value of the
control variables or if the Utopia point is achieved. The Utopia

t=t;
%
point is when Z q, (t)= 4q; forallj.

lizo

Sridhar®® demonstrated that when the bifurcation analysis
revealed the presence of limit and branch points the MNLMPC
calculations to converge to the Utopia solution. For this, the
singularity condition, caused by the presence of the limit or branch
points was imposed on the co-state equation. Ifthe minimization

*

of ¢ lead to the value ¢, and the minimization of ¢, lead
*

to the value ¢, The MNLPMC calculations will minimize the

*\2 *\2
function (6]1 —q, ) + (qz - qz) . The multiobjective optimal
control problem is

min (g, ~g))" + (=42 subject to < = F(x)

Differentiating the objective function results in

d - . o d . e d .
— (-9 +(4,-4)) =2(g,-4))— (¢, - 4)+2(¢, - 4,)— (¢, ~ 8,
dxl. dx. dx.

i i

The Utopia point requires that both (ql —ql) and

(q2 - q;) are zero. Hence

di«% g gy~ 4)) =0
X

The optimal control co-state equation® is

d d 2 NN _
E(ﬂﬁ)—_d_%((%_%) g, =4,)" )= f A5 Alt,)=0

ﬂv,- is the Lagrangian multiplier. 7 1s the final time. The

first term in this equation is 0 and hence
LAy =140 =0
dt i i i\t

Atalimitorabranch point, for the set of ODE ax = f(x,u)
dt

fx is singular. Hence there are two different vectors-values for

[ll] where %(ﬂ,’) >0 and %(,{i) < 0. In between there

1

is a vector [ﬂ,] where di(,ll )=0. This coupled with the
1

boundary condition /11~ (f f) =0 will lead to [ﬂ«,] =0 This
makes the problem an unconstrained optimization problem and
the optimal solution is the Utopia solution.

Results

When a is the bifurcation parameter, a branch point occurred
at (sv, 1v, zv, vv,a) values of (0;-0.608365; -4.948035; -2.769792;
-7.887499) (Figure 1a).
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a is bifurcation parameter

W

Figure 1a: a is the bifurcation parameter

When al is the bifurcation parameter, a

occurred at (sv, iv, zv, vv, a1 ) values of (3.792436; 14.728461;
0; 65.14051; 0.050878) (Figure 1b).

alpha1 is bifurcation paramter

branch point

68

&7

&5

v

63

62

4
2

iv 14 o alphat

Figure 1b: a1 is the bifurcation parameter.

When a2 is the bifurcation parameter, a Hopf bifurcation

point occurs at (sv, iv, zv, vv, &2) values of (19.860109
1.388582 164.282223 2.055185 1.737406). This is indicated

in the curve AB in (Figure 1¢). When 2 is modified to

a2tanh(a2)/1.5, the Hopf bifurcation point disappears.
This is indicated in the curve CD in Fig. lc. The limit cycle
caused by the Hopf bifurcation is shown in (Figure 1d).

Hopf Bifurcation disappears when alfa2

is modified to alfa2*tanh(alfa2)
24

< alfa2tanh(alfa2/1.5) is bifurcation

parameter . NO HOPF
D

23 |
22 |

21 A

HOPF (alfa2 is bifurcation parameter)

Figure 1c: @2 is the bifurcation parameter, a Hopf bifurcation
point is present (curve AB). When «2 is modified to
a2tanh(a2) /1.5, the Hopf bifurcation point disappears
(curve CD)

When O was used as the bifurcation parameter several limit

points were found. One of them occurred at (sv, iv, zv, vv, O )
values of (0, 0, 0, 310.688616, 0). (Figure 1e).
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limit cycle for Hopf Bifurcation

164.6
164.4 S|

164.2

v

164

163.8

163.6

Figure 1d: Limit cycle for Hopf shown in Figure 1d.

delta is bifurcation parameter

310.75
310.7
310.65
z 3106
310.55
310.5

310.45
4

=107

Figure 1e: The bifurcation parameter.

For the MNLMPC calculations, sv(0) = 200, vv (0) = 50,

=t L=ty
zv(0) =50, iv (0) =50, Z iv(t,) was minimized and z zv(t,)
lizo lizo

was maximized individually and resulted in values of 50 and

400. The overall optimal control problem will involve the
t=t; t=t;

minimization of (Z iv(t,)—50)" + (Z zv(t,) —400)* was
li=o li=o

subject to the equations governing the model. This led to a value

of zero (the Utopia

The MNLMPC values of the control variables, [ was
0.000334. The various MNMPC figures are shown in (Figures

2a-2b). The control profiles of £ exhibited noise and this was
remedied using the Savitzky-Golay filter to produce a smoother

control profile Asg .Both the noisy and smooth profiles ae
shown in (Figure 2c).

— v

sv

200

[ 20 40 60 80 100
t

Figure 2a: MNLMPC (vv,sv,iv profiles).
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o100
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0.000
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t

Figure 2b: MNLMPC (zv profile).
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o.008

0.006

0.004

0002

_J/‘ L/A\J n N
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t

A
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0.000

Figure 2¢: ( f (noise exhibited) fgg (noise eliminated)).
Discussion of Results
Theorem

If at least one of the functions in a dynamic system is
separable into two distinct functions, a branch point singularity
will occur in the system.

