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Background
Uppal, et al.1  studied the dynamic behavior of continuous 

stirred tank reactors. Uppal, et al.2 provided  the classification 
of the dynamic behavior of continuous stirred tank reactors--
influence of reactor residence time. Golubitsky, et al.3 performed 
a qualitative study of the steady state solutions for a continuous 
flow stirred tank chemical reactor. Balakotaiah, et al.4 developed 
the , exact steady-state multiplicity criteria for two consecutive 
or parallel reactions in lumped-parameter system.  Balakotaiah, 
et al.5 provided the structures of the steady-state solutions of 
lumped-parameter chemically reacting systems.  Balakotaiah, et 
al.6, discussed the global analysis of the multiplicity features of 

multi-reaction lumped-parameter systems. Byeon, et al.7 analysed  
the multiple hope bifurcation phenomena in a CSTR with two 
consecutive reactions. In this work, bifurcation analysis and 
multiobjective nonlinear model predictive control is performed 
on a CSTR problem with two consecutive reactions7. The paper 
is organized as follows. First, the model equations are presented, 
followed by a discussion of the numerical techniques involving 
bifurcation analysis and multiobjective nonlinear model 
predictive control (MNLMPC). The results and discussion are 
then presented, followed by the conclusions.

Model Equations7

In the scaled model of the CSTR problem with two 

 A B S T R A C T 
In this work, bifurcation analysis and multiobjective nonlinear model predictive control is performed on a CSTR problem 

with two consecutive reactions. Bifurcation analysis is a powerful mathematical tool used to deal with the nonlinear dynamics 
of any process. Several factors must be considered, and multiple objectives must be met simultaneously.  The MATLAB program 
MATCONT was used to perform the bifurcation analysis. The MNLMPC calculations were performed using the optimization 
language PYOMO in conjunction with the state-of-the-art global optimization solvers IPOPT and  BARON. The bifurcation 
analysis revealed the existence of a Hopf bifurcation point and a limit point. The MNLMC converged to the utopia solution. 
The Hopf bifurcation point, which causes an unwanted limit cycle, is eliminated using an activation factor involving the tanh 
function. The limit points (which cause multiple steady-state solutions from a singular point) are very beneficial because they 
enable the Multiobjective nonlinear model predictive control calculations to converge to the Utopia point (the best possible 
solution) in the model.
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consecutive reactions (Byeon et al (1989)[7]) , xv, yv, zv, and 
Da represent the scaled variables of the reactant concentration, 
intermediate product concentration, the temperature, and the 
Damkohler number. The model equations are
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The base parameter values are 

b=10; σ  =0.09482;α  =0.79649; Da=0.5; β  =1.5. More 
details can be found in7.

Bifurcation Analysis 
The MATLAB software MATCONT is used to perform 

the bifurcation calculations. Bifurcation analysis deals with 
multiple steady-states and limit cycles.  Multiple steady states 
occur because of the existence of branch and limit points.  
Hopf bifurcation points cause limit cycles.  A commonly used 
MATLAB program that locates limit points, branch points, and 
Hopf bifurcation points is MATCONT8,9.  This program detects 
Limit points (LP), branch points (BP), and Hopf bifurcation 
points(H) for an ODE system

( , )dx f x
dt

α=

 nx R∈  Let the bifurcation parameter be α  . Since the 
gradient is orthogonal to the tangent vector,  

The tangent plane at any point   1 2 3 4 1[ , , , ,.... ]nw w w w w w +=    
must satisfy 

0Aw =
Where A is

[ / | / ]A f x f α= ∂ ∂ ∂ ∂

where  /f x∂ ∂  is the Jacobian matrix.  For both limit and 
branch points, the Jacobian matrix  [ / ]J f x= ∂ ∂   must be 
singular.

For a  limit point, there is only one tangent at the point of 
singularity. At this singular point,  there is a single  non-zero 
vector, y,  where Jy=0. This vector is of dimension n. Since there 
is only one tangent the vector

1 2 3 4( , , , ,... )ny y y y y y=  must align with  

1 2 3 4ˆ ( , , , ,... )nw w w w w w= . Since 

ˆ 0Jw Aw= =

the n+1 th component of the tangent vector 1nw +  = 0 at  a 
limit point (LP).

For a branch point, there must exist two tangents at the 
singularity. Let the two tangents be z and w.  This implies that

0
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Consider a vector v that is orthogonal to one of the tangents 
(say w). v can be expressed as a linear combination of z and 
w ( v z wα β= + ). Since 0Az Aw= =  ; 0Av =  and since 

w and v are orthogonal, 0Tw v = . Hence 0T
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which implies that B is singular.

Hence,  for a branch point (BP) the matrix 
T

A
B

w
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 must 
be singular.

At  a Hopf bifurcation point, 

det(2 ( , )@ ) 0x nf x Iα =
  @ indicates the bialternate product while 

nI  is the n-square 
identity matrix. Hopf bifurcations cause limit cycles  and 
should be eliminated because limit cycles  make optimization 
and control tasks very difficult.  More details can be found in 
Kuznetsov10-12.

