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 A B S T R A C T 
Supervised machine learning (SML) is transforming pharmaceutical research by enabling precise, data-driven decision making 

across drug discovery, pharmacokinetics/pharmacodynamics (PK/PD) modeling, chemical synthesis and pharmacogenomics. 
This review synthesizes recent advances in SML applications across these domains and highlights how ensemble methods, graph-
based architectures and hybrid mechanistic frameworks contribute to improved predictive accuracy, experimental efficiency 
and translational relevance. In drug discovery, SML accelerates virtual screening, predicts ADME properties and guides lead 
optimization. In PK/PD modeling, it supports individualized dose prediction, toxicity assessment and formulation design 
through the integration of multimodal clinical and molecular data. In chemical synthesis, SML improves reaction outcome 
prediction, retrosynthetic planning and condition optimization, enabling faster and more reliable route development. In 
pharmacogenomics, it advances genotype-informed dosing, adverse drug reaction prediction and treatment response modeling to 
support personalized medicine. Persistent challenges include data standardization, model interpretability, regulatory acceptance 
and ethical oversight. Overall, SML is a foundational technology with the potential to drive scalable, transparent and equitable 
innovation across the pharmaceutical landscape.

Keywords: Supervised machine learning; Artificial intelligence; Drug discovery; Pharmacogenomics; Pharmacokinetics (PK); 
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Introduction
Artificial intelligence (AI) has become a transformative 

force in pharmaceutical research, led by supervised machine 
learning (SML) models that deliver precise, data-driven 
insights across the drug discovery and development pipeline. 
By training on labeled datasets to recognize patterns and make 
predictions, SML enables researchers to interrogate complex, 
high-dimensional data beyond the capabilities of traditional 
computational methods1. This approach is instrumental for 

optimizing compound screening, predicting therapeutic efficacy 
and refining dosing strategies with high accuracy2.

The integration of SML into pharmaceutical research spans 
from early-stage drug discovery to clinical trials and personalized 
medicine. Algorithms such as quantitative structure-activity 
relationship (QSAR) models analyze structural and chemical 
properties to identify promising drug candidates early in 
development3. Virtual screening (VS) techniques, including 
advanced support vector machines (SVMs) and neural networks, 
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enable researchers to sift through expansive compound libraries 
with remarkable precision, expediting the drug discovery 
process.

Beyond discovery, SML’s capacity to process multimodal 
datasets, encompassing genomics, imaging, chemical properties 
and patient histories, enhances clinical trial optimization and 
treatment personalization4. By leveraging genetic, molecular 
and clinical data, these models support tailored therapies that 
improve patient outcomes5. This capability addresses limitations 
that traditional computational methods struggle to overcome.

Despite its considerable impact, several challenges must 
be addressed for widespread clinical implementation. Model 
interpretability, data privacy concerns and computational 
demands remain key obstacles, prompting the exploration 
of novel approaches such as federated learning (FL) and 
hybrid machine learning (ML) frameworks6. Addressing these 
issues will be essential to unlocking SML’s full potential in 
pharmaceutical sciences and healthcare.

As AI-driven methodologies continue to evolve, SML stands 
at the forefront of advancing precision medicine, shortening 
development timelines and driving innovation in healthcare. 
With ongoing advancements in automation and predictive 
analytics, SML is poised to reshape the future of medicine, 
ultimately leading to improved diagnostics, targeted treatments 
and enhanced patient care.

Methods
I ran a focused literature search on supervised machine 

learning (SML) in drug discovery, PK/PD modeling, chemical 
synthesis and retrosynthesis and pharmacogenomics. I searched 
five databases: PubMed, Google Scholar, Scopus, Web of Science 
and Embase. I used Medical Subject Headings (MeSH) and close 
keyword variants, including Machine Learning, Supervised, 
Classification, Regression, Support Vector Machines, Random 
Forest, Gradient Boosting, Graph Neural Networks, QSAR, 
Virtual Screening, Pharmacokinetics, Pharmacodynamics, 
Pharmacogenomics, Dose-Response Relationship, Treatment 
Outcome and Drug-Related Side Effects and Adverse Reactions. 
The main date range is 2019 to 2025, with earlier landmark 
papers added when needed for context.

I included peer-reviewed studies that clearly used supervised 
methods and reported enough detail to understand the data, the 
model, the training and validation approach and the metrics. I 
excluded opinion pieces, news items, unvalidated patents and 
studies without a baseline or a clear data split. After screening 
titles and abstracts, I read the full text of likely papers and kept 
those that met the criteria. I also checked references of included 
papers to find any important studies I missed.

Supervised machine learning: Foundations and methodology

SML is a subcategory of ML in which algorithms are trained 
on labeled datasets, where each input is paired with a known 
output. This structured training process enables models to 
learn from examples, capturing underlying relationships within 
data to make accurate predictions. By generalizing complex 
patterns, SML facilitates predictive modeling across diverse 
applications, particularly in classification and regression tasks. 
Classification tasks involve predicting categorical outcomes, 
such as diagnosing diseases from medical imaging or identifying 

fraudulent transactions based on behavioral patterns. Regression 
tasks focus on continuous predictions, such as estimating drug 
efficacy based on patient biomarkers or forecasting healthcare 
costs7,8.

At its core, SML operates through an iterative optimization 
process aimed at minimizing an error function, commonly 
referred to as a loss function. The model is trained using input-
output pairs, where each input (X) corresponds to a ground-
truth output (Y). Through a series of computational steps, the 
model learns a function f(X) that maps X to Y while minimizing 
predictive error7.

Key components of SML

•	 Data preparation & Feature engineering: The first 
step involves curating and preprocessing labeled datasets, 
ensuring data integrity, normalization and feature extraction. 
Feature selection is crucial in enhancing the model’s ability 
to focus on relevant patterns while mitigating noise.

•	 Model selection: Depending on the problem type 
(classification or regression), different algorithms can be 
used. Linear regression models are common for continuous 
output predictions, whereas decision trees, support vector 
machines (SVMs) and neural networks excel at complex 
pattern recognition.

•	 Training process: The model iteratively adjusts internal 
parameters (weights) to minimize a loss function using 
techniques such as gradient descent. With each iteration, 
weights are updated to reduce the difference between 
predicted and actual outputs, thereby improving accuracy.

•	 Performance evaluation: Metrics such as mean squared 
error (MSE) for regression models and precision-recall, F1 
score and accuracy for classification tasks help assess the 
model’s effectiveness.

•	 Deployment & Fine-tuning: Once trained, the model is 
deployed and continuously refined through hyperparameter 
tuning and additional training on new data, ensuring long-
term adaptability and performance stability in dynamic 
environments

•	 Generalization & Overfitting prevention: To ensure that 
the model performs well on unseen data, techniques such as 
L1/L2 regularization, dropout layers (for neural networks) 
and validation datasets are employed to prevent overfitting, 
where a model becomes too specialized to the training 
data9,10.

Through these processes, SML enables robust decision 
making by leveraging structured data to develop predictive 
models that generalize effectively across real-world applications. 
Its broad applicability, ranging from medical diagnostics to 
financial forecasting, underscores its central role in modern 
AI-driven analytics.

SML methodologies in biotechnology and healthcare 
research

SML has become an essential tool in healthcare and 
pharmaceutical research, playing a vital role in classification and 
regression tasks that power diagnostic systems, drug efficacy 
modeling and personalized treatment strategies. To meet the 
specific demands of diverse medical datasets and clinical 
applications, a range of SML methodologies have been adapted 
and optimized accordingly:
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•	 Naïve Bayes (NB): A probabilistic classifier based on 
Bayes’ theorem that assumes feature independence, making 
it highly efficient for disease classification and genome 
analysis, particularly in handling high-dimensional genetic 
data.

•	 K-Nearest Neighbors (KNN): A nonparametric method that 
classifies data points based on proximity to labeled examples. 
KNN is commonly employed in patient stratification, 
anomaly detection and treatment recommendation systems.

•	 Support Vector Machines (SVM): By constructing 
optimal hyperplanes to separate classes in high-dimensional 
feature space, SVMs excel in complex tasks such as tumor 
classification and radiographic image interpretation, where 
subtle patterns must be discerned.

•	 Ensemble Learning (Random Forest, Gradient 
Boosting): These methods combine multiple weak learners 
to build more accurate and robust models. Ensemble 
techniques are frequently used in predictive diagnostics, 
disease risk modeling and biomarker selection.

•	 Random Forest (RF): As a specific ensemble method 
composed of decision trees, RF reduces overfitting and 
enhances reliability in both classification and regression. 
It is widely applied in pharmacogenomics, drug response 
prediction and multi-omics data integration.

•	 Linear Regression (LiR): A fundamental approach to 
modeling linear relationships between variables, LiR is 
heavily used in pharmacometrics to determine optimal 
dosing regimens and understand drug concentration-effect 
relationships.

•	 Support Vector Regression (SVR): A regression-specific 
variant of SVM that predicts continuous outcomes within a 
defined margin of tolerance. SVR is well suited to precision 
medicine applications, such as forecasting individualized 
treatment responses from genetic and molecular data10-12.

The application of these SML methodologies enables 
effective generalization from large-scale biomedical datasets, 
reinforcing their indispensable role in drug discovery, diagnostics 
and treatment optimization. As computational power and data 
availability continue to grow, SML is poised to drive significant 
advancements in precision medicine, refining therapeutic 
strategies and improving patient outcomes.

Applications of SML in drug discovery and design

SML models have reshaped drug discovery and personalized 
medicine by improving the efficiency and accuracy of core 
workflows. A central advantage is the capacity to analyze and 
learn from large molecular datasets, which helps researchers 
rapidly identify compounds with promising therapeutic profiles. 
Techniques such as support vector machines (SVM), decision 
trees and random forest (RF) perform well for these tasks, 
using historical bioactivity data to predict efficacy, safety and 
bioavailability. For example, Korotcov, et al. reported that RF 
models outperformed deep neural networks in predicting the 
ADME properties of drug candidates across diverse chemical 
spaces, reinforcing the robustness of traditional SML approaches 
for early-stage screening13.

In pharmacogenomics, SML has advanced personalized 
medicine by enabling precise dosing based on genetic and 
clinical features. Gradient-boosting methods such as CatBoost 

and XGBoost show strong performance in predicting warfarin 
maintenance doses when models include polymorphisms in 
genes like CYP2C9 and VKORC1, together with demographic 
and clinical variables. These models exceed the performance of 
linear regression by capturing nonlinear interactions and complex 
feature dependencies, which reduces adverse drug reactions 
and improves outcomes. By incorporating genomic variability, 
particularly variation in cytochrome P450 enzyme activity, these 
tools support a move away from generalized dosing toward 
adaptive, genotype-informed prescribing strategies14,15.

Beyond screening and personalization, SML 
supports applications across pharmacokinetics (PK) and 
pharmacodynamics (PD). One recent study applied support 
vector regression (SVR) to predict methotrexate plasma 
concentrations in pediatric oncology, using individualized 
features such as age, body surface area, renal function and 
genetic polymorphisms. Compared with population-based 
PK models, SVR more accurately estimated peak and trough 
concentrations, captured nonlinear dose–exposure relationships 
without overfitting and improved safety in chemotherapy dosing. 
Such precision modeling enables tailored therapeutic windows 
and supports safer, more effective regimens in populations 
with high interindividual variability16. In cheminformatics and 
retrosynthesis, graph-based SML models, including Graph 
Neural Networks (GNNs) and message-passing neural networks, 
have been used to evaluate reaction feasibility and to predict 
synthesis routes, which reduces the time needed to identify 
viable pathways17.

The practical impact of SML also includes economic and 
operational gains in drug development. As noted by Kumar, et 
al., SML can streamline early-stage screening by integrating 
chemical, biological and pharmacological data to prioritize 
candidates with higher probabilities of clinical success18. This 
data-driven strategy improves predictive accuracy, reduces 
reliance on costly trial-and-error methods and lowers the risk 
of late-stage failures. By focusing resources on high-potential 
leads, SML increases return on investment and shortens time to 
market. In parallel, precision-focused design supported by ML 
reduces adverse events and unnecessary interventions while 
optimizing patient outcomes and the use of healthcare resources.

The continued success of SML in drug discovery and 
personalized medicine depends on progress in areas such 
as integration with electronic health records (EHRs), data 
standardization, regulatory validation and clinician training 
for interpreting model outputs. As SML evolves across 
pharmacogenomics, PK and PD modeling and compound 
design, addressing these issues will be essential for translating 
computational advances into practical, scalable improvements 
in patient care. Overcoming these barriers will unlock the full 
potential of SML and accelerate the shift toward a data-driven, 
precision-oriented pharmaceutical ecosystem.

Pharmacokinetic and pharmacodynamic modeling

SML has emerged as a powerful framework for advancing 
pharmacokinetic (PK) and pharmacodynamic (PD) modeling. 
It offers a level of granularity and adaptability that traditional 
compartmental models often lack. By leveraging high-
dimensional, multimodal datasets, SML enables more precise 
prediction of drug absorption, distribution, metabolism and 
elimination (ADME). These capabilities support individualized 
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dosing strategies, early toxicity screening and formulation 
optimization throughout the drug development process.

One foundational application of SML in PK modeling is 
the prediction of drug clearance and systemic exposure. Uno 
et al. (2024) demonstrated that random forest and support 
vector regression models, trained on clinical variables such as 
renal function, age and genetic polymorphisms, significantly 
outperformed conventional population PK models in predicting 
interindividual variability in drug clearance19. Their findings 
highlight the clinical utility of SML in early-phase trials, where 
accurate dose selection is essential for minimizing variability 
and optimizing therapeutic windows. Notably, their approach 
reduced residual error in clearance predictions, suggesting 
that SML can serve as a more reliable alternative to traditional 
covariate-based modeling for renally eliminated compounds.

This capacity for individualized modeling is especially 
impactful in pediatric oncology, where developmental 
pharmacology introduces substantial variability in drug 
metabolism. Tang, et al. applied SML to methotrexate and 
vincristine pharmacokinetics in children, incorporating 
demographic, clinical and laboratory features to predict plasma 
concentrations20. Their models achieved superior predictive 
accuracy compared to standard population-based approaches 
and enabled more precise dose adjustments. This reduced the 
risk of underexposure or toxicity and demonstrated how SML 
can overcome the limitations of one-size-fits-all dosing in 
vulnerable populations, where therapeutic margins are narrow 
and interpatient variability is high.

To balance model interpretability with predictive flexibility, 
Gharat, et al. proposed a hybrid modeling framework that 
integrates mechanistic PK/PD models with machine learning 
algorithms21. Their approach embeds physiological priors, 
such as enzyme kinetics and receptor occupancy, into data-
driven models. This allows for both mechanistic insight and 
empirical adaptability. The hybrid framework showed improved 
generalizability across datasets and therapeutic classes, making 
it particularly valuable in complex disease areas like oncology 
and immunology. These fields often involve dynamic and 
partially understood biological systems. The integration of 
mechanistic and statistical modeling represents a promising 
direction for translational pharmacology, enabling models that 
are both explainable and responsive to real-world variability.

Beyond efficacy modeling, SML has proven instrumental 
in preclinical safety assessment. Chou, et al. used ensemble 
learning techniques, including gradient boosting and random 
forest, to predict drug-induced liver injury (DILI) based on 
chemical structure descriptors, transcriptomic data and in vitro 
assay results22. Their models identified early biomarkers of 
hepatotoxicity and stratified compounds by risk level with high 
sensitivity and specificity. This application shows how SML can 
function as a computational triage tool, reducing the likelihood 
of late-stage failures by flagging high-risk compounds early in 
development. Additionally, the integration of multi-omics data 
into predictive toxicology models reflects a broader trend toward 
systems-level modeling in drug safety.

In pharmaceutical formulation, SML has been applied to 
predict drug release kinetics from controlled-release systems 
under physiologically relevant conditions. Ota, et al. developed 
models that accurately forecasted both in vitro and in vivo 

dissolution profiles by training on formulation parameters, 
polymer characteristics and biorelevant media conditions23. 
Their work demonstrated that SML can reduce the need for 
iterative wet-lab testing and accelerate the optimization of 
extended-release formulations. This is especially valuable for 
complex dosage forms, where traditional empirical methods are 
time-consuming and resource-intensive.

Taken together, these studies illustrate the multifaceted role 
of SML in PK/PD modeling. SML is driving individualized dose 
optimization, enhancing hybrid mechanistic models, supporting 
early-stage toxicity assessments and guiding formulation design. 
These advances are being achieved with greater precision and 
efficiency than traditional approaches. As SML tools continue 
to evolve in interpretability, data efficiency and experimental 
validation, their integration into regulatory frameworks, clinical 
pharmacology and pharmaceutical engineering will be essential 
to realizing the full potential of data-driven precision medicine.

Chemical synthesis

SML is transforming chemical synthesis by enabling precise 
prediction of reaction outcomes, retrosynthetic pathways, 
optimal reaction conditions and selectivity profiles. Using 
extensive reaction databases and detailed molecular descriptors, 
SML models capture subtle structure-reactivity relationships 
that inform and refine synthetic planning. This data-driven 
approach reduces the need for exhaustive experimentation, 
accelerates discovery and expands access to complex molecular 
architectures, which makes synthesis more efficient and 
strategically guided by computational insight.

A key advance in this field was introduced by Coley, et al., 
who developed graph-convolutional neural networks (GCNNs) 
that represent molecules as graphs. This architecture allows the 
model to learn atom- and bond-level transformations directly 
from reaction data24. Their models achieved high accuracy in 
predicting major products across a wide range of reaction classes, 
outperforming rule-based expert systems and demonstrating the 
ability of SML to generalize beyond curated templates. Their 
work also emphasized the interpretability of learned chemical 
features, which enables chemists to trace predictions back to 
specific molecular substructures. This capability is essential for 
integrating AI into experimental workflows.

Building on this foundation, Strieth-Kalthoff, et al. reviewed 
SML applications in computer-aided synthesis planning. 
They highlighted how supervised models trained on reaction 
databases can identify viable disconnections and suggest 
plausible precursors for retrosynthetic analysis25. Their work 
marked a shift from rule-based retrosynthesis to data-driven 
route generation, where models learn from empirical precedent 
rather than manually encoded heuristics. This transition has 
broadened access to synthetic planning tools and has empowered 
chemists to explore novel pathways and scaffold modifications 
with greater speed and confidence.

Alnammi, et al. broadened the predictive scope of SML 
by incorporating reaction conditions, including temperature, 
solvent and catalyst, into models of yield and selectivity26. 
Their study showed that including contextual variables 
significantly enhances model performance, particularly in high-
throughput experimentation where optimizing conditions is 
a major bottleneck. By combining chemical descriptors with 
experimental metadata, their framework accurately predicted 
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reaction outcomes under diverse conditions and offered a 
practical solution for guiding empirical screening while 
conserving resources.

Predicting selectivity, particularly regioselectivity and 
chemo selectivity, remains a major challenge in complex 
molecule synthesis. Zuranski, et al. addressed this challenge 
by training SML models on curated datasets of site-selective 
transformations. Their models captured subtle electronic and 
steric influences on reactivity, achieved high predictive accuracy 
and provided interpretable insights into the factors governing 
selectivity27. This work supports both mechanistic hypothesis 
generation and synthetic planning and it illustrates how SML can 
complement human intuition in navigating the multidimensional 
landscape of selectivity control.

To improve generalization and reduce overfitting, Oliveira, 
et al. introduced a multitask learning framework that predicts 
multiple reaction attributes, such as product identity, yield and 
reaction class, using shared molecular representations28. Their 
architecture leveraged interrelated chemical features across 
tasks, which enhanced model robustness and enabled more 
comprehensive reaction modeling. This multitask approach is 
especially valuable in low-data environments, where single-task 
models often struggle to capture nuanced reactivity patterns.

Recognizing the need for interpretability and uncertainty 
quantification, Rizvi Syed Aal E Ali, et al. proposed integrating 
attention mechanisms and confidence scoring into SML pipelines 
for reaction prediction29. Their study emphasized that actionable 
AI in chemistry must go beyond accuracy to provide transparent, 
confidence-calibrated outputs that chemists can rely on. By 
identifying which molecular substructures contributed most to 
a prediction and by quantifying uncertainty, their framework 
supports more informed decision making in both discovery and 
process chemistry.

Singh, et al. addressed data scarcity in reaction condition 
optimization by applying transfer learning and active learning 
strategies to SML models30. Their framework achieved strong 
predictive performance with limited experimental data and 
it showed that pre-trained models can be fine-tuned on small, 
domain-specific datasets to guide early-stage synthesis 
campaigns. This approach is particularly useful for rare or 
proprietary reaction classes, where large public datasets are not 
available.

Taken together, these advances show that SML is redefining 
chemical synthesis as a unified, end-to-end framework 
that includes forward reaction prediction, retrosynthetic 
design, condition optimization, selectivity modeling and 
uncertainty estimation. As SML models continue to improve 
in interpretability, data efficiency and experimental validation, 
they are poised to accelerate chemical discovery and expand the 
range of molecules that can be synthesized with precision and 
reliability.

Pharmacogenomics

Pharmacogenomics has progressed rapidly with the 
integration of SML, which enables the combined analysis of 
genomic, clinical and demographic data to predict individual 
drug responses and guide personalized treatment. By modeling 
complex, nonlinear interactions among genetic variants, SML 
algorithms support the transition from generalized, population-

based dosing to truly individualized therapeutic strategies. 
This shift lays the foundation for more effective and precise 
frameworks in precision medicine.

One of the central challenges in pharmacogenomics is the 
high dimensionality and heterogeneity of genomic data, which 
often includes thousands of single nucleotide polymorphisms 
(SNPs) with modest effect sizes. Casale, et al. addressed this 
issue by applying SML algorithms to identify SNPs associated 
with variability in drug metabolism and response phenotypes 
across diverse populations31. Their study demonstrated that 
ensemble methods such as random forest and gradient boosting 
can effectively prioritize pharmacogenetically relevant variants 
while accounting for gene–gene and gene-environment 
interactions. This approach enhances both the interpretability 
and clinical utility of pharmacogenomic models, especially 
in multiethnic cohorts where allele frequencies and linkage 
disequilibrium patterns vary.

Cilluffo, et al. further explored the use of SML in predicting 
adverse drug reactions (ADRs) by integrating genomic and 
clinical data from pharmacovigilance databases32. Using support 
vector machines and decision tree classifiers, their models 
achieved high sensitivity and specificity in identifying patients 
at elevated risk for drug-induced hypersensitivity syndromes. 
Their work also emphasized the importance of feature selection 
and dimensionality reduction techniques, including recursive 
feature elimination and principal component analysis, which 
help mitigate overfitting and improve model generalizability. 
This study highlights the potential of SML to enhance drug 
safety by enabling the preemptive identification of individuals at 
risk based on genetic predisposition.

In psychiatric pharmacogenomics, Athreya, et al. developed 
a deep learning framework to predict antidepressant response 
in patients with major depressive disorder (MDD) using 
genomic and clinical features33. Their model, trained on data 
from the STAR*D (Sequenced Treatment Alternatives to 
Relieve Depression) trial, outperformed traditional statistical 
approaches in classifying responders and non-responders to 
selective serotonin reuptake inhibitors (SSRIs). To improve 
clinical applicability, the authors incorporated explainability 
techniques such as SHAP (SHapley Additive exPlanations), 
which helped identify key genetic markers and clinical variables 
driving model predictions. Integrating interpretability into deep 
learning pipelines is essential for clinical translation, as it allows 
clinicians to understand and trust model outputs when making 
therapeutic decisions.

Kalinin, et al. proposed a hybrid modeling approach that 
combines mechanistic pharmacogenomic knowledge with data-
driven SML techniques to improve both prediction accuracy 
and biological plausibility34. Their framework integrates known 
gene–drug interaction networks with supervised learning models, 
allowing prior biological knowledge to inform the training 
process. This hybridization strengthens model robustness and 
interpretability, particularly in scenarios where training data are 
sparse or noisy. Their work illustrates the value of embedding 
domain expertise into machine learning pipelines to bridge the 
gap between computational prediction and clinical relevance.

Finally, Tafazoli, et al. demonstrated the utility of SML 
in predicting warfarin dose requirements based on genetic 
polymorphisms in CYP2C9, VKORC1 and CYP4F2, along with 
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demographic and clinical variables35. Their study compared 
multiple SML algorithms, including random forest, support 
vector regression and artificial neural networks and found that 
ensemble models yielded the most accurate dose predictions 
across diverse patient populations. This research reinforces the 
role of SML in refining pharmacogenetic dosing algorithms, 
especially for drugs with narrow therapeutic indices and high 
interindividual variability.

Taken together, these studies illustrate how SML is reshaping 
pharmacogenomics by converting complex, multidimensional 
datasets into clinically actionable insights. Whether predicting 
adverse drug reactions, modeling antidepressant response, 
refining warfarin dosing or integrating domain knowledge into 
hybrid frameworks, SML provides a scalable and interpretable 
pathway toward truly personalized drug therapy. This approach 
anchors treatment decisions in the rich context of each patient’s 
genetic profile.

Limitations and Challenges
Although SML holds transformative potential for 

pharmaceutical research, several limitations continue to impede 
its widespread adoption in clinical and industrial settings. 
These challenges include issues related to data quality, model 
interpretability, regulatory integration and ethical considerations. 
Each of these must be addressed to fully unlock the promise of 
AI-driven drug development.

One persistent barrier is the lack of high-quality, standardized 
datasets. Mathrani, et al. emphasize that biomedical data often 
suffer from heterogeneity, including inconsistent labeling, 
missing values and variable measurement protocols36. Such 
inconsistencies undermine model generalizability and 
reproducibility across institutions and populations. This 
problem is especially pronounced in multi-center studies, where 
differences in data collection and annotation can introduce bias 
and reduce the external validity of trained models. Overcoming 
this challenge will require the establishment of harmonized data 
standards and the development of robust preprocessing pipelines 
capable of accommodating real-world variability without 
compromising model performance.

From a regulatory perspective, Yang, et al. argue that the 
integration of SML into clinical workflows is constrained by 
the absence of standardized validation frameworks and clear 
guidelines for model approval38. Unlike traditional statistical 
models, SML algorithms often evolve over time through 
retraining and fine-tuning, raising questions about version 
control, auditability and long-term reliability. Regulatory bodies 
such as the FDA and EMA are beginning to address these 
issues, but a consensus on best practices for model validation, 
monitoring and lifecycle management is still emerging.

Ethical and equity considerations also pose significant 
challenges. Obaido, et al. underscore the risk of algorithmic 
bias, particularly when models are trained on datasets that 
underrepresented minority populations or reflect historical 
inequities in healthcare access39. Such biases can propagate 
through predictive pipelines, leading to disparities in treatment 
recommendations and outcomes. Ensuring fairness in SML 
requires proactive bias auditing, inclusive data collection and 
the implementation of fairness-aware learning algorithms that 
explicitly account for demographic variability.

In summary, although SML holds immense promise for 
advancing drug discovery and tailoring treatments to individual 
patients, its real-world impact hinges on addressing persistent 
challenges in data reliability, model transparency, regulatory 
compliance and ethical oversight. Tackling these barriers is 
critical to developing AI systems in pharmaceutical science 
that are not only effective, but also trustworthy, equitable and 
clinically meaningful.

Conclusion
SML is redefining pharmaceutical research by enabling 

scalable, data-driven approaches to drug discovery, development 
and precision medicine. Its ability to integrate and model 
complex biological, chemical and clinical data has accelerated 
key processes such as compound screening, pharmacogenomic 
profiling, PK/PD modeling and chemical synthesis. From 
improving warfarin dosing accuracy to predicting reaction 
outcomes and adverse drug events, SML tools now inform 
therapeutic decision making with a level of precision that 
surpasses traditional statistical methods. Emerging techniques 
such as ensemble learning, graph-based models and hybrid 
mechanistic frameworks have expanded both the interpretability 
and performance of SML systems, making them increasingly 
relevant across clinical and industrial contexts.

Yet the successful integration of SML into real-world 
pharmaceutical workflows requires overcoming persistent 
challenges related to data heterogeneity, model transparency, 
regulatory validation and ethical accountability. Addressing 
these issues is critical to ensuring that SML systems are not 
only predictive but also trustworthy, equitable and aligned with 
the standards of clinical care. As interdisciplinary collaboration 
deepens and regulatory frameworks evolve, supervised learning 
is poised to become a cornerstone of next-generation drug 
development. It holds the potential to accelerate discovery, 
personalize therapy and improve patient outcomes across 
diverse populations.

Declarations
This literature review did not involve human or animal 

subjects; therefore, ethics approval and consent to participate 
were not required. No personal details, images or videos of 
individuals are included in the manuscript and consent for 
publication is not applicable.

All data and materials referenced are publicly available 
or cited appropriately; no proprietary datasets were used. The 
author declares no competing interests and no external funding 
was received to support this research.

References

1.	 Vora LK, Gholap AD, Jetha K, Thakur RR, Solanki HK, Chavda 
VP. Artificial intelligence in pharmaceutical technology and drug 
delivery design. Pharmaceutics 2023;15(7):1916.

2.	 Hutson M. How AI is being used to accelerate clinical trials. 
Nature 2024;627(8003):2-5.

3.	 Qi X, Zhao Y, Qi Z, Hou S, Chen J. Machine learning empowering 
drug discovery: Applications, opportunities and challenges. 
Molecules 2024;29(4):903.

4.	 Askr H, Elgeldawi E, Aboul Ella H, Elshaier YA, Gomaa MM, 
Hassanien AE. Deep learning in drug discovery: an integrative 
review and future challenges. Artificial Intelligence Review 
2023;56(7):5975-6037.

https://www.mdpi.com/1999-4923/15/7/1916
https://www.mdpi.com/1999-4923/15/7/1916
https://www.mdpi.com/1999-4923/15/7/1916
https://www.nature.com/articles/d41586-024-00753-x
https://www.nature.com/articles/d41586-024-00753-x
https://doi.org/10.3390/molecules29040903
https://doi.org/10.3390/molecules29040903
https://doi.org/10.3390/molecules29040903
https://doi.org/10.1007/s10462-022-10306-1
https://doi.org/10.1007/s10462-022-10306-1
https://doi.org/10.1007/s10462-022-10306-1
https://doi.org/10.1007/s10462-022-10306-1


7

Bruce JL., Medi Clin Case Rep J  | Vol: 3 & Iss: 4

5.	 Suriyaamporn P, Pamornpathomkul B, Patrojanasophon P, 
Ngawhirunpat T, Rojanarata T, Opanasopit P. The artificial 
intelligence-powered new era in pharmaceutical research and 
development: a review. AAPS PharmSciTech 2024;25(6):188.

6.	 Bhatia N, Khan MM, Arora S. The Role of Artificial Intelligence 
in Revolutionizing Pharmacological Research. Current 
Pharmacology Reports 2024;10(6):323-329.

7.	 Osisanwo FY, Akinsola JE, Awodele O, et al. Supervised 
machine learning algorithms: classification and comparison. Int 
J Computer Trends Tech (IJCTT) 2017;48(3):128-138.

8.	 Uddin S, Khan A, Hossain ME, Moni MA. Comparing different 
supervised machine learning algorithms for disease prediction. 
BMC medical informatics and decision making 2019;19(1):1-6.

9.	 Shetty SH, Shetty S, Singh C, Rao A. Supervised machine 
learning: algorithms and applications. Fundamentals and 
methods of machine and deep learning: algorithms, tools and 
applications 2022:1-6.

10.	 Choudhary R, Gianey HK. Comprehensive review on supervised 
machine learning algorithms. In 2017 Int Conf Machine Learning 
Data Sci (MLDS) 2017:37-43.

11.	 Abdel-Jaber H, Devassy D, Al Salam A, Hidaytallah L, El-Amir 
M. A review of deep learning algorithms and their applications in 
healthcare. Algorithms 2022;15(2):71.

12.	 Shailaja K, Seetharamulu B, Jabbar MA. Machine learning in 
healthcare: A review. In2018 Second international conference 
on electronics, communication and aerospace technology 
(ICECA) 2018:910-914.

13.	 Korotcov A, Tkachenko V, Russo DP, Ekins S. Comparison 
of deep learning with multiple machine learning methods and 
metrics using diverse drug discovery data sets. Molecular 
pharmaceutics 2017;14(12):4462-75.

14.	 Raja K, Patrick M, Elder JT, Tsoi LC. Machine learning workflow 
to enhance predictions of Adverse Drug Reactions (ADRs) 
through drug-gene interactions: application to drugs for 
cutaneous diseases. Scientific reports 2017;7(1):3690.

15.	 He J, Wu Y, Yuan L, et al. An inductive learning-based method for 
predicting drug-gene interactions using a multi-relational drug-
disease-gene graph. J Pharmaceutical Analysis 2025:101347.

16.	 Jian C, Chen S, Wang Z, et al. Predicting delayed methotrexate 
elimination in pediatric acute lymphoblastic leukemia patients: 
an innovative web-based machine learning tool developed 
through a multicenter, retrospective analysis. BMC Medical 
Informatics and Decision Making. 2023;23(1):148.

17.	 Schwaller P, Gaudin T, Lanyi D, et al. Found in Translation: 
predicting outcomes of complex organic chemistry reactions 
using neural sequence-to-sequence models. Chemical science 
2018;9(28):6091-6098.

18.	 Kumar SA, Ananda Kumar TD, Beeraka NM, et al. Machine 
learning and deep learning in data-driven decision making of 
drug discovery and challenges in high-quality data acquisition in 
the pharmaceutical industry. Future Med Chem 2022;14(4):245-
270.

19.	 Uno M, Nakamaru Y, Yamashita F. Application of machine 
learning techniques in population pharmacokinetics/
pharmacodynamics modeling. Drug Metabolism and 
Pharmacokinetics 2024;56:101004.

20.	 Tang A. Machine learning for pharmacokinetic/pharmacodynamic 
modeling. J Pharmaceutical Sci 2023;112(5):1460-1475.

21.	 Gharat SA, Momin MM, Khan T. Artificial Intelligence and 
Machine Learning in Pharmacokinetics and Pharmacodynamic 
Studies. In Pharmacokinetics and Pharmacodynamics of Novel 
Drug Delivery Systems: From Basic Concepts to Applications: A 
Machine-Generated Literature Overview 2024:343-393.

22.	 Chou WC, Lin Z. Machine learning and artificial intelligence in 
physiologically based pharmacokinetic modeling. Toxicological 
Sciences 2023;191(1):1-4.

23.	 Ota R, Yamashita F. Application of machine learning techniques 
to the analysis and prediction of drug pharmacokinetics. J 
Controlled Release 2022;352:961-969.

24.	 Coley CW, Green WH, Jensen KF. Machine learning in 
computer-aided synthesis planning. Accounts of chemical 
research 2018;51(5):1281-1289.

25.	 Strieth-Kalthoff F, Sandfort F, Segler MH, Glorius F. 
Machine learning the ropes: principles, applications and 
directions in synthetic chemistry. Chemical Society Reviews 
2020;49(17):6154-6168.

26.	 Alnammi M, Liu S, Ericksen SS, et al. Evaluating scalable 
supervised learning for synthesize-on-demand chemical 
libraries. J Chem Information Modeling 2023;63(17):5513-5528.

27.	 Zuranski AM, Martinez Alvarado JI, Shields BJ, Doyle AG. 
Predicting reaction yields via supervised learning. Accounts of 
Chem Res 2021;54(8):1856-1865.

28.	 Oliveira JC, Frey J, Zhang SQ, et al. When machine learning 
meets molecular synthesis. Trends in Chemistry 2022;4(10):863-
885.

29.	 Ali RS, Meng J, Khan ME, Jiang X. Machine learning 
advancements in organic synthesis: A focused exploration 
of artificial intelligence applications in chemistry. Artificial 
Intelligence Chemistry 2024;2(1):100049.

30.	 Singh S, Sunoj RB. Molecular machine learning for chemical 
catalysis: prospects and challenges. Accounts of Chemical 
Research 2023;56(3):402-412.

31.	 Casale AD, Sarli G, Bargagna P, et al. Machine learning and 
pharmacogenomics at the time of precision psychiatry. Current 
Neuropharmacology 2023;21(12):2395-408.

32.	 Cilluffo G, Fasola S, Ferrante G, et al. Machine learning: 
An overview and applications in pharmacogenetics. Genes 
2021;12(10):1511.

33.	 Athreya AP, Neavin D, Carrillo-Roa T, et al. Pharmacogenomics-
driven prediction of antidepressant treatment outcomes: a 
machine-learning approach with multi-trial replication. Clin 
Pharmacology Therapeutics 2019;106(4):855-65.

34.	 Kalinin AA, Higgins GA, Reamaroon N, et al. Deep learning 
in pharmacogenomics: from gene regulation to patient 
stratification. Pharmacogenomics 2018;19(7):629-650.

35.	 Tafazoli A, Mikros J, Khaghani F, et al. Pharmacovariome 
scanning using whole pharmacogene resequencing coupled 
with deep computational analysis and machine learning for 
clinical pharmacogenomics. Human Genomics 2023;17(1):62.

36.	 Mathrani A, Susnjak T, Ramaswami G, Barczak A. Perspectives 
on the challenges of generalizability, transparency and ethics in 
predictive learning analytics. Computers and Education Open 
2021;2:100060.

37.	 Dinsdale NK, Bluemke E, Sundaresan V, et al. Challenges 
for machine learning in clinical translation of big data imaging 
studies. Neuron 2022;110(23):3866-3881.

38.	 Yang HS, Rhoads DD, Sepulveda J, et al. Building the model: 
challenges and considerations of developing and implementing 
machine learning tools for clinical laboratory medicine practice. 
Archives of patholog laboratory medicine 2023;147(7):826-836.

39.	 Obaido G, Mienye ID, Egbelowo OF, et al. Supervised machine 
learning in drug discovery and development: Algorithms, 
applications, challenges and prospects. Machine Learning with 
Applications 2024;17:100576.

https://link.springer.com/article/10.1208/s12249-024-02901-y
https://link.springer.com/article/10.1208/s12249-024-02901-y
https://link.springer.com/article/10.1208/s12249-024-02901-y
https://link.springer.com/article/10.1208/s12249-024-02901-y
https://link.springer.com/article/10.1007/s40495-024-00367-x
https://link.springer.com/article/10.1007/s40495-024-00367-x
https://link.springer.com/article/10.1007/s40495-024-00367-x
https://www.ijcttjournal.org/archives/ijctt-v48p126
https://www.ijcttjournal.org/archives/ijctt-v48p126
https://www.ijcttjournal.org/archives/ijctt-v48p126
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8
https://onlinelibrary.wiley.com/doi/10.1002/9781119821908.ch1
https://onlinelibrary.wiley.com/doi/10.1002/9781119821908.ch1
https://onlinelibrary.wiley.com/doi/10.1002/9781119821908.ch1
https://onlinelibrary.wiley.com/doi/10.1002/9781119821908.ch1
https://ieeexplore.ieee.org/document/8320256
https://ieeexplore.ieee.org/document/8320256
https://ieeexplore.ieee.org/document/8320256
https://www.mdpi.com/1999-4893/15/2/71
https://www.mdpi.com/1999-4893/15/2/71
https://www.mdpi.com/1999-4893/15/2/71
https://ieeexplore.ieee.org/document/8474918
https://ieeexplore.ieee.org/document/8474918
https://ieeexplore.ieee.org/document/8474918
https://ieeexplore.ieee.org/document/8474918
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.7b00578
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.7b00578
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.7b00578
https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.7b00578
https://www.nature.com/articles/s41598-017-03914-3
https://www.nature.com/articles/s41598-017-03914-3
https://www.nature.com/articles/s41598-017-03914-3
https://www.nature.com/articles/s41598-017-03914-3
https://www.sciencedirect.com/science/article/pii/S2095177925001649?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2095177925001649?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2095177925001649?via%3Dihub
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02248-7
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02248-7
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02248-7
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02248-7
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02248-7
https://pubs.rsc.org/en/content/articlelanding/2018/sc/c8sc02339e
https://pubs.rsc.org/en/content/articlelanding/2018/sc/c8sc02339e
https://pubs.rsc.org/en/content/articlelanding/2018/sc/c8sc02339e
https://pubs.rsc.org/en/content/articlelanding/2018/sc/c8sc02339e
https://www.tandfonline.com/doi/full/10.4155/fmc-2021-0243
https://www.tandfonline.com/doi/full/10.4155/fmc-2021-0243
https://www.tandfonline.com/doi/full/10.4155/fmc-2021-0243
https://www.tandfonline.com/doi/full/10.4155/fmc-2021-0243
https://www.tandfonline.com/doi/full/10.4155/fmc-2021-0243
https://www.sciencedirect.com/science/article/abs/pii/S1347436724000107?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1347436724000107?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1347436724000107?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S1347436724000107?via%3Dihub
https://jpharmsci.org/article/S0022-3549(23)00012-6/fulltext
https://jpharmsci.org/article/S0022-3549(23)00012-6/fulltext
https://link.springer.com/chapter/10.1007/978-981-99-7858-8_6
https://link.springer.com/chapter/10.1007/978-981-99-7858-8_6
https://link.springer.com/chapter/10.1007/978-981-99-7858-8_6
https://link.springer.com/chapter/10.1007/978-981-99-7858-8_6
https://link.springer.com/chapter/10.1007/978-981-99-7858-8_6
https://academic.oup.com/toxsci/article/191/1/1/6717815
https://academic.oup.com/toxsci/article/191/1/1/6717815
https://academic.oup.com/toxsci/article/191/1/1/6717815
https://www.sciencedirect.com/science/article/abs/pii/S0168365922007581?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0168365922007581?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0168365922007581?via%3Dihub
https://pubs.acs.org/doi/10.1021/acs.accounts.8b00087
https://pubs.acs.org/doi/10.1021/acs.accounts.8b00087
https://pubs.acs.org/doi/10.1021/acs.accounts.8b00087
https://pubs.rsc.org/en/content/articlelanding/2020/cs/c9cs00786e
https://pubs.rsc.org/en/content/articlelanding/2020/cs/c9cs00786e
https://pubs.rsc.org/en/content/articlelanding/2020/cs/c9cs00786e
https://pubs.rsc.org/en/content/articlelanding/2020/cs/c9cs00786e
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00912
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00912
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00912
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00770
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00770
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00770
https://www.cell.com/trends/chemistry/abstract/S2589-5974(22)00175-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2589597422001757%3Fshowall%3Dtrue
https://www.cell.com/trends/chemistry/abstract/S2589-5974(22)00175-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2589597422001757%3Fshowall%3Dtrue
https://www.cell.com/trends/chemistry/abstract/S2589-5974(22)00175-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2589597422001757%3Fshowall%3Dtrue
https://www.sciencedirect.com/science/article/pii/S2949747724000071?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2949747724000071?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2949747724000071?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2949747724000071?via%3Dihub
https://pubs.acs.org/doi/10.1021/acs.accounts.2c00801
https://pubs.acs.org/doi/10.1021/acs.accounts.2c00801
https://pubs.acs.org/doi/10.1021/acs.accounts.2c00801
https://www.eurekaselect.com/article/133467
https://www.eurekaselect.com/article/133467
https://www.eurekaselect.com/article/133467
https://www.mdpi.com/2073-4425/12/10/1511
https://www.mdpi.com/2073-4425/12/10/1511
https://www.mdpi.com/2073-4425/12/10/1511
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.1482
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.1482
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.1482
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/cpt.1482
https://www.tandfonline.com/doi/full/10.2217/pgs-2018-0008
https://www.tandfonline.com/doi/full/10.2217/pgs-2018-0008
https://www.tandfonline.com/doi/full/10.2217/pgs-2018-0008
https://humgenomics.biomedcentral.com/articles/10.1186/s40246-023-00508-1
https://humgenomics.biomedcentral.com/articles/10.1186/s40246-023-00508-1
https://humgenomics.biomedcentral.com/articles/10.1186/s40246-023-00508-1
https://humgenomics.biomedcentral.com/articles/10.1186/s40246-023-00508-1
https://www.sciencedirect.com/science/article/pii/S2666557321000318?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2666557321000318?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2666557321000318?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2666557321000318?via%3Dihub
https://www.cell.com/neuron/fulltext/S0896-6273(22)00817-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0896627322008170%3Fshowall%3Dtrue
https://www.cell.com/neuron/fulltext/S0896-6273(22)00817-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0896627322008170%3Fshowall%3Dtrue
https://www.cell.com/neuron/fulltext/S0896-6273(22)00817-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0896627322008170%3Fshowall%3Dtrue
https://meridian.allenpress.com/aplm/article/147/7/826/487413/Building-the-ModelChallenges-and-Considerations-of
https://meridian.allenpress.com/aplm/article/147/7/826/487413/Building-the-ModelChallenges-and-Considerations-of
https://meridian.allenpress.com/aplm/article/147/7/826/487413/Building-the-ModelChallenges-and-Considerations-of
https://meridian.allenpress.com/aplm/article/147/7/826/487413/Building-the-ModelChallenges-and-Considerations-of
https://www.sciencedirect.com/science/article/pii/S2666827024000525?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2666827024000525?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2666827024000525?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2666827024000525?via%3Dihub