Proof

Consider a system of equations

dx
Z_f(xaa)

x € R" . Defining the matrix A as

A A A
ox, Ox, Ox; Ox, ox, O«
A A
Ox, Ox, Ox; Ox, ox, Oa
A=
9 o o 9 9 9
ox, ox, ox, ox, ox, Oa

¢ is the bifurcation parameter. The matrix A can be written
in a compact form as
o, | o,

ox = da

q

A=[

The tangent at any point Xx; (Z:[21,22,23,24,....Zn+1])

must satisfy
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Az=0

The matrix {—%} must be singular at both limit and branch

q
points. The n+1 ™ component of the tangent vector Z,,; =

0 at a limit point (LP) and for a branch point (BP) the matrix

A .
B = , must be singular.
z

Any tangent at a point y that is defined by

Z= [21,22,23,24,....Zn+1] ) must satisfy
Az=0

For a branch point, there must exist two tangents at the
singularity. Let the two tangents be z and w. This implies that

Az=0
Aw=0

Consider a vector v orthogonal to one of the tangents
(z). v can be expressed as a linear combination of z and w (

v=az+ pw). Since Az=Aw=0 ; Av=0 and since

T

A
z and v are orthogonal, z'v=0. Hence Bv =|: }v =0
z

T

A
which implies that B is singular where B = |: :|
z

Let any of the functions f are separable into 2 functions

B9, as
Ji =99,

At steady-state f;(x,a)=0. Hence cither ¢ =0 or
¢2 =0 or both ¢1 and ¢2 must be 0 implying that the two
branches ¢ =0 and ¢, =0 will intersect at a point ¢ and

@, are0.

Here, B will be singular as one row row in this matrix would be

9,9
[&Jﬁa]

However,

of, 0 0
L= =0 s = 0) L= 0¥k =1.,,m)
ox, ox, Oox,
of, o4 o4,
s $(=0) . $,(=0) el
This implies that every element in the row [i ] i]
would be 0 and hence the matrix B would be singulz@,"i}mp@%g
a branch point.

When a is the bifurcation parameter, a branch point occurred
at (sv, iv, zv, vv,a) values of (0;-0.608365; -4.948035; -2.769792;
-7.887499).
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Here, the two distinct functions can be obtained from the
first ODE in the model

@:a(w) 1_((sv+iv)J

k

_al(sv)zv - (sv)ww
(dl+sv) (kl+w)

The two distinct equations are

sv=0

A1 (v))) alzv  Bw 0o
k ( d 1) (kl + vv)
With sv=0; a =-7.887499 ; iv =;-0.608365; zv=-4.948035;
vv=-2.769792; k = 108; alfa 1 =0.045; d1 = 2; f =0.65; k1=3;
both the distinct equations are satisfied, validating the theorem.

When 1 is the bifurcation parameter, a

occurred at (sv, iv, zv, vv, a1) values of (3.792436; 14.728461;
0; 65.14051; 0.050878)

branch point

Here, the two distinct functions can be obtained from the
third ODE in the model

d(zv) [ alsv)zv ]| aivizv) | (v)
dt (d1+sv) (d2+iv+(7/sv))
The two distinct equations are
zv=0
PYRLLCLO NN I (PP S GO R
(d1+sv) (d2+iv+(7sv))
With

al=0.050878; d1 = 2; a2=0.045; d2=2; y=3.8; ; 11=0.75; 12=0.61; v=0.012;
sv=3.792436; iv = 14.728461; zv=0; w=65.14051
both the distinct equations are satisfied, validating the theorem.

When a2 is the bifurcation parameter, a Hopf bifurcation
point occurs at (sv, iv, zv, vv, a2) values of (19.860109

1.388582 164.282223 2.055185 1.737406). When a2 is

modified to a2tanh(a2)/1.5, the Hopf bifurcation point
disappears. This validates the analysis of Sridar®.

It is seen that the presence of the limit and branch points are
beneficial because it allows the MNLMPC calculations to attain
the Utopia solution, validating the analysis of Sridhar?®.

Conclusions

Bifurcation analysis and multiobjective nonlinear model
predictive control (MNLMPC) studies were conducted on
a dynamic model that describes the avoidance behavior of
zooplankton on phytoplankton infected by free viruses. The
bifurcation analysis revealed the existence of branch points, limit
points and Hopf bifurcation points. in the model. The branch
and limit points (which cause multiple steady-state solutions
from a singular point) are very beneficial because they enable the
Multiobjective nonlinear model predictive control calculations
to converge to the Utopia point (the best possible solution). It
is proven (with computational validation) that the branch points
were caused by the existence of two distinct separable functions
in one of the equations in each dynamic model. A theorem was
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developed to demonstrate this fact for any dynamic model. The
Hopf bifurcation point that causes an unwanted limit cycle is
eliminated using an activation factor involving the tanh function.
A combination of bifurcation analysis and Multiobjective
Nonlinear Model Predictive Control (MNLMPC) for a dynamic
model that describes the avoidance behaviour of zooplankton on
phytoplankton infected by free viruses is the main contribution
of this paper.
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