Hopf bifurcations cause  limit cycles. The tanh activation 
function (where a control value u is replaced by ) ( tanh / )u u ε   
is  used to eliminate spikes in the optimal control profiles13-16. 
Sridhar17 explained with several examples how the activation 
factor involving the tanh function also  eliminates the  Hopf 
bifurcation points. This was because the tanh function increases 
the oscillation time period in the limit cycle. 

Multiobjective Nonlinear Model Predictive 
Control(MNLMPC) 

The rigorous multiobjective nonlinear model predictive 
control (MNLMPC) method developed by Flores Tlacuahuaz, 
et al.18 was used.

Consider a problem where  the variables  
0
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problem
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ft  being the final time value, and n the total number of 
objective variables and  u  the control parameter.     The single 
objective optimal control problem is solved individually 

optimizing each of the variables 
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jq   .  Then, the 

multiobjective optimal control (MOOC)   problem that will be 
solved is
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This will provide the values of u  at  various times. The first 
obtained control value of u  is implemented and the rest are  
discarded. This procedure is repeated until the implemented and 
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At a limit or a branch point, for the set of ODE ( , )dx f x u
dt

=  

xf  is singular. Hence there are two different vectors-values for 

[ ]iλ  where ( ) 0i
d
dt

λ >  and ( ) 0i
d
dt

λ < . In between there 

is a vector [ ]iλ  where ( ) 0i
d
dt

λ =  . This coupled with the 

boundary condition ( ) 0i ftλ =  will lead to  [ ] 0iλ =  This 
makes the problem an unconstrained optimization problem, and 
the optimal solution is the Utopia solution.

Results and Discussion
When Da was the bifurcation parameter, a limit point and a 

Hopf bifurcation point were located at (xv, yv, zv, Da) values of  
( 0.947730,  0.348530,  5.699944,  0.060670 ) and  ( 0.98142, 
0.163335,  6.53207,  0.076909 ) (curve AB in Figure 1a). When 
Da was modified to Da tanh(Da)/5, a limit point was found at ( 
0.351870 0.334643 1.462363 0.886329 ). The Hopf bifurcation 
point disappears (curve CD Figure 1a). The limit cycle vanishes 
when the tanh activation factor is incorporated in the bifurcation 
parameter, validating the analysis of Sridhar17. The limit cycle 
caused by the Hopf bifurcation point is shown in (Figure 1b).

Figure 1a: Bifurcation Analysis (Da is Bifurcation Parameter)

Figure 1b: Limit cycle caused by Hopf Bifurcation.

For the MNLMPC Da is  the control parameter, and 
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Pyomo19 is used for these calculations.  Here, the differential 
equations are  converted to a Nonlinear Program (NLP) using 
the orthogonal collocation method   The NLP is solved using  
IPOPT20 and confirmed as a global solution with BARON21.

The steps of the algorithm are as follows  
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0
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Implement the first obtained control values 

Repeat steps 1 to 3 until there is an insignificant difference 
between the implemented and the first obtained value of the 
control variables or if the Utopia point is achieved. The Utopia 

point is when 
0
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Sridhar22 demonstrated that when the bifurcation analysis 
revealed the presence of limit and branch points the MNLMPC 
calculations to converge to the Utopia solution .  For this,  the 
singularity condition, caused by the presence of the limit or 
branch points  was imposed on the co-state equation23. If the 

minimization  of   1q  lead to the value q*
1 and the minimization 

of 2q  lead to the value 
*
2q   The MNLPMC calculations 

will minimize the function 
* 2 * 2
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multiobjective  optimal control problem is
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iλ  is the Lagrangian multiplier. ft  is the final time.  The 
first term in this equation is 0 and hence
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subject to the equations governing the model. This led to a value 
of zero (the Utopia point). The MNLMPC values of the control 
variable, Da  was 0.13834. The MNLMPC profiles are shown in 
(Figures 2a-2d). The control profile of Da  and exhibits noise 
and this was remedied using the Savitzky-Golay filter to produce 
the smooth profile Dasg. The presence of the limit points is 
beneficial because it allows the MNLMPC calculations to attain 
the Utopia solution, validating the analysis of Sridhar22.

Figure 2a: MNLMPC xv vs t.

Figure 2b: MNLMPC yv vs t.

Figure 2c: MNLMPC zv vs t.

Figure 2d: Da, Dasg vs t.

Conclusions
Bifurcation analysis and multiobjective nonlinear control 

(MNLMPC) studies on a CSTR problem with two consecutive 
reactions.  The bifurcation analysis revealed the existence of 
Hopf bifurcation points and limit points .  The Hopf bifurcation 
point, which causes an unwanted limit cycle, is eliminated using 
an activation factor involving the tanh function.  The  limit points 
(which cause multiple steady-state solutions from a singular 
point) are very beneficial because they enable the Multiobjective 
nonlinear model predictive control calculations to converge 
to the Utopia point (the best possible solution) in the models. 
A combination of bifurcation analysis and Multiobjective 
Nonlinear Model Predictive Control(MNLMPC)  for a CSTR 
problem with two consecutive reactions is the main contribution 
of this paper.
